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ABSTRACT 

 This paper presents a computationally efficient 
method for the measurement of a dense image correspon-
dence vector field using supplementary data from an inertial 
navigation sensor. The application is suited to airborne im-
aging systems (such as on a UAV) where size, weight, and 
power restrictions limit the amount of onboard processing 
available. The limited processing will typically exclude the 
use of traditional, but expensive, optical flow algorithms 
such as Lucas-Kanade. Alternately, the measurements from 
an inertial navigation sensor lead to a closed-form solution 
to the correspondence field. Airborne platforms are also 
well suited to this application because they  already possess 
inertial navigation sensors and global positioning systems 
(GPS) as part of their existing avionics package. We derive 
the closed form solution for the image correspondence vec-
tor field based on the inertial navigation sensor data. We 
then show experimentally that the inertial sensor solution 
outperforms traditional optical flow methods both in proc-
essing speed and accuracy.   

1. INTRODUCTION 

Image correspondence vector fields for frame to frame 
motion in a video sequence are an enabling input data item 
for a number of image processing algorithms including 
computer vision, optical flow measurement, and super-
resolution enhancement [2], [10]. Traditional methods for 
generating dense correspondence maps, such as Lucas-
Kanade and Horn-Schunk [3], continue to be a challenge in 
the image processing community due to both their computa-
tional complexity as well as their inherent reliance on suffi-
cient image texture. For conditions in which the image flow 
is dominated by the motion of the sensor platform as op-
posed to that of individual objects in the scene, an alterna-
tive method is to directly calculate the frame to frame corre-
spondence based upon data from an inertial navigation sen-
sor.  

Landscape video taken from an airborne platform, such 
as a UAV, is well suited to the above conditions. The land-
scape itself is essentially static in an earth fixed reference 
frame; so, all of the observed image motion is due to the lin-
ear and angular motion of the sensor platform. Additionally, 
airborne platforms have the characteristics 1) they already 

have an embedded inertial navigation sensor as part of their 
avionics package and 2) size, weigh, and power restrictions 
may be prohibitive for the high performance computing 
power needed to estimate motion fields in real-time using 
image based algorithms. 

The challenge in utilizing an inertial navigation sensor is 
that, in order to generate the sub-pixel accuracies required by 
algorithms such as super-resolution enhancement, the inertial 
navigation sensor and the imaging sensor must be well 
aligned and calibrated. In general, this precision alignment 
will require specialized equipment which may not be practi-
cal for small platforms. Therefore, an online calibration pro-
cedure is proposed. 

The remainder of the paper is organized as follows. In 
section 2, we first introduce the geometric models of the iner-
tial navigation sensor and imaging sensor respectively. In 
section 3, we describe the process by which the inertial sen-
sor measurements are utilized to calculate image correspon-
dence. In section 4 we discuss the proposed method for per-
forming a periodic online calibration of the two sensor sys-
tems. The section 5 we presents experimental results using 
simulated imagery and section 6 concludes the paper.   

2. SENSOR MODELS 

2.1 Inertial Navigation Sensor Model 
Advances in both inertial navigation technology using 

micro electromechanical systems (MEMS) as well as global 
positioning system (GPS) receivers has led to low size, 
weight, power, and cost integrated GPS and inertial naviga-
tion sensors. The MEMS inertial sensors consist of an or-
thogonal triad of linear acceleration measurement devices 
and an orthogonal triad of angle rate measurement devices. 
The outputs of the inertial sensors and the GPS are optimally 
combined in a filter to produce an accurate navigation solu-
tion [4]. 

  The output of the inertial navigation sensor is a current 
position, velocity, and attitude of the air vehicle relative to an 
earth fixed reference frame. Typically, the reference frame is 
aligned to the local north, east, and down directions (ܰܦܧ). 
The position output is the geodetic latitude, longitude, and 
altitude of the platform (߮, ,ߠ ݄ሻ. The velocity output is pro-
vided in the ܰܦܧ coordinate system, ܸோ஽. The attitude 
output is represented as a 3x3 orthonormal direction-cosine-
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matrix (DCM) mapping vectors in the NED coordinate sys-
tem to the platform coordinate system, ܲ; i.e. for an arbitrary 
vector ݒ: 

 
௉ݒ ൌ ሾ ேܶா஽

௉ ሿݒோ஽ 
 

2.2 Imaging Sensor Model 
 For purposes of deriving geometric relationships 
between the inertial sensors and the imaging sensors, it is 
convenient to utilize a normalized perspective projection 
model of the image sensor as discussed in [1] (see Figure 1). 
In such a model, the image plane is considered to be located 
at a unit distance from the focal point such that a 3D object 
located at space vector ܴௌ ൌ ሾݔ ݕ  ሿ் in a coordinateݖ
system S attached to the sensor, will be projected to a nor-
malized pixel location  

 
ሾݔԢ Ԣݕ 1ሿ் ൌ ሾݖ/ݔ ݖ/ݕ 1ሿ் 

 
The normalized pixel location (ݔԢ, ݕԢ) will not corre-

spond directly to the true pixel location (ݑ, -of the projec (ݒ
tion of ܴௌonto the image plane because the real camera will 
not perfectly match the idealized projective projection model. 
However, from the intrinsic calibration parameters of the 
camera, there is a known mapping function, ݂ (⋅), such that 

 
ሺݑ, ሻݒ ൌ  ݂ሺݔᇱ,  ᇱሻݕ

ሺݔᇱ, ᇱሻݕ ൌ  ݂ିଵሺݑ,  ሻݒ
 

The functional form of ݂ (⋅) depends upon if the sensor 
is best described by a thin lens, thick lens, or other more in-
tricate optical model. In either case, the function ݂ (⋅) is as-
sumed known via factory calibration of the sensor. The orien-
tation of the sensor relative to the platform is represented as a 
3x3 orthonormal DCM mapping vectors in the ܲ coordinate 
system to the ܵ coordinate system; i.e. for an arbitrary vector 
 ݒ

 
ௌݒ ൌ ሾ ௉ܶ

ௌሿݒ௉ 
 

3. CORRESPONDENCE MAPPING 

3.1 Geometric Mapping 
 Given the geometric models of section 2, it is possi-
ble to explicitly calculate the correspondence field of the 
sensor between video frames. Let ܴீ

ோ஽ሺݔᇱ, ,ᇱݕ ݇ሻ  represent 
the 3D vector from the platform to the ground projection of 
normalized image pixel (ݔᇱ,  ᇱ) on frame ݇. Call this groundݕ
projection point ܩ. Let  ሺݔᇱ ൅ ,ݔ∆ ᇱݕ ൅  ሻ represent theݕ∆
projection of the same ground point ܩ back onto the normal-
ized sensor image on frame ݇ ൅ 1 (see Figure 2). Then, 
ሺ∆ݔ, ,ᇱݔ) ሻ is the correspondence vector for pixelݕ∆ -ᇱ) beݕ
tween frames ݇ and ݇ ൅ 1. In order to calculate the motion 
of the ground point ܩ in the normalized image plane, it is 
necessary to first compute the vector ܴீ

ோ஽ሺݔᇱ, ,ᇱݕ ݇ሻ ac-
cording to 

 

ܴீ
ோ஽ሺݔᇱ, ,ᇱݕ ݇ሻ ൌ ฮோಸ

ಿಶವሺ௫ᇲ,௬ᇲ,௞ሻฮ
ฮሾ௫ᇱ ௬ᇱ ଵሿ೅ฮ

ሾ ேܶா஽
௉ ሿ௞

்ሾ ௉ܶ
ௌሿ் ൭

Ԣݔ
Ԣݕ
1

൱, 

 
where the subscript “݇” on the ܰܦܧ to platform DCM indi-
cates that it represents the orientation of the platform at a 
time coincident with video frame ݇. The “ܶ” superscript in-
dicates the matrix transpose. Because the DCM matrices are 
orthonormal, the matrix transpose is equivalent to the matrix 
inverse. The magnitude of the projected line from the plat-
form to the ground point ܩ, ԡܴீ

ோ஽ሺݔᇱ, ,ᇱݕ ݇ሻԡ, is calculated 
based on the altitude and position of the platform. This calcu-
lation is discussed in more detail in section 3.2. The second 
step is to calculate the translational motion of the platform, 
∆ܴ, based on the average velocity, that is, 
 

∆ܴ ൌ ݐ∆ ௏ೖశభ
ಿಶವା௏ೖ

ಿಶವ

ଶ
, 

 
where, again, the subscript “݇” on the velocity indicates the 
velocity indicated by the inertial navigation sensor at a time 
coincident with the video frame k. The time period ∆ݐ is the 
time interval between frames ݇ and ݇ ൅ 1. ∆ܴ is expressed 
in the ܰܦܧ coordinate system. The third step is to adjust the 
position of the fixed ground point G relative to the platform 
using the position change, ∆ܴ, that is, 
 

ܴீ
ோ஽ሺݔᇱ ൅ ,ݔ∆ ᇱݕ ൅ ,ݕ∆ ݇ ൅ 1ሻ ൌ ܴீ

ோ஽ሺݔᇱ, ,ᇱݕ ݇ሻ െ ∆ܴ 
 
The final step is to map the ܰܦܧ vector back into the sensor 
coordinate system, that is, 
 

൭
ᇱݔ ൅ ݔ∆
ᇱݕ ൅ ݕ∆

1
൱ ൌ ଵ

ఈ
൫ሾ ௉ܶ

ௌሿሾ ேܶா஽
௉ ሿ௞ାଵܴீ

ோ஽ሺݔᇱ ൅ ,ݔ∆ ᇱݕ ൅

,ݕ∆ ݇ ൅ 1ሻ൯, 
 

where, ߙ is a normalizing scale factor such that the third 
elememt on the left-hand side of equation (4) is equal to 
unity. Equation (4) is rearranged into a form suitale for 
computer implementation by substituting in equation (3) and 
subtracting the vector ሾݔԢ Ԣݕ 0ሿ் from both sides. This 
yields, 
 

൭
ݔ∆
ݕ∆
1

൱ ൌ ଵ
ఈ

൫ሾ ௉ܶ
ௌሿሾ ேܶா஽

௉ ሿ௞ାଵሺܴீ
ோ஽ሺݔᇱ, ,ᇱݕ ݇ሻ െ ∆ܴሻ൯ െ

ሾݔԢ Ԣݕ 0ሿ் 
 

Again, ߙ is a normalizing scale factor. Equation (5) 
represents the final closed-form solution to the image 
correspondence vector field. For every pixel location (ݔᇱ,  (ᇱݕ
on frame ݇, it computes the correspondence vector ሺ∆ݔ,  ሻݕ∆
based on the known inputs ሾ ௉ܶ

ௌሿ, ሾ ேܶா஽
௉ ሿ௞ାଵ, ܴீ

ோ஽ሺݔᇱ, ,ᇱݕ ݇ሻ, 
and ∆ܴ. 
 

3.2 Range to Ground 
The range to the ground point, ԡܴீ

ோ஽ሺݔᇱ, ,ᇱݕ ݇ሻԡ, is ob-
tained through the use of a digital terrain elevation database 

(1) 

(2) 

(3) 

(4)

(5)
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(DTED). DTED is a table indexed by latitude and longitude 
that provides the elevation of the ground above sea level. 
Global coverage DTED based on the Shuttle Radar Topogra-
phy Mission (SRTM) is publically available in 3 arc-second 
(level 1) or 1 arc-second (level 2) resolution from the Earth 
Resources Observation and Science Center. GPS position is 
all that is needed to accurately calculate ground range. See 
the geometry in Figure 2. 
 

4. ON-LINE CALIBRATION 

 Assuming that intrinsic errors in both the inertial 
navigation sensor and the imaging sensor are minimized 
through factory calibration, the remaining error sources of 
interest are 1) misalignment in the installed orientation of 
the image sensor and 2) mis-synchronization between the 
image and inertial sensor data. These errors may be written 
as small angle modifications to the DCMs, that is, 

 
ሾ ேܶா஽

௉ ሿ ൌ ሺܫ െ ߱௫߬ሻൣ ෠ܶோ஽
௉ ൧ 

ሾ ௉ܶ
ௌሿ ൌ ൣ ෠ܶ௉

ௌ൧ሺܫ െ ௫߲ሻ 
 

 
-represents the 3x3 identity matrix. ߱ is the 3-element angu ܫ
lar velocity vector of the platform relative to ܰܦܧ (as re-
turned by the inertial navigation sensor). ߬ represents the 
temporal mis-synchronization between the inertial and image 
data and ߲ is a three element vector representing the roll, 
pitch, and yaw misalignment of the platform to image sensor 
DCM. The subscript “ݔ” applied to the vectors ߱ and ߲ in 
equation (6) is an operator that converts them into the 3x3 
skew-symmetric cross-product matrix; i.e. 
 

௫߲ ൌ ൭
0 െ߲ଷ ߲ଶ
߲ଷ 0 െ߲ଵ

െ߲ଶ ଵ߲ 0
൱ 

 
With that definition, the 3x3 matrices: 
 

ሺܫ െ ௫߲ሻ and  ሺܫ െ ߱௫߬ሻ 
 

are small angle approximations to the DCMs generated by 
rotations about the x,y, and z axes given by the elements of ߲ 
and ߱߬ respectively. 

In equation (6), the DCMs with the ^ symbol indicate 
the uncorrected matrices and the DCMs without the ^ repre-
sent the post-correction. The goal is to estimate ߬ and ߲ such 
as to improve the correspondence calculation. The technique 
for doing so is to apply a traditional image based optical flow 
algorithm to a small set of pixels on each video frame and 
find the values of ߬ and ߲ that minimize the discrepancy be-
tween the correspondence vectors as measured via optical 
flow versus the correspondence predicted by the inertial sen-
sor. Only a small number of data points are required to solve 
for the four unknowns in ߬ and ߲. Therefore, it is not neces-
sary to generate a dense correspondence map using a compu-
tationally expensive, optical flow algorithm such a Lucas-

Kanade. Instead, optical flow algorithm only need to return a 
relatively few correspondence vectors per frame. Once the 
error parameters, estimate ߬ and ߲, are resolved, equation (5) 
is used to find the dense flow field. 

The parameter estimation for ߬ and ߲ may be linearized 
to the form 

 

ߙ ൤൬Δݔ
Δݕ൰

ூ௉
െ ൬Δݔ

Δݕ൰
ூௌ

൨ ൌ ቀ1 0 0
0 1 0ቁ ሾܣ ሿ߱ܣ ቀߜ

߬ቁ    (8) 

 
where ܲܫ and ܵܫ refers to the correspondence vectors deter-
mined by the image processing and inertial system respec-
tively. The matrix ܣ is given by 
 

ܣ ൌ ሾ ෠ܶ௉
ௌሿ ቈ

ԡܴீ
ோ஽ሺݔᇱ, ,ᇱݕ ݇ሻԡ

ԡሾݔԢ Ԣݕ 1ሿ்ԡ ൫ሺݕ௞ାଵ
௉ ሻ௫ െ ሾ ෠ܶ௞

௞ାଵሿሺݕ௞
௉ሻ௫൯

െ ௞ܸାଵ
௉ Δݐ቉ 

 
where, 

௞ାଵݕ
௉ ൌ ሾ ෠ܶ௞

௞ାଵሿ ሾ ෠ܶ௉
ௌሿ் ൭

Ԣݔ
Ԣݕ
1

൱ 

௞ݕ
௉ ൌ ሾ ෠ܶ௉

ௌሿ் ൭
Ԣݔ
Ԣݕ
1

൱ 

ൣ ෠ܶ௞
௞ାଵ൧ ൌ ሾ ෠ܶோ஽

௉ ሿ௞ାଵሾ ෠ܶோ஽
௉ ሿ௞

்  

௞ܸାଵ
௉ ൌ ሾ ෠ܶோ஽

௉ ሿ௞ାଵ ቆ ௞ܸାଵ
ோ஽ ൅ ௞ܸ

ோ஽

2 ቇ 

 
By equation (8), each data point generates two equa-

tions. Therefore, a minimum of two data points is required 
for a solution to the four error parameters ߬ and ߲. For a ro-
bust solution, many more data points are necessary yielding 
an overconstrained linear relationship which may be solved 
using a standard least squares approach. Or, if apriori prob-
ability distributions are available for the measurements and 
unknown parameters, through a maximum likelihood or 
maximum a posteriori estimation method. 

5. RESULTS 

The ideal means of testing the above algorithms is to 
collect data from an aircraft of UAV equipped with an imag-
ing sensor and inertial navigation sensor. For the purpose of 
this paper, video data is simulated using a large aerial photo-
graph [6] and remapping the imagery to the point of view of 
a sensor on a simulated aircraft. The mapping requires con-
sidering the large image as a ground fixed texture and then 
using the geometry of Figure 1 to project each pixel of the 
virtual camera to the ground. Bi-linear interpolation is used 
to handle the non-integer relationship between the pixels of 
the virtual camera and the ground map. Figure 3 illustrates 
the ground image (top) and the simulated virtual camera im-
age (bottom). The simulated aircraft is flying at 1000 m alti-
tude with a 10 degree right bank angle. The virtual camera 
has a 60 degree field-of-view such that the ground projection 

(7) 

(6) 
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of the field-of-view is shown by the yellow box in Figure 3 
(top).  

 Although the image plane of the virtual camera is 
square, the ground projection of the field-of-view is asym-
metric due to the 10 degree roll angle of the simulated air-
craft. In order to make a test video feed, it is necessary to 
generate a six degree-of-freedom trajectory for the simulated 
aircraft and repeat the virtual camera projection for a time 
series of frames. 
To test the improvement in execution speed of the closed 
form solution to the correspondence vs. an optical flow tech-
nique, the closed-form option is coded up in Matlab and 
compared to a public code for performing the Lucas-Kanade 
algorithm written by Sohaib Khan [7]. Using the simulated 
data, and not introducing any errors on the inertial sensors 
or alignment errors as discussed in section 4, the closed-
form solution, equation (5), represents the truth reference 
for the correspondence field. The error in the Lucas-Kanade 
method is expressed as a histogram in Figure 4. For the 
purpose of these figures, the correspondence error per pixel 
is defined as 
 

߳ ൌ ඥሺ∆ݔ௅௄ െ ோ௎ாሻଶ்ݔ∆ ൅ ሺ∆ݔ௅௄ െ  ோ௎ாሻଶ்ݔ∆
 
where the subscripts “ܭܮ” and “ܴܷܶܧ” correspond to the 
Lucas-Kanade estimate and the truth reference respectively. 

 
 

 
Figure 1: Normalized Perspective Projection Model 

The histogram of ߳ in Figure 4 is generated for the cor-
respondence map between the image in Figure 3 and the next 
image in a 30 Hz video sequence. The total truth motion be-
tween the two frames was on the order of 0.5 pixels. The 95 
percentile error for the Lucas-Kanade method, based on the 
histogram in Figure 4, was 0.4 pixels. The run-time of the 
Lucas-Kanade code was 77 times that of the code that per-
formed the closed-form solution on every pixel. 

The closed-form inertial based solution, in reality, is not 
error free. The dominant errors affecting the performance are 
the velocity error, the absolute attitude error, and the attitude 

error drift between consecutive video frames. References [8] 
and [9] investigate GPS velocity error. Both of these refer-
ences predict errors that are less than 1 m/s RMS. Reference 
[4] develops an integrated GPS/Inertial filter using a low-cost 
Crossbow AHRS-DMU-HDX inertial measurement unit 
(IMU) which has an empirically measured attitude error of 
0.04 degrees in the roll and pitch attitude axes and 0.36 de-
grees in yaw. The preceding numbers are one-sigma values. 
 

 
Figure 2 – Range Projection to Ground.  

 

 
Figure 3: Simulated Aircraft Imagery 

 
Additionally, the Crossbow IMU has an angular readout 

noise of 8.5e-2 degrees / second (0.0028 degrees over a 1/30 
second frame). Placing these quantities into a 100 run Monte-
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Carlo simulation shows a 95 percentile error of 0.04 pixels 
for the closed-form inertial based solution (see Figure 5).  
 

 
Figure 4: Lucas-Kanade Correspondence Map Error Histo-

gram 

The Monte-Carlo is executed by making a random draw 
of the error sources for each run and using them to perturb 
equation (5). The error form of equation (5) is created by 
making the following replacements 

 
ሾ ேܶா஽

௉ ሿ௞ ՚ ሾ1ܦሿሾ ேܶா஽
௉ ሿ௞ 

ሾ ேܶா஽
௉ ሿ௞ାଵ ՚ ሾ2ܦሿሾ1ܦሿሾ ேܶா஽

௉ ሿ௞ାଵ 
∆ܴ ՚ ∆ܴ ൅  ݐ∆௩ܦ

 
where the random disturbance matrices 2ܦ ,1ܦ and the dis-
turbance vector ܦ௩ are given by, 
 

ሾ1ܦሿ ൌ ܫ െ
ߨ

180
ሾ0.04ݎଵ ଶݎ0.04  ଷሿ௫ݎ0.36

ሾ2ܦሿ ൌ ܫ െ
ߨ

180
ሾ0.0028ݎସ ହݎ0.0028  ଺ሿ௫ݎ0.00286

௩ܦ ൌ ሺ1
݉
ݏ ሻሾݎ଻ ݎ଼  ଽሿ்ݎ

 
where the subscript “ݔ” operator was defined in equation (7). 
The values ݎଵ through ݎଽ are independent draws from a zero-
mean, unity variance normal distribution. The numerical val-
ues above are based upon the specific inertial sensor and 
GPS error parameters discussed previously. 

6. CONCLUSION 

This paper has introduced a computationally efficient means 
of calculating a dense correspondence vector field for a 
video sequence in airborne applications where an inertial 
navigation sensor is available. The method bypasses compu-
tationally expensive image processing methods of estimat-
ing the vector field and, instead, uses a closed form solution 
to the geometric mapping from the inertial sensor measure-
ments to the image. Furthermore, the paper outlines an ap-
proach to online estimation of the synchronization and mis-
alignment between the inertial and image sensors. Accuracy 
of these parameters is required for making sub-pixel meas-
urements of the correspondence vector field. Simulation 

based results show that a typical low-cost GPS/inertial sen-
sor system is able to measure the correspondence an order of 
magnitude faster than a typical image-based optical flow 
code while achieving an order of magnitude improvement in 
accuracy.  
 

 
Figure 5: Monte-Carlo Based, Inertial Based Correspondence 

Error Histogram 
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