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ABSTRACT

Dynamic system modeling plays a crucial role in the develop-
ment of techniques for stationary and non-stationary signal
processing. Due to the inherent physical characteristics of
systems usually under investigation, non-negativity is a de-
sired constraint that can be imposed on the parameters to
estimate. In this paper, we propose a general method for
system identification under non-negativity constraints. We
derive additive and multiplicative weight update algorithms,
based on (stochastic) gradient descent of mean-square error
or Kullback-Leibler divergence. Experiments are conducted
to validate the proposed approach.

1. INTRODUCTION

In many real-life phenomena including biological and phys-
iological ones, due to the inherent physical characteristics
of systems under investigation, non-negativity is a desired
constraint that can be imposed on the parameters to esti-
mate. For instance, in the study of a concentration field or
a thermal radiation field, any observation is described with
non-negative values (ppm, joule). Non-negativity as a physi-
cal constraint has received growing attention from the signal
processing community during the last decade. For instance,
consider the following non-negative least-square problem

min
x

1
2
‖Ax− b‖2 (1)

suject to x ≥ 0 (2)

where ‖ · ‖ denotes the Euclidean 2-norm. It has recently
been addressed within different contexts, with applications
ranging from imaging deblurring [2] to biological data pro-
cessing [4]. Another similar problem is non-negative matrix
factorization, which is now a popular dimension reduction
technique [7]. Given a matrix V with non-negative entries,
it consists of seeking a factorization of the form

V ≈WH (3)

where W and H are non-negative matrices. This problem is
closely related to the blind deconvolution one.

Two classes of algorithms have been proposed in the lit-
erature to solve optimization problems with non-negativity
constraints. The first one encompasses the so-called alternat-
ing non-negative least squares or projected gradient [1, 3].
These are based on successive projections onto the feasi-
ble region, resulting in low-cost operations for simple con-
straints. Their low-memory requirement makes them at-
tractive for large scale problems. The second one, inves-
tigated more recently, consists of multiplicative weight up-
date methods. They provide natural and computationally
efficient schema to a large number of problems involving
non-negativity constraints [5, 7, 8]. In particular, the ap-
plication described in [5] refers to the maximum-likelihood

signal restoration for image deblurring. Non-negativity con-
straints arise from the nature of image data and blurring
masks. These are satisfied by a proper choice, at each itera-
tion, of the step size of a gradient descent method. Setting
the latter to one leads to a multiplicative form.

In this paper, we study the problem of system identifi-
cation with non-negativity constraints. We derive additive
and multiplicative algorithms based on gradient descent of
convex cost functions. In order to deal with non-stationary
systems and reduce the computational requirements, we also
develop stochastic gradient algorithms that update parame-
ters in an online way.

2. GENERAL PROBLEM FORMULATION

Consider an unknown system, only characterized by a set
of real-valued discrete-time responses to known stationary
inputs. The problem is to derive a transversal filter model

y(n) = α>x(n) + e(n), (4)

where x(n) and y(n) denote the input and noisy output
data at time n. Due to the inherent physical characteristics
of systems under investigation, non-negativity is a desired
constraint that can be imposed on the coefficient vector α.
Therefore, the problem of identifying the optimum model
can be formalized as follows

αo = arg min
α
J(α) (5)

subject to α ≥ 0 (6)

with J(α) a convex cost function.

2.1 Additive weight update algorithm

In order to solve the problem (5)-(6), let us consider its La-
grangian function Q(α,λ) given by

Q(α,λ) = J(α)− λ>α,

where λ is the vector of non-negative Lagrange multipli-
ers. The Karush-Kuhn-Tucker conditions must necessarily
be satisfied at the optimum defined by αo, λo, namely,

∇αQ(αo,λo) = 0

λoi α
o
i = 0, ∀i

where the symbol ∇α stands for the gradient operator with
respect to α. These equations can be combined into the
following expression

αoi [−∇αJ(α)]i = 0, (7)

where the extra minus sign is just used to make a gradient
descent of J(α) apparent. To solve equation (7) iteratively,
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two important points have to be noticed. The first point is
that D(−∇αJ(α)) is also a gradient descent of J(α) if D is a
symmetric positive definite matrix. In this paper, D denotes
a diagonal matrix with i-th diagonal entry [D]ii = fi(α),
where fi(α) > 0. The second point is that equations of
the form ϕ(u) = 0 can be solved with a fixed-point algo-
rithm, under some conditions on function ϕ, by considering
the problem u = u + ϕ(u). Implementing this fixed-point
strategy with equation (7) leads to the component-wise gra-
dient descent algorithm

αi(k + 1) = αi(k) + ηi(k)fi(α(k))αi(k)[−∇αJ(α(k))]i (8)

with ηi(k) a positive step size that allows to control conver-
gence. Suppose that αi(k) ≥ 0. Non-negativity of αi(k + 1)
is guaranteed if

1 + ηi(k)fi(α(k))[−∇αJ(α(k))]i ≥ 0. (9)

If [∇αJ(α(k))]i ≤ 0, condition (9) is clearly satisfied and
non-negativity does not impose any restriction on step size.
Conversely, if [∇αJ(α(k))]i > 0, non-negativity of αi(k+ 1)
holds if

0 ≤ ηi(k) ≤ 1

fi(α(k)) [∇αJ(α(k))]i
. (10)

Before going further, note that the right-hand side member
of (8) is a descent direction because ηi(k)fi(α(k))αi(k) ≥ 0.
The general algorithm can thus be written as follows

α(k + 1) = α(k) + η(k)d(k), (11)

where d(k) is the descent direction defined by

d(k) = −diag(fi(α(k))αi(k))∇αJ(α(k)). (12)

Step size η(k) is now independent of index i, and can be ob-
tained via a line search procedure in the interval ]0, ηmax(k)]
defined by

ηmax(k) = min
i

1

fi(α(k)) [∇αJ(α(k))]i
. (13)

2.2 Multiplicative weight update algorithm

Let us now decompose the gradient −∇αJ(α(k)) as follows

[−∇αJ(α(k))]i = [U(α(k))]i − [V (α(k))]i (14)

where [U(α(k))]i and [V (α(k))]i are strictly positive com-
ponents. Obviously, such a decomposition is not unique but
always exists. Using fi(α(k)) = 1/[V (α(k))]i, the updating
equation (8) becomes

αi(k + 1) = αi(k) + ηi(k)αi(k)

(
[U(α(k))]i
[V (α(k))]i

− 1

)
. (15)

Let us determine the maximum value for the step size in or-
der that αi(k+1) ≥ 0, given αi(k) ≥ 0. As shown previously,
note that a restriction may only apply if

[U(α(k))]i − [V (α(k))]i < 0 (16)

According to condition (10), the maximum step size which
ensures the positivity of αi(k + 1) is given by

ηi(k) ≤ 1

1− [U(α(k))]i
[V (α(k))]i

, (17)

which is strictly greater than 1. The use of a step size equal
to 1 leads to the very simple form

α(k + 1) = diag

(
[U(α(k))]i
[V (α(k))]i

)
α(k). (18)

This expression is referred to as the multiplicative weight
update algorithm.

2.3 Stochastic-gradient formulation

An important issue that has not been discussed up to now
is the evaluation of the gradient. This requires knowledge
of some statistical properties of the signal at hand, which
cannot often be achieved in real-life applications. In order
to circumvent this difficulty, we propose to use an instan-
taneous estimate of the gradient, in the same manner as for
conventional LMS-based algorithms. Substituting ∇αJ with
its instantaneous estimate in (8) leads to

αi(k + 1) = αi(k) + ηi(k)fi(α(k))αi(k)[−∇̃αJ(α(k))]i.

As we will see in the next section, coefficient update at each
iteration only uses an instantaneous pair of input/output
data. This form is particularly appropriate for online signal
processing.

3. FORMULATION WITH MEAN-SQUARE
ERROR AND K-L DIVERGENCE

In the previous section, we derived a general framework for
solving problem (5)-(6). In particular, we proposed an ad-
ditive (8) and a multiplicative (18) weight update algorithm
for minimizing convex criterion under non-negativity con-
straints. We shall now present the updating rules to deal
with, more specifically, the mean-square error and the Kull-
back Leibler divergence. In anticipation of the numerical
experiments that will be presented next, we introduce these
criteria within the context of maximum-likelihood estimation
of Gaussian and Poisson noise corrupted linear systems.

3.1 Minimising the mean-square error

Consider the problem of estimating α in

y(n) = α>x(n) + e(n), (19)

subject to the constraint α ≥ 0, where system outputs are
corrupted by a zero-mean white Gaussian noise e(n) of vari-
ance σ2. The likelihood function based on N samples is

F (α) =

N∏
n=1

1√
2πσ2

exp

(
− (α>x(n)− y(n))2

2σ2

)
.

The negative log-likelihood function is given by

− logF (α) =
1

2

N∑
n=1

(α>x(n)− y(n))2

σ2
. (20)

Dropping the terms that do not depend on α, we obtain the
cost function to be minimized with respect to α, that is,

J(α) =

N∑
n=1

(
α>x(n)− y(n)

)2
(21)

subject to α ≥ 0

where we have included the non-negativity constraints. The
gradient of J(α) is easily computed as follows

∇Jα(α) =

N∑
n=1

(
x(n)x(n)>α− y(n)x(n)

)
. (22)

Using expression (8) with fi(α) = 1
N

, the additive updating
rule for minimising mean-square error under non-negative
constraints is given by

α(k + 1) = diag(α(k))
(

1l + η(k)
(
p̂xy − R̂xα(k)

))
(23)
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where

η(k) ≤ min
i

1

[R̂xα(k)− p̂xy]i
. (24)

In the above expressions, R̂x is the estimated autocorrelation
matrix of x(n), and p̂xy denotes the intercorrelation vector
between x(n) and y(n), defined as

R̂x =
1

N

N∑
n=1

x(n)x(n)> p̂xy =
1

N

N∑
n=1

y(n)x(n). (25)

Let us turn now to multiplicative weight update algo-
rithms. Gradient decomposition (14) always exists but is
not unique. A possible solution is to consider the following
two positive vectors

[U(α(k))] = max{[R̂xα(k)− p̂xy]i, 0}+ η (26)

[V (α(k))] = −min{[R̂xα(k)− p̂xy]i, 0}+ η (27)

with η a positive constant to avoid the denominator in (18)
to become 0.

Stochastic-gradient formulation

We restrict ourselves to the use an instantaneous pair of
input/output data at each time instant k. This can be done
by only taking into account x(n) and y(n) in (28), that is,

R̂x,k = x(k)x(k)> p̂xy,k = y(k)x(k). (28)

In this case, the updating rule becomes an instantaneous
approximation of (23) defined by

α(k+1) = diag(α(k))
(

1l + η(k)
(
p̂xy,k − R̂x,k α(k)

))
(29)

To ensure non-negativity of the solution, the step size must
satisfy at each iteration the upper-bound expression

η(k) ≤ min
i

1

[R̂x,k α(k)− p̂xy,k]i
.

3.2 Minimizing the Kullback-Leibler divergence

Consider the problem of estimating α from noisy measure-
ments y(n) drawn from a Poisson law, as in many applica-
tions involving photon-counting detectors,

y(n) ∼ P(α>x(n)), (30)

subject to the constraint α ≥ 0. In this case, x(n) is non-
negative, and y(n) is an integer. If these random variables
are independent, the likelihood function based on N samples
can be written as [9]

F (α) =

N∏
n=1

(
α>x(n)

)y(n)
y(n)!

exp(−α>x(n)). (31)

Using Stirling’s formula, the negative log-likelihood function
can be approximated by

− logF (α) ≈
N∑
n=1

(
(α>x(n)− y(n)) + y(n) log

y(n)

α>x(n)

)
.

Dropping the terms that do not depend on α, we obtain
a generalized Kullback-Leibler divergence to be minimized
with respect to α under non-negativity constraints

J(α) =

N∑
n=1

[
(α>x(n))− y(n) log(α>x(n))

]
(32)

subject to α ≥ 0

The gradient of J(α) is easily computed as follows

∇J(α) =

N∑
n=1

(
x(n)− y(n)

α>x(n)
x(n)

)
(33)

From (8) and setting fi(α) to 1, we obtain the update equa-
tion for the Poisson noise case

α(k + 1) =

diag(α(k))

(
1l + η(k)

N∑
n=1

(
y(n)

α(k)>x(n)
x(n)− x(n)

))
(34)

where

η(n) ≤ min
i

1[∑N
n=1

(
x(n)− y(n)

α>x(n)
x(n)

)]
i

. (35)

A multiplicative form of the algorithm is obtained by decom-
posing (33) in the form −∇Jα(α(k)) = U(α(k))−V (α(k)),
where the two positive terms can be clearly identified as

U(α(k)) =

N∑
n=1

y(n)

α(k)>x(n)
x(n) (36)

V (α(k)) =

N∑
n=1

x(n) (37)

We obtain the corresponding multiplicative form

αi(k + 1) = αi(k)
[
∑N
n=1

y(n)

α(k)>x(n)
x(n)]i

[
∑N
n=1 x(n)]i

. (38)

Stochastic-gradient algorithm

Let us estimate the gradient instantaneously, using only the
available data x(k) and y(k) at time instant k. We obtain
the following algorithm

α(k + 1) =

diag(α(k))

(
1l + η(k)

(
y(k)

α(k)>x(k)
x(k)− x(k)

))
(39)

In order to get a non-negative solution, at each iteration, the
step size must be upper-bounded as follows

η(k) ≤ min
i

1[
y(k)

α(k)>x(k)
x(k)− x(k)

]
i

. (40)

4. EXPERIMENTAL RESULTS

The purpose of this section is to illustrate the performance of
the proposed approach, and consistency between analytical
and numerical results. We shall also see how parameters of
the algorithm affect its transient performance.

4.1 Gaussian scenario

Consider the Gaussian scenario (19) where the problem at
hand is to estimate α. Due to non-negativity constraints,
in general, there is no closed-form solution for problem (21).
However, in order to illustrate the results and study con-
vergence behavior, we consider a simple special case where
inputs are i.i.d. and drawn from a zero-mean unit-variance
Gaussian distribution. According to the Wiener-Hopf equa-
tions, the optimal solution of the unconstrained problem is
obtained by solving

Rxαow = pxy.
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Table 1: System of reference with non-negative entries, and estimations under Gaussian hypothesis.
α 0.8 0.6 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0.1

α̂η=0.04 0.8566 0.7197 0.4888 0.2781 0.3062 0.1917 0.3267 0.1320 0.0646 0.0359
α̂η=0.004 0.7986 0.5680 0.4906 0.4021 0.3898 0.3042 0.2819 0.1875 0.1067 0.0885

In the case where Rx is diagonal, as considered above, it is
easy to show that the solution of the constrained problem is
obtained by turning the negative entries of αow to zero

αo =
{
R−1
x pxy

}
+

(41)

where {u}+ = max{0, u}. The minimum mean-square error
produced by solution αo is

Jmin = σ2 − 2pxy{αo}+ + {αo}>+Rx{αo}+. (42)

with σ2 the variance of the additive zero-mean white Gaus-
sian noise e(n). The latter was set to 0.5 in the experiments
described below.

0 1000 2000 3000 4000 5000

10
0

η=0.04

η=0.004

optimal error

Figure 1: Evolution of mean-square error under Gaussian
hypothesis, for several step size values and the system of
reference described in Table 1.

0 1000 2000 3000 4000 5000

10
0

η=0.004

η=0.04

optimal error

Figure 2: Evolution of mean-square error under Gaussian
hypothesis, for several step size values and the system of
reference described in Table 2.

First, experiments were conducted to estimate α under
non-negativity constraints in the case where the system we
used to simulate data was in the set of admissible solutions.
See Table 1. From (41) and (42), we have Jmin = 0.5. One
hundred realizations of 5000-sample independent sequences
were generated in order to compute mean performance. The
step size η in (23) was successively fixed at 0.004 and 0.04.
The entries of α were initially set to 1. With η = 0.04, the
mean square error over the last 1000 samples was found to
be J0.04 = 0.5368. The algorithm led us to J0.004 = 0.5039
with η = 0.004. Table 1 reports the estimated entries of α.
Figure 1 presents the ensemble-average learning curves, that
is, convergence of the mean-square error. It exhibits a classic
behaviour for this kind of algorithms, for which small step
size usually means slower convergence but better asymptotic
performance.

Next, experiments were conducted in the case where the
system of reference was out of the set of admissible solutions.
As can be seen in Table 2, this was done by turning 3 entries
of α used in the first series of experiments to negative values.
In this case, solution of the constrained problem is obtained
by setting these negative entries to 0. From (41) and (42),
we have Jmin = 0.76. With η = 0.04, the algorithm led us
to J0.04 = 0.8030 estimated over the last 1000 samples. The
mean square error was equal J0.004 = 0.7693 with η = 0.004.
Table 2 reports the estimated entries of α. The latter shows
that those associated to theoretically negative ones are very
close to 0, which is consistent with our analysis. Finally,
Figure 2 presents the ensemble-average learning curves.

4.2 Poisson scenario

Consider the Poisson scenario (30), where the problem at
hand is to estimate α subject to non-negativity contraints.
Unfortunately, even in simple cases, solving this problem
is analytically intractable. Experiments were however con-
ducted in the case described by Table 1, where the system of
reference was in the set of admissible solutions. Inputs x(n)
were absolute-valued data drawn from a zero-mean Gaussian
distribution of variance 104. One hundred realizations of
5000-sample independent sequences were generated in order
to compute mean performance. The step size η in (34) was
successively fixed at 0.0004, 0.001 and 0.004. In Figure 3, the
convergence behavior of the algorithm with respect to the
step clear shows that small step size usually means slower
convergence but better asymptotic performance.

5. CONCLUSION

In many real-life phenomena including biological and phys-
iological ones, due to the inherent physical characteristics
of systems under investigation, non-negativity is a desired
constraint that can be imposed on the parameters to esti-
mate. In this paper, we proposed a general method for sys-
tem identification under non-negativity constraints. We de-
rived additive and multiplicative weight update algorithms,
based on (stochastic) gradient descent of mean-square er-
ror or Kullback-Leibler divergence. Two applications were
finally considered, involving Gaussian and Poisson noise cor-
rupted linear systems.
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Table 2: System of reference with positive and negative entries, and estimations under Gaussian hypothesis.
α 0.8 0.6 0.5 0.4 −0.4 0.3 −0.3 0.2 −0.1 0.1

α̂η=0.04 0,7818 0.7184 0.4121 0.3918 0.0 0.3078 0.0 0.1727 0.0 0.1043
α̂η=0.004 0.8076 0.6175 0.4956 0.4623 0.0002 0.3818 0.0005 0.2189 0.0138 0.1182
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