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ABSTRACT

This paper considers a multiuser transmit beamforming de-
sign in the presence of Gaussian distributed channel errors
at the transmitter. We study a stochastic robust design
problem that minimizes the transmission power subject to
probabilistic signal-to-interference-plus-noise ratio (SINR)
constraints on the receivers. While the probabilistically-
constrained design problem is difficult to solve, we present a
conservative approximation formulation that guarantees the
satisfaction of the probabilistic SINR requirements. The pro-
posed conservative formulation is reminiscent of the worst-
case robust design problem with spherically bounded chan-
nel errors, and can be efficiently handled by semidefinite re-
laxation. The presented simulation results show that the
proposed approach outperforms the existing methods and
requires less transmission powers under the same SINR re-
quirement.

1. INTRODUCTION

Multiuser transmit beamforming designs that take into ac-
count channel state information (CSI) errors at the transmit-
ter, or so called robust transmit beamforming, have drawn
significant attention recently [1–6]. Depending on the CSI er-
ror model, robust transmit beamforming can be divided into
two classes: The worst-case robust design and the stochas-
tic robust design. The worst-case robust design assumes
a bounded channel error model, and the beamforming vec-
tors are designed such that the receivers’ quality-of-service
(QoS) requirements are fulfilled for all channels satisfying
this model; e.g., see the works in [2] where the symbol mean
squared error is used as the receiver’s QoS measure, and also
in [3] for signal-to-interference-plus-noise ratio (SINR) based
QoS measure. In the stochastic robust design, the channel
error is assumed to be random, following certain statistical
distribution, and the beamforming vectors are designed such
that the QoS requirement are met with a high probability.
See [4–6] for the related works.

In this paper, we are interested in the stochastic ro-
bust transmit beamforming design. Specifically, we assume
that the channel errors are independent and identically dis-
tributed (i.i.d.) complex Gaussian random vectors, and
consider the design formulation in [4] where the transmis-
sion power is minimized subject to probabilistic SINR con-
straints. The probabilistic SINR constraints guarantee that
the beamforming design provides each receiver with a preset,
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often high, probability that the desired SINR specification is
satisfied (i.e., a high SINR satisfaction probability). The
associated design problem is difficult because the probabilis-
tic SINR constraints in general do not posses any tractable
form. To efficiently handle this problem, conservative ap-
proaches, which can yield approximate solutions satisfying
the probabilistic SINR requirements, have been proposed.
For example, the conservative approaches presented in [4]
can obtain such approximate solutions by simply solving a
convex semidefinite program (SDP).

In this paper, we present a new conservative approach to
approximating the probabilistically-constrained robust de-
sign problem. The idea of the proposed approach is to bypass
the difficult probabilistic SINR constraints and replace them
by worst-case SINR constraints with spherically bounded
channel errors. We show that the spherically-bounded worst-
case SINR constraints guarantee the satisfaction of the orig-
inal probabilistic SINR constraints in the sense that the for-
mer constraints correspond to a problem feasible set that
is subsumed by the latter constraints. The resultant con-
servative formulation resembles the worst-case robust trans-
mit beamforming problem considered in [3,7], and hence can
be conveniently handled by a semedefinite relaxation (SDR)
based method [7]. Moreover, we illustrate that the level of
conservatism of the proposed formulation can be reduced by
a bisection methodology. Simulation results to be presented
will demonstrate that the proposed conservative approach
outperforms the methods in [4], and meanwhile draws less
transmission powers under the same SINR requirement.

2. SIGNAL MODEL AND PROBLEM
STATEMENT

2.1 Signal Model

We consider a multiuser wireless system that consists of
a multiple-antenna transmitter and K single-antenna re-
ceivers. We assume that the transmitter is equipped with
Nt antennas, and wants to transmit K independent data
streams, denoted by si(t), i = 1, . . . ,K, to the K respec-
tive receivers using transmit beamforming [1]. The transmit

signal is given by
∑K

i=1 wisi(t), where wi ∈ C
Nt is the beam-

forming vector for si(t). The received signal at receiver i can
be expressed as

yi(t) = h
H
i

(

K
∑

i=1

wisi(t)

)

+ ni(t), (1)

where hi ∈ C
Nt is the channel vector of receiver i, and ni(t)

is the additive noise, with zero mean and variance σ2
i > 0.
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Assume that E[|si(t)|
2] = 1 for all i = 1, . . . ,K. The SINR

of receiver i can be obtained from (1) as

SINRi =
E[|hH

i wisi(t)|
2]

∑K

k 6=i
E[|hH

i wksk(t)|2] + σ2
i

=
|hH

i wi|
2

∑K

k 6=i
|hH

i wk|2 + σ2
i

.

Since the SINR is directly related to system performance
such as bit error rate, it is commonly used as the receivers’
QoS measure. The goal of the transmitter is to design the
beamforming vectors {wi}

K
i=1 such that each of the receivers

can meet a desired SINR requirement as

SINRi ≥ γi, i = 1, . . . ,K, (2)

where γi > 0 is the target SINR value for receiver i. To this
end, the transmitter requires the receivers’ CSI, i.e., {hi}

K
i=1.

Suppose that the transmitter perfectly knows {hi}
K
i=1. A set

of optimum beamforming vectors can be obtained by solving
the following optimization problem

min
wi∈C

Nt ,
i=1,...,K

K
∑

i=1

||wi||
2 (3)

s.t.
|hH

i wi|
2

∑K

k 6=i
|hH

i wk|2 + σ2
i

≥ γi, i = 1, . . . ,K,

where || · || denotes the vector 2-norm. As seen in (3), our
task is to find a most power-efficient design that guarantees
the desired SINR specifications in (2). It has been shown
in [1] and [8] that problem (3) can be reformulated as a con-
vex second-order cone program (SOCP). Therefore, efficient
solvers, such as CVX [9], can be employed to solve problem
(3).

2.2 Probabilistically-Constrained Robust Design

In wireless systems, CSI at the transmitter is either es-
timated via uplink training (e.g., in time division duplex
systems) or acquired through receivers’ feedback (e.g., in
frequency division duplex systems). Hence it is inevitable
to have CSI errors in practice due to finite-length train-
ing data or due to limited quantization feedback [1]. Let
h̄i, i = 1, . . . , K, denote the obtained channel estimates at
the transmitter. The true channel vectors {hi}

K
i=1 can be

modeled as

hi = h̄i + ei, i = 1, . . . , K, (4)

where ei ∈ C
Nt represents the channel error. With the im-

perfect CSI {h̄i}
K
i=1, the standard transmit beamforming de-

sign in (3) may no longer guarantee the desired SINR spec-
ifications [in (2)] all the time, and therefore SINR outage
may occur. This issue motivates the investigation of robust
transmit beamforming design.

In this paper, we consider the stochastic robust trans-
mit beamforming design. Specifically, we model each ei as
an i.i.d. complex Gaussian random vector, with zero mean
and covariance matrix ε2i INt

, i.e., ei ∼ CN (0, ε2i INt
). This

model is particularly suitable for errors owing to imperfect
channel estimation. Under this stochastic model, it is de-
sirable to have a beamforming design that is able to guar-
antee the SINR specifications in (2) with a high satisfaction
probability, or, equivalently, a low SINR outage probabil-
ity. Let ρi ∈ (0, 1] denotes the maximum tolerable SINR
outage probability for receiver i. We consider the following

probabilistically-constrained design formulation [4]

min
wi∈C

Nt ,
i=1,...,K

K
∑

i=1

||wi||
2 (5a)

s.t. Pr

(

|(h̄i + ei)
H
wi|

2

∑K

k 6=i
|(h̄i + ei)Hwk|2 + σ2

i

≥ γi

)

≥ 1− ρi, i = 1, . . . ,K. (5b)

Problem (5) aims to find a most power-efficient beamforming
design that guarantees receiver i a (1−ρi) SINR satisfaction
probability, for i = 1, . . . ,K. Solving problem (5) is a chal-
lenging task because the probabilistic SINR constraints in
(5b) are intractable and are not convex in general. In the
next section, we present a conservative approach to approx-
imating problem (5).

3. PROPOSED CONSERVATIVE APPROACH

In this section, the proposed conservative approach is pre-
sented. In the first subsection, a conservative formulation
of problem (5) is given. In the second subsection, an SDR
based method is presented to handle the proposed conser-
vative formulation. A bisection technique that can further
enhance the proposed conservative approach is presented in
the last subsection.

3.1 Proposed Conservative Formulation

To present the proposed approach, let us write

ei = εivi (6)

where vi ∼ CN (0, INt
), and rewrite the probabilistic SINR

constraints in (5b) as

Pr

(

|(h̄i + εivi)
H
wi|

2

∑K

k 6=i
|(h̄i + εivi)Hwk|2 + σ2

i

≥ γi

)

≥ 1− ρi (7)

for i = 1, . . . ,K. The proposed conservation approach is
based on the following simple lemma:

Lemma 1 Let v ∈ C
Nt be a continuous random vector fol-

lowing certain statistical distribution and let G(v) : CNt →
R be a function of v. Let r > 0 be the radius of the ball
{v| ‖v‖2 ≤ r2} such that Pr(‖v‖2 ≤ r2) ≥ 1 − ρ where
ρ ∈ (0, 1]. Then

G(v) ≥ 0 ∀ ‖v‖2 ≤ r2 (8)

implies Pr (G(v) ≥ 0) ≥ 1− ρ.

Proof: Let f(v) denote the probability density function
of v. Suppose that (8) holds. We have that

Pr (G(v) ≥ 0) =

∫

G(v)≥0

f(v) dv ≥

∫

‖v‖2≤r2
f(v) dv

= Pr
(

‖v‖2 ≤ r2
)

≥ 1− ρ, (9)

where the first inequality follows from (8). The lemma then
is proved. �

By applying Lemma 1 to (7), we can see that (7) is sat-
isfied whenever

|(h̄i + εivi)
H
wi|

2

∑K

k 6=i
|(h̄i + εivi)Hwk|2 + σ2

i

≥ γi ∀ ‖vi‖
2 ≤ r2i , (10)
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where ri > 0 is the radius of the ball {vi| ‖vi‖
2 ≤ r2i }

such that Pr(‖vi‖
2 ≤ r2i ) ≥ 1− ρi. We should mention that

Lemma 1 does not impose any specific statistical distribution
on vi. However, for the case of vi ∼ CN (0, INt

) which is
of the main interest in this paper, 2‖vi‖

2 is a Chi-square
random variable with 2Nt degrees of freedom. Let ICDF(·)
be the inverse cumulative distribution function of 2‖vi‖

2.
Then one can show that the choice of the following radius

ri =

√

ICDF(1− ρi)

2
(11)

is sufficient to guarantee Pr(‖vi‖
2 ≤ r2i ) ≥ 1 − ρi for i =

1, . . . , K. Therefore, with the radii {ri}
K
i=1 in (11), and by

Lemma 1, the following problem

min
wi∈C

Nt ,
i=1,...,K

K
∑

i=1

||wi||
2 (12)

s.t.
|(h̄i + εivi)

H
wi|

2

∑K

k 6=i
|(h̄i + εivi)Hwk|2 + σ2

i

≥ γi ∀ ‖vi‖
2 ≤ r2i ,

i = 1, . . . ,K.

is a conservative formulation for problem (5). It is interesting
to note from (12) that the probabilistic SINR constraints in
(5) have been replaced by an infinite number of deterministic
SINR constraints with spherically bounded uncertainty vec-
tors {vi}

K
i=1. Problem (12) is reminiscent of the worst-case

robust transmit beamforming problem considered in [2,3,7].
Different from [2,3,7] where the radii {ri}

K
i=1 are preassigned

system parameters, problem (12) now serves as a conserva-
tive formulation of the probabilistically-constrained problem
in (5), and the radii {ri}

K
i=1 are determined according to the

SINR outage probabilities [see (11)].

3.2 SDR for Problem (12)

In this subsection, we present an SDR based method1 for
handling problem (12) efficiently.

To illustrate this method, let us define Wi , wiw
H
i for

i = 1, . . . ,K, and express (12) in terms of {Wi}
K
i=1 as

min
Wi∈C

Nt×Nt ,
i=1,...,K

K
∑

i=1

Tr(Wi) (13a)

s.t. (h̄i + εivi)
H





1

γi
Wi −

K
∑

k 6=i

Wk



 (h̄i + εivi)

≥ σ2
i , ∀ ‖vi‖

2 ≤ r2i , i = 1, . . . ,K, (13b)

Wi � 0, rank(Wi) = 1, i = 1, . . . ,K, (13c)

where Tr(·) denotes the trace of a matrix, Wi � 0 means
thatWi is a Hermitian, positive semidefinite matrix, and the
constraints in (13c) are due to the fact that Wi = wiw

H
i .

The semi-infinite constraints in (13b) can be recast as a fi-
nite number of linear matrix inequalities, by applying the
S-procedure [10]:

Lemma 2 (S-procedure [10]) Let A ∈ C
Nt×Nt be a com-

plex Hermitian matrix, b ∈ C
Nt and c ∈ R. The following

condition

v
H
Av + b

H
v + v

H
b+ c ≥ 0, ∀ ‖v‖2 ≤ r2

1We should mention that the SDR based method presented
in this subsection is inspired by [7] where the same technique is
used to handle another robust transmit beamforming problem in
cognitive radios.

holds true if and only if there exists a nonnegative value
λ ≥ 0 such that

[

A+ λINt
b

b
H c− λr2

]

� 0,

where INt
is the Nt ×Nt identity matrix.

By applying Lemma 2 to the constraints in (13b), one
can reformulate problem (13) as

min
Wi∈C

Nt×Nt ,λi∈R,
i=1...,K

K
∑

i=1

Tr(Wi) (14a)

s.t. Ψi (W1, . . . ,WK , λi) � 0,

Wi � 0, λi ≥ 0,

rank(Wi) = 1, i = 1, . . . ,K, (14b)

where Ψi (W1, . . . ,WK , λi) is a linear matrix function de-
fined as

Ψi (W1, . . . ,WK , λi),

[

εiINt

h̄H
i

]





1

γi
Wi −

K
∑

k 6=i

Wk





[

εiINt

h̄H
i

]H

+

[

λiINt
0

0 −σ2
i − λir

2
i

]

(15)

for i = 1, . . . ,K. One can see that problem (14) has a lin-
ear objective function and convex constraints except for the
nonconvex rank-one constraints in (14b). By removing these
nonconvex constraints, we obtain the following problem

min
Wi∈C

Nt×Nt ,λi∈R,
i=1...,K

K
∑

i=1

Tr(Wi) (16)

s.t. Ψi (W1, . . . ,WK , λi) � 0,

Wi � 0, λi ≥ 0, i = 1, . . . ,K,

as a relaxation to problem (12). The SDR problem (16) is a
convex SDP, and thus can be efficiently solved by CVX [9].

The SDR technique is in general an approximation
method in the sense that the optimum {Wi}

K
i=1 of problem

(16) may not have rank one. In that case, additional solution
approximation procedures to turn the optimum {Wi}

K
i=1

into a rank-one approximate solution of problem (12) is
needed [11]. Interestingly, our experience in simulations indi-
cates that the SDR problem (16) always yields rank-one so-
lutions, which means that SDR provides globally optimum
solutions of problem (12) for all the problem instances we
tried in simulations. Similar empirical observations are also
reported in [7] though a different robust beamforming prob-
lem is considered there. As a future direction, we will inves-
tigate the reason behind this intriguing finding. Here we are
more interested in using this practically appealing result to
help us resolve the conservative formulation (12).

3.3 Reducing the Level of Conservatism by Bisection

In the previous two subsections, we have shown that prob-
lem (12) with the radii {ri}

K
i=1 given by (11) is a conservative

formulation of the probabilistically-constrained problem (5),
and we have discussed that problem (12) may be efficiently
handled by SDR. It is noticed that problem (12) may be too
conservative in the sense that the associated optimum beam-
fomers {wi}

K
i=1 may yield an SINR satisfaction probability

much higher than 1− ρi. Since the level of conservatism of
problem (12) can be reduced by decreasing ri, this motivates
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us to iteratively update ri in a bisection manner such that
the level of conservatism can be reduced.

To illustrate this method, let us assume that all the re-
ceivers have the same SINR outage probability, i.e., ρ ,

ρ1 = · · · = ρK and thus we can let r , r1 = · · · = rK .
In each iteration, we first solve problem (12) with a given
r to obtain the associated optimum beamformers, denoted
by {w?

i }
K
i=1. Given {w?

i }
K
i=1, one can apply the statistical

validation procedure in [12] to determine whether the prob-
abilistic SINR constraints in (5b) are (empirically) met or
not. If yes, it means that there may exist room for further
reducing r; otherwise one should increase r. Hence depend-
ing on the outcome of the validation procedure, the radius
r can be updated in a bisection manner over the interval of
(0,
√

ICDF(1− ρ)/2]. In Table 1, we summarize the bisec-
tion procedure.

It should be mentioned that the above bisection proce-
dure also applies to the conservative approaches presented
in [4] where a different parameter that controls the level of
conservatism can be iteratively updated via bisection; read-
ers are referred to [4] for the details. As will be shown in the
next section, the proposed new conservative approach (with
bisection) can exhibit better performance than the methods
in [4].

4. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present some simulation results to demon-
strate the effectiveness of the proposed conservative ap-
proach. In the simulations, we consider a wireless system
as described in Sec. 2 with the transmitter equipped with
3 antennas (Nt = 3) and 3 receivers (K = 3). The channel
estimates {h̄i}

3
i=1 are randomly generated according to i.i.d.

complex Gaussian with zero mean and unit variance (i.e.,
h̄i ∼ CN (0, I3)). As mentioned in Sec. 2.2, the error vectors
{ei}

3
i=1 are modeled as i.i.d. zero-mean complex Gaussian.

For simplicity, all the entries of ei have identical variance
of 0.002 (i.e., ε21 = ε22 = ε23 = 0.002). The noise powers
at receivers are also set the same: σ2

1 = σ2
2 = σ2

3 = 0.01.
We assume that all the 3 receivers demand the same QoS
requirement. In particular, the receivers’ target SINR val-
ues {γi}

3
i=1 are set the same, i.e., γ , γ1 = γ2 = γ3, and

the SINR outage probabilities {ρi}
3
i=1 are all set as 0.1, i.e.,

ρ , ρ1 = ρ2 = ρ3 = 0.1, which means that a 90% SINR satis-
faction probability is desired. We applied the SDR technique
in Sec. 3.2 to handle the proposed conservative formulation
in (12) using the sphere radius r given in (11), which is la-
beled as ‘Proposed method’. The SDP solver CVX [9] was
used to solve problem (16). The bisection procedure in Table
1 was also tested (labeled as ‘Proposed method with bisec-
tion’) with the solution accuracy ε set as 10−3 (ε = 10−3).
To implement the statistical validation procedure in [12], we
generated 92,103 sets of error vectors {ei}

3
i=1 for each realiza-

tion of {h̄i}
3
i=1, to test whether the probabilistic SINR con-

straints in (5b) are satisfied empirically. According to [12],
this validation procedure has 99% confidence that the ob-
tained empirical probability is correct. We compare the pro-
posed conservative approach with the conservative formula-
tion I proposed in [4] (labeled as ‘Formulation I in [4]’). The
method in [4] also admits a bisection procedure to reduce its
level of conservatism. This procedure was also tested which
is labeled as ‘Formulation I in [4] with bisection’.

In the first example, we compare the feasibility rates of
the proposed method and Formulation I in [4]. We gener-
ate 500 realizations of {h̄i}

3
i=1, and, for each realization, we

determine if the formulation under test is able to yield a
solution {wi}

3
i=1 that has a finite power and satisfies the

probabilistic SINR constraints in (5b) (which is verified by
the statistical validation procedure in [12]). Figure 1 displays

Table 1. Bisection procedure for the proposed conservative
formulation (12).

Given a desired SINR outage probability ρ ∈ (0, 1], and a
solution accuracy ε > 0.

Set rmin = 0 and rmax =
√

ICDF(1− ρ)/2.

Step 1. Solve problem (12) with r = (rmax+rmin)/2 using the
SDR technique in Section 3.2.

Step 2. If (12) is feasible, let {w?
i }

K
i=1 be the associated opti-

mum solution, and go to Step 3; otherwise set rmax = r
and go to Step 1.

Step 3. Apply the statistical validation procedure in [12] to
determine whether {w?

i }
K
i=1 satisfies the probabilistic

SINR constraints in (5b). Let rmax = r if (5b) is
satisfied; otherwise set rmin = r.

Step 4. If rmax−rmin ≤ ε, then output {w?
i }

K
i=1 as the desired

beamforming vectors; otherwise go to Step 1.

the simulation results of the feasibility rate (%) versus the
target SINR γ (dB). As observed from this figure, the pro-
posed method exhibits a much higher feasibility rate than
Formulation I in [4] under the same γ. For example, for
γ = 17 dB, the proposed method has around 30% feasibility
rate; whereas Formulation I in [4] is hardly feasible. One
can also see from this figure that the feasibility rates of both
methods can be considerably increased when their respec-
tive bisection techniques are applied; however the proposed
method (with bisection) still shows better performance.

To look further into the levels of conservatism of the pro-
posed method and Formulation I in [4], we display in Fig. 2
the distribution (%) of the empirical SINR satisfaction prob-
ability of receiver 1 (i = 1). Note that only the realizations
of {h̄i}

3
i=1 for which the proposed method and Formulation

I in [4] are both feasible are taken into account. Figures 2(a)
and 2(b) show the results of the two methods (without bi-
section) for γ = 13 dB, respectively. One can see from the
two figures that both methods are over conservative since
the empirical satisfaction probabilities are much higher than
the required probability 0.9. However, we can observe that
the proposed method is slightly less conservative than For-
mulation I in [4]. Figures 2(c) to 2(f) display the results of
the two methods with the bisection techniques applied. One
can see that the levels of conservatism of both methods with
bisection can be significantly reduced, while the proposed
method with bisection is less conservative in a worst-case
sense. For example, the maximum achieved SINR satisfac-
tion probability in Fig. 2(e) is less than 0.965, whereas it is
more than 0.985 in Fig. 2(f).

In the last example, we examine the required average
transmission powers of the proposed method and the meth-
ods in [4]. To this end, we generate 500 realizations of
{h̄i}

3
i=1, and select the realizations for which the proposed

method, Formulation I in [4] and their bisection counterparts
are all able to satisfy the probabilistic SINR constraints in
(5b) for γ = 9 dB. We obtain 201 such realizations of {h̄i}

3
i=1

and use them to test the four methods for various values of
target SINR γ. The average transmission power of each of
the four methods is calculated over these 201 realizations,
and are plotted in Fig. 3. Note that we set the average
transmission power as infinity if there exist at least one real-
ization of {h̄i}

3
i=1 such that the method under test is infea-

sible. It can be seen from the figure that both the proposed
method and the proposed method with bisection are more
power efficient than the methods proposed in [4], and are
able to support a wider range of target SINR values.

In summary, we have presented a new conservative ap-
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Figure 2. Simulation results of the distribution of empirical
SINR satisfaction probability of receiver 1 obtained by the
the proposed method and Formulation I in [4].

proach for the probabilistically-constrained robust transmit
beamforming problem in (5). The proposed approach is
based on the worst-case constrained conservative formula-
tion in (12) which can be efficiently handled by SDR. The
presented simulation results have shown that the proposed
approach is less conservative and outperforms the existing
methods.
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Figure 3. Simulation results of average transmission power
of the proposed method and Formulation I in [4].
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