
 

  

Abstract 

In this paper, a class of real numbered block and convolutional 

codes are encoded and decoded using various iterative methods to 

remove channel impulsive noise and erasures. In order to recover the 

received vector, two iterative algorithms are used for erasure and 

impulsive noise distortions. Similarities of real number convolutional 

codes to linear block codes are discussed. An iterative method with 

adaptive thresholding is described for the reconstruction of impulsive 

noise using sparse signal processing.   

 
Index Terms—Real number codes, Impulsive noise cancellation, 

Erasure channel, Convolutional codes, Iterative technique, IMAT 

method.  

 

1. INTRODUCTION 

enerally, the channel encoding is performed in finite 

Galois fields as opposed to real/complex fields. The 

reason is the simplicity of logic circuit implementation and 

insensitivity to the pattern of errors. On the other hand, the 

real/complex field implementation of error correction codes 

has stability problems with respect to the pattern of impulsive, 

quantization and additive noise [1]-[3]. Nevertheless, such 

implementation has found applications in fault tolerant 

computer systems [4]-[6] and impulsive noise removal from 1-

D and 2-D signals [7], [8]. Similar to finite Galois fields, 

real/complex field codes can be implemented in both block 

and convolutional fashions. These coding methods are over 

the real or complex number fields, and can be implemented 

with standard digital signal processors. The possibility of 

utilizing real numbered codes permits the codes to be 

implemented with operations normally available in standard 

programmable digital signal processors. 

Also, many of the well-known algebraic principles of error 

correction codes hold over the fields of real number and these 

principles are therefore directly applicable. The signal 

processing techniques which are introduced in this paper are 

appropriate for erasure and impulsive noise channels.  

The paper is organized in the following manner. In Section 

II, a brief introduction of real numbered linear block codes is 

given by defining DFT codes and summarizing the important 

properties. In Section III, we define real numbered 

convolutional codes, and show the similarities between these 

codes and linear block codes. Section IV introduces an 

iterative algorithm to compensate the distortion of the erasure 

channel. Section V deals with a non-linear iterative technique 

 
 

named the IMAT method
1
. This method is presented to 

reconstruct the impulsive noise in the code vector, thus it can 

be omitted from the received vector. Some simulation results 

are presented in section VI and section VII concludes the 

paper. 

2. REAL NUMBER LINEAR BLOCK CODES  

    The (N, K) Complex field linear block codes are a class of 

error correcting codes similar to finite field codes which 

consist of message and code blocks of K and N symbols, 

respectively. The generator matrix G is a K×N matrix 

consisting of K independent vectors which form the code 

space. The parity check matrix is a (N-K) ×N matrix including 

N-K independent vectors which are orthogonal to the code 

space. In order to form such a generator matrix, K rows of a 

unitary matrix can be chosen for matrix G and the remaining 

rows form the parity check matrix. Since rows of a unitary 

matrix are orthogonal, the following equation is satisfied [9]: 

   

GH
H
=0                       (1) 

 

By using the inverse DFT matrix as a unitary matrix, the 

generator matrix consists of any K rows of the IDFT matrix. 

The parity check matrix of the code consists of the remaining 

rows. Thus, each code word is zero in N-K parity frequencies. 

If the parity frequencies are not zero, the presence of error in 

the code vector will be indicated. In order to form DFT codes 

in the field of real numbers, the frequencies are selected in 

such a way that the complex conjugate of each row also 

belongs to the generator matrix [10]. DFT codes have a 

minimum distance equal to N-K+1, which it implies they can 

correct up to ����
� � sample errors or N-K sample erasures.  

We first consider the message signal is sent through an 

erasure channel. We use the signal space projection method to 

compute the projection of the received vector in the code 

space [11]. In other words, the code word which has the 

minimum distance to the received vector is computed in order 

to approximate the message signal. This method can be used 

for all linear block codes with the generator matrix G. The 

matrix which gives us the message signal is called the pseudo 

inverse matrix. 

 

�� = 
 ��(�. ��)�����������
������ ������� 

            (2) 

where �� is the minimum distanced code to the received 
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vector and y is the received code word. 

In the case of DFT codes, the pseudo inverse matrix simply 

becomes ��. Because of the erased samples of the received 

signal, the approximated message is distorted. In order to 

recover the distorted message, an iterative technique is used.  

3. CONVOLUTIONAL CODES 

 Convolutional codes can be represented from two points of 

view. First, they can be considered as linear block codes. Then 

the generator matrix and the parity check matrix are as 

follows: 
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Where  m   is the constraint length. 

Gi and Hi i = 0,…,m are K×N and (N-K)×N matrices, 

respectively. In real numbered codes, each element of these 

matrices is real. For the convolutional codes we have: 

 

)(1)(1 mpNpkpkmpN GUC
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=                   (5) 

 

where C, U, (k×p) and N×(p+m) are the message, code vector, 

message length and code length, respectively. Thus 

convolutional codes can be decoded similar to the linear block 

codes. From the second point of view, convolutional codes are 

considered as the response of message vector to two or more 

filters; these responses are multiplexed to form the code 

vector. 

Because of the lost samples in erasure channels, the 

responses of the decoders are distorted. In the next section, an 

iterative technique is applied to compensate for this type of 

distortion to achieve the original signal. 

 

4. ITERATIVE METHOD FOR ERASURE CHANNELS 

Iterative methods can be applied to compensate for the 

distortion of an erasure channel. In order to obtain the original 

signal from the distorted one, we use a recursive relation as 

follows [12]: 

 

kkk xxfyx +−=
+

)]([1 λ
                        (6) 

 

where   and k are the relaxation parameter and k
th

 iteration, 

respectively. �! is replaced by �� in equation (2).  "(∙) can be 

considered as the distorting operator and y is the distorted 

signal, which must be recovered. This equation converges to � 

(original signal) if k goes to infinity.  

 Figure 1 demonstrates the block diagram for the iterative 

algorithm.  

 

 
 

Fig. 1. Block diagram of the iterative algorithm. 

 

4.1 Decoding linear block codes using iterative technique 

The iterative decoding scheme for linear block codes is to 

substitute the block " with a distorting function which, in this 

case, consists of the generator matrix, known erasure channel 

and the pseudo inverse of the generator matrix. Figure 2 

depicts the block diagram of the described distorting function. 

If the rate of erasure does not exceed the encoder capacity, 

which is 
���

�  in case of erasure channel, the iteration 

represented in Fig. 1 converges to the actual signal. 

 

 
 

 

Fig. 2. Block diagram of the distorting function in iterative method for 

linear block codes decoder. 

 

4.2  Decoding of convolutional codes using an iterative 

technique 

Real numbered convolutional codes can be assumed as 

linear block codes; thus they can be decoded using the method 

described in the previous subsection. The generator matrix of 

these codes is depicted in (3). On the other hand, considering 

convolutional codes as linear filters, an approximation of the 

message code can be computed by averaging the responses of 

these filters. Figure 3 shows the block diagram of encoding 

and decoding of convolutional codes. 
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Fig. 3. Block diagram of the averaging method for convolutional codes 

decoding. 

 

This block diagram can also be considered as the distorting 

function "(∙)in the iterative block diagram in order to 

compensate for the distortion. Figure 3 is designed for the rate 
�
� convolutional encoder. At each stage of decoding, the results 

of the two branches are averaged in order to recover the 

message signal. 

5. THE IMAT METHOD FOR IMPULSIVE NOISE CANCELATION 

    In this section, a non-linear iterative technique is proposed 

to reconstruct the impulsive noise, which is called the IMAT 

method. This method was first proposed in [13]. The goal of 

this technique is to reconstruct the impulsive noise in order to 

remove it from the received signal. In order to separate noise 

from signal, parity check matrix is used; denoting the 

observation vector at the receiver by 
�, we have: 

 


� = 
 + %                     (7) 

 

where n is the impulsive noise. Multiplying 
�  by the 

Hermitian of the parity check matrix, we have: 

 


�. &� = (
 + %). &� = �. �. &� + %. &� = %. &�         (8) 

 

Using the pseudo inverse of &� , we obtain: 

 


�. &� . (&. &�)��. & = %. &� . (&. &�)��. & = %'           (9) 

 

%' is an approximation of n. In the case of DFT codes, %. &�  

defines the amplitudes of the parity check frequencies of the 

noise which are available. Thus, the goal is to compute the 

whole noise from its known parameters using the fact that it is 

sparse. The non-linear function in this method is thresholding. 

According to the sparsity of impulsive noise, a thresholding 

block is used in the process to keep the sparse characteristic of 

the impulsive noise in consecutive iterations. The threshold 

value is decreased exponentially through the iterations in order 

to find every impulse. The following block diagram represents 

the IMAT method. 

 
 

Fig. 4. Block diagram of the IMAT method. 

 

where f is the distorting function.  

 
 

Fig. 5. SNR vs. the percentage of erasure for the linear block code decoder. 

 

In both cases of real numbered linear block and convolutional 

codes, the distorting function relates n to %'  according to (9): 

 

"(�) = �. &� . (&. &�)��. &                       (10) 

 

Thus, we can obtain better approximation of the noise 

vector through the iterations; thus, it can be removed from the 

code vector which results in the correct decoding of the 

message signal. If the rate of the erasure does not exceed the 

encoder capacity, which is
���

��  in the case of a channel with 

impulsive noise, the iteration represented in Fig. 4 converges 

to the actual signal with a proper choice of the relaxation 

parameter. The threshold level is reduced exponentially in 

each iteration. 

6. SIMULATION RESULTS 

6.1 Real numbered linear block code (DFT code) results: 

 The input signal is taken from a uniform random 

distribution of block length 50 and the simulations are run 

1000 times and then averaged. The SNR value ,which is 

mentioned in these figures, is the ratio of the original signal 

power to the difference of the original and the recovered 

signal power. The following subsections describe the 

simulation results for erasure and impulsive noise channels. 

6.1.1) Decoding for Erasure Channels: The iterative method 

which is shown in Fig. 1 is used for the decoding of DFT 

codes for erasure channel. The encoder rate is 
�
� and the 

relaxation parameter is set to 0.01. The SNR improvement 

versus the relative rate of erasures with respect to the 

theoretical maximum rate of correction capability (full 

capacity) is shown in Fig. 5. 

6.1.2) Decoding for Impulsive Noise Channels: In this 

figure, the locations of the impulsive noise samples are 

generated randomly and their amplitudes have Gaussian 

distributions with zero mean and variance equal to 1, 2, 5. The 

SNR values versus the percentage of the channel capacity is 

shown in Fig. 6. 
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Fig. 6. SNR vs. percentage of channel capacity using the IMAT method for 

detecting the location and amplitude of the impulsive noise. 

 

6.2 Real numbered convolutional codes results: 

 The performance of convolutional decoders depends on the 

coding rate, the number and values of FIR taps for the 

encoders, and the type of the decoder. Let us take the 

convolutional encoder of rate 
�
� of Fig. 3 as our platform for 

simulations. For simulation results, the taps of the filters in the 

encoder of Fig. 3 are: 

  

ℎ1 = *1 2 3 4 5 160 
ℎ2 = *16 5 4 3 2 10                  (11) 

 

6.2.1) Decoding for Erasure Channels: For the erasure 

channels, we employ two methods as described below:  

  a) Iterations with Averaging: The averaging method to 

decode for erasures in the convolutional code is shown in Fig. 

3. This figure is designed for the rate 
�
� convolutional encoder. 

At each stage of decoding, the results of the two branches are 

averaged. For the rate 
�
� and specific FIR structure, the SNR 

improvement versus the relative rate of erasures is shown in 

Fig.7. This figure shows that the SNR values gradually 

decrease as the channel erasure rate increases. 

  b) Decoding Using the Generator Matrix: The generator 

matrix of a convolutional encoder of the type depicted in Fig. 

2 with taps given in (11) can be shown to be: 
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With a proper choice of the relaxation parameter, the iteration 

represented in Fig. 1 converges to the actual signal. By using 

 
 

Fig. 7. SNR vs. the percentage of erasure for the convolutional decoder 

with averaging method after 50 iterations. 

 

the above operator G in our iterative simulations, better results 

can be obtained in comparison with the averaging method of 

Fig. 7. Figure 8 shows that the SNR values gradually decrease 

as the rate of erasure reaches its maximum (capacity). This 

figure shows that the generator matrix approach for decoding 

using the iteration matrix performs much better than the 

averaging method represented in Figs. 7 and 8. However, the 

complexity of the matrix approach is higher than the averaging 

method. 

 

6.2.2) Decoding for Impulsive Noise Channels: For 

simulation results, we use the generator matrix shown in (12). 

Its parity check matrix can be calculated from [14] and is 

given below: 
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In our simulations, the locations of the impulsive noise 

samples are generated randomly and their amplitudes have 

Gaussian distributions with zero mean and variance equal to 1, 

2, 5 and 10 times the variance of the encoder output. The 

results are shown in Fig. 9 after 300 iterations. This figure 

shows that the high variance impulsive noise has a better 

performance. 
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Fig. 8. SNR vs. the relative rate of erasures in an erasure channel applying 

the iterative method with the generator matrix. 

 

 

 
 

Fig. 9. SNR vs. percentage of channel capacity using the knock out method 

for detecting the location and amplitude of the impulsive noise,   = 1.9. 

 

 

7. CONCLUSION 

Real numbered block and convolutional codes can be useful in 

fault tolerant systems. We have developed decoding methods 

for removing erasure and impulsive noise using various novel 

algorithms. Two iterative algorithms are introduced to recover 

the received signal from erasure and impulsive noise channels. 

A non-linear method (IMAT) to reconstruct the impulsive 

noise is simulated for both block and convolutional codes. The 

results are quite impressive.  
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