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ABSTRACT
In this paper we propose a novel blind image deconvolution
method developed within the Bayesian framework. A vari-
ant of the non-convex lp-norm prior with 0 < p < 1 is used
as the image prior and a total variation (TV) based prior is
utilized as the blur prior. The proposed method is derived
by utilizing bounds for both the image and blur priors using
the majorization-minimization principle. Maximum a pos-
teriori Bayesian inference is performed and as a result, the
unknown image, blur and model parameters are simultane-
ously estimated. We also show that as a special case, the de-
veloped method provides very competitive non-blind image
restoration results when the blurring function is assumed to
be known. Experimental results are presented to demonstrate
the advantage of the proposed method compared to existing
ones.

1. INTRODUCTION

The blind image deconvolution (BID) problem refers to the
inverse problem in which both the image and blurring func-
tion have to be estimated from a single observation. The stan-
dard formulation of the image degradation model is given in
matrix-vector form by

y =Hx+n, (1)

where the N×1 vectors x, y, and n represent respectively the
original image, the available noisy and blurred image, and
the noise with independent elements of variance σ2

n = β−1,
and H represents the blurring matrix created from the blur
point spread function h. The images are assumed to be of
size m× n = N, and they are lexicographically ordered into
N × 1 vectors. Given y, the BID problem calls for finding
estimates of x and H using prior knowledge on them.

A number of methods have been proposed to address BID
(a recent literature review can be found in [4]). Estimat-
ing camera motion from a single photograph was the focus
in [6], where the unknown image and blur were estimated in
a two step process. Estimating camera motion was also in-
vestigated in [1, 9] where the unknown image and blur were
estimated in a simultaneous fashion. Additionally, [1] con-
centrated on synthetic experiments where the performance of
the algorithm was evaluated by the improvement in signal to
noise ratio.

In this paper we propose a novel Bayesian algorithm for
BID that utilizes a variant of the non-convex lp-norm prior as
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the unknown image prior and the TV prior as the unknown
blur prior. In previous works (e.g., [1, 9]), the unknown pa-
rameters are chosen as a sequence of numbers that yield the
unknown image estimate with a good visual quality. Instead,
in this paper we estimate the unknown parameters by taking
the restorations of both the unknown image and unknown
blur into account. Finally, we evaluate the performance of
the proposed algorithm with comparisons with [1].

This paper is organized as follows. In Section 2 we pro-
vide the proposed Bayesian modeling of the BID problem.
The Bayesian inference is presented in Section 3. Exper-
imental results are provided in Section 4 and conclusions
drawn in Section 5.

2. BAYESIAN MODELING

In order to model the unknown components of the BID
problem within the Bayesian framework, the definition of
the joint distribution p(α,β ,γ,x,h,y) is required. Assum-
ing that x and h are independent, the joint distribution
p(α,β ,γ,x,h,y) can be factorized in terms of the observa-
tion model p(y|β ,x,h), the prior distributions p(x|α) and
p(h|γ), and the hyperparamter distributions p(α), p(β ) and
p(γ), that is,

p(α,β ,γ,x,h,y)= p(y|β ,x,h)p(x|α)p(h|γ)p(α)p(β )p(γ).
(2)

As already discussed in the previous section, the observa-
tion noise is modeled as a zero mean white Gaussian random
vector. Therefore, the observation model is defined as

p(y|β ,x,h) ∝ β N/2 exp
[
−β

2
∥ y−Hx ∥2

]
, (3)

where β is the precision of the multivariate Gaussian distri-
bution.

As the image prior we utilize a variant of the generalized
Gaussian distribution, given by

p(x|α) =
1

ZGG(α)
exp

[
− ∑

d∈D
αd ∑

i
|∆d

i (x)|p
]
, (4)

where ZGG(α) is the partition function, 0 < p < 1, α de-
notes the set {αd} and d ∈ D = {h,v,hh,vv,hv}. ∆h

i (u) and
∆v

i (u) correspond to, respectively, the horizontal and vertical
first order differences, at pixel i, that is, ∆h

i (u) = ui − ul(i)
and ∆v

i (u) = ui −ua(i), where l(i) and a(i) denote the nearest
neighbors of i, to the left and above, respectively. The op-
erators ∆hh

i (u), ∆vv
i (u), ∆hv

i (u) correspond to, respectively,
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horizontal, vertical and horizonal-vertical second order dif-
ferences, at pixel i.

In order to eliminate the need to estimate each αd we
assume that αh = αv = α and αhh = αvv = αhv = α/2. Addi-
tionally, in a similar way it was proposed in [8], the partition
function will be approximated as ZGG(α) ∝ α−λ1N/p, where
λ1 is a positive real number. We then simplify (4) accord-
ingly to obtain the following image prior

p(x|α) ∝ αλ1N/p exp

[
−α ∑

d∈D
21−o(d)∑

i
|∆d

i (x)|p
]
, (5)

where o(d) ∈ {1,2} denotes the order of the difference oper-
ator ∆d

i (x).
For the blur we utilize the total-variation prior given by

p(h|γ) ∝ γλ2N exp [−γTV(h)] , (6)

where λ2 is a positive real number and TV(h) is defined as

TV(h) = ∑
i

√
(∆h

i (h))
2 +(∆v

i (h))
2. (7)

In this work we use flat improper hyperpriors on α ,β and
γ , that is, we utilize

p(α)∝ const, p(β )∝ const, p(γ)∝ const. (8)

Note that with this choice of the hyperpriors, the observed
image y is made solely responsible for the estimation of the
image, blur and hyperparameters.

3. BAYESIAN INFERENCE

Bayesian inference on the unknown components of the blind
image deconvolution problem is based on the estimation of
the unknown posterior distribution p(α,β ,γ,x,h | y), given
by

p(α,β ,γ,x,h | y) = p(α ,β ,γ ,x,h,y)
p(y)

. (9)

In this work, we adopt the maximum a posteriori (MAP)
approach to obtain a single point (ᾱ, β̄ , γ̄, x̄, h̄) estimate, de-
noted as Θ̄, that maximizes p(α,β ,γ,x,h | y) as follows,

Θ̄ = argmax
Θ

p(α ,β ,γ ,x,h | y)

= min
Θ

{
β
2
∥y−Hx∥2+

+α ∑
d∈D

21−o(d)∑
i
|∆d

i (x)|p + γTV(h)+

−λ1N
p

logα − N
2

logβ −λ2N logγ
}
.

(10)

As can be seen from (10), obtaining the point estimate
that maximizes the posterior distribution p(α,β ,γ,x,h | y)
is not straightforward since it requires the minimization of
a non-convex functional. Note that maximizing posterior
distribution p(α ,β ,γ ,x,h | y) with the maximum a posteri-
ori approach is equivalent to the variational Bayesian based
maximization (see [2]) for the special case when all the pos-
terior distributions are assumed to be degenerate.

In this paper, we resort to a majorization-minimization
approach to bound the non-convex image prior p(x|α) by
the functional M1(α,x,V), that is

p(x|α)≥ const · M1(α,x,V). (11)

The majorization-minimization approach has been utilized in
several approaches for image restoration [2, 3].

The functional M1(α ,x,V) is derived by considering the
relationship between the weighted geometric and arithmetic
means, which is given by

zp/2v1−p/2 ≤ p
2

z+
(

1− p
2

)
v, (12)

where z,v and p are positive real numbers. We first rewrite
(12) as

zp/2 ≤ p
2

z+ 2−p
p v

v1−p/2 . (13)

Using (13) we obtain

|∆d
i (x)|p ≤

p
2

[∆d
i (x)]

2 + 2−p
p vd,i

v1−p/2
d,i

. (14)

Therefore we have

p(x|α) = const ·αλ1N/p exp

[
−α ∑

d∈D
21−o(d)∑

i
|∆d

i (x)|p
]

≥ const·αλ1N/p exp

−α p
2 ∑

d∈D
21−o(d)∑

i

[∆d
i (x)]

2 + 2−p
p vd,i

v1−p/2
d,i

 .

(15)

and so the M1(α,x,V) is defined as

M1(α,x,V) =

αλ1N/p exp

−α p
2 ∑

d∈D
21−o(d)∑

i

[∆d
i (x)]

2 + 2−p
p vd,i

v1−p/2
d,i

 ,

(16)

where V is a matrix with elements vd,i.
Similarly, the majorization-minimization criterion is

used to bound the blur prior p(h|γ) utilizing the functional
M2(γ,h,u). Let us define, for γ and any N−dimensional
vector u ∈ (R+)N , with components ui, i = 1, . . . ,N, the fol-
lowing functional

M2(γ,h,u) = αλ2N exp

[
−γ

2 ∑
i

(∆h
i (h))

2 +(∆v
i (h))

2 +ui√
ui

]
.

(17)
Using the inequality in (13) with p = 1, for z ≥ 0 and

v > 0
√

z ≤
√

v+
1

2
√

v
(z− v), (18)

we obtain
p(h|γ)≥ const · M2(γ,h,u). (19)
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The lower bounds of p(x|α) and p(h|γ) defined above
lead to the following lower bound of the distribution
p(α,β ,γ,x,h,y)

p(α,β ,γ,x,h,y) = p(α)p(β )p(γ)p(x|α)p(h|γ)p(y|β ,x,h)
≥ const ·M1(α ,x,V)M2(γ,h,u)p(y|β ,x,h).

Therefore, a single point estimate that maximizes a lower
bound of the posterior distribution p(α,β ,γ,x,h | y) is
found as follows

Θ̄ = min
Θ

{
β
2
∥y−Hx∥2+

α p
2 ∑

d∈D
21−o(d)∑

i

[∆d
i (x)]

2 + 2−p
p vd,i

v1−p/2
d,i

+

γ
2 ∑

i

(∆h
i (h))

2 +(∆v
i (h))

2 +ui√
ui

+

−λ1N
p

logα − N
2

logβ −λ2N logγ
}
.

(20)

Using (20) for all unknowns in an alternating fashion, we
obtain the final algorithm as shown below.

Algorithm. Given α1,β 1,γ1,u1 and V1, where the rows of
Vk are denoted by vk

d ∈ (R+)N , with d ∈ {h,v,hh,vv,hv} and
initial estimate of the blurring filter h1.
For k = 1,2, . . . until a stopping criterion is met:
1. Calculate

xk =
[
β k(Hk)t(Hk)+αk p∑

d
21−o(d)(∆d)tWk

d(∆
d)
]−1

×β k(Hk)ty, (21)

where Wk
d is a diagonal matrix with entries Wk

d(i, i) =

vp/2−1
d,i .

2. Calculate

hk+1 =

[
β k(Xk)t(Xk)+ γk ∑

d∈{h,v}
(∆d)tUk

d(∆
d)

]−1

×β k(Xk)ty, (22)

3. For each d ∈ {h,v,hh,vv,hv} calculate

vk+1
d,i = [∆d

i (x
k)]2, (23)

4. Calculate

uk+1
i = [∆h

i (h
k+1)]2 +[∆v

i (h
k+1)]2, (24)

5. Calculate

αk+1 =
λ1N/p

∑d∈D 21−o(d) ∑i |∆d
i (x

k)|p
, (25)

β k+1 =
N

∥ y−Hk+1xk ∥2 , (26)

γk+1 =
λ2N

TV(hk+1)
, (27)

In this work we set the values of the parameters p, λ1 and
λ2 equal to 0.8, 0.5 and 0.5, respectively. The experimental
results in Section 4 validate the proposed parameter estima-
tion procedure. The robustness of the proposed method will
be tested and evaluated under various blurring and noisy con-
ditions. Additionally, since the proposed algorithm is initial-
ized with the unit impulse response as the initial blur esti-
mate, it is particularly important in the first few iterations to
keep parameters α and γ relatively high compared to the pa-
rameter β . This procedure prevents the proposed algorithm
from converging to the undesirable blur estimate of unit im-
pulse.

Note that if the blur h and the hyperparameters α,β and
γ are assumed to be known, the proposed algorithm coin-
cides with the iteratively re-weighted least squares (IRLS)
algorithm presented in [7].

4. EXPERIMENTAL RESULTS

In this section we present experimental results obtained with
the use of the proposed algorithm. As the performance
metric, we utilize the improvement in signal to noise ratio
(ISNR), which is defined as 10log10

(
∥x−y∥2/∥x− x̂∥2

)
,

where x, y and x̂ are the original, observed and estimated
images, respectively. We evaluate the performance of the
proposed algorithm, which will be denoted as ALG, on two
images (Lena and Cameraman) blurred with different mo-
tion blurs, which are shown in Figure 1. Realizations of
white Gaussian noise are added to obtain degraded images
with blurred signal to noise (BSNR) ratios of 30 or 40dB,
depending on the test configuration.

In the first set of experiments, we compare the perfor-
mance of the proposed method with the state of the art
non-blind deconvolution algorithms. Algorithms denoted as
BMK1 and BMK2 represent the first and second methods
in [2], respectively. The algorithm in [7] is denoted as IRLS
and the algorithm denoted as CGMK represents the method
in [5]. Finally, we denote the non-blind version of the pro-
posed method as ALG-NB.

The comparison between the algorithms for the Camera-
man and Lena images, blurred with the uniform blur of size
9x9, is shown in Table 1. For the first set of experiments, the
blur support was assumed a priori to be 15x15. It should be
pointed out that the parameters of ALG are estimated auto-
matically as described in Section 3. On the other hand, the
parameters of the IRLS method are manually selected which
presents the highest performance in terms of the ISNR metric
of both ALG and ALG-NB methods. As can be seen from
Table 1, ALG performs very well and the ISNR values ob-
tained are within few tenths of dB from their respective non-
blind upper bounds. Additionally, ALG-NB is very compet-
itive with the state of the art CGMK algorithm. Example
restored images from Table 1 are shown in Figure 2.

(a) (b) (c) (d) (e)

Figure 1: (a) Blur 1: Uniform 9x9, (b) Blur 2: Out-of-
focus (radius=4), (c) Blur 3: Diagonal motion, (d) Blur 4:
Non-parametric motion (1), (e) Blur 5: Non-parametric mo-
tion (2).
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Table 1: Comparison with non-blind methods for Uniform
9x9 blur.

Cameraman Lena
BSNR Method ISNR[dB] Method ISNR[dB]
40dB BMK1 8.46 BMK1 8.41

BMK2 8.25 BMK2 8.43
CGMK 9.02 CGMK 8.74
IRLS 8.88 IRLS 8.86

ALG-NB 8.73 ALG-NB 8.79
ALG 8.63 ALG 8.66

30dB BMK1 4.47 BMK1 5.61
BMK2 4.11 BMK2 5.46
CGMK 6.16 CGMK 6.26
IRLS 6.14 IRLS 6.29

ALG-NB 5.73 ALG-NB 6.09
ALG 4.93 ALG 5.72

(a) (b)

(c) (d)

Figure 2: (a) Image degraded by the uniform size 9x9
blur (BSNR=40dB), (b) Restored image using CGMK
(ISNR=9.02dB), (c) Restored image using ALG-
NB (ISNR=8.73dB), (d) Restored image using ALG
(ISNR=8.63dB).

In the second set of experiments, we compared the ALG
algorithm with a blind image deconvolution algorithm re-
cently proposed in [1], which will be denoted as AA. The
blur support was a priori assumed to be 15x15.The ISNR re-
sults obtained by the algorithms AA and ALG for the first
three blur PSFs are shown in Table 2. It is clear that ALG
provides a very competitive restoration performance com-
pared to AA. Example restorations from Table 2 obtained
by ALG are shown in Figure 3. Note that compared to AA,
no post processing of the restored image is performed while
calculating ISNR.

Finally, in the third set of experiments, we evaluated the
performance of the ALG algorithm in the presence of non-
parametric blurs. The blur support was a priori assumed to

Table 2: ISNR values for the Lena image degraded by para-
metric motion blurs shown in Figure 1.

Image BSNR [dB] Blur Method ISNR [dB]

Lena 30

Blur 1 AA 4.27
ALG 5.72

Blur 2 AA 4.45
ALG 6.33

Blur 3 AA 5.74
ALG 4.90

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: (a,b,c) Images degraded respectively by the uni-
form size 9x9 blur, circular radius 4 blur and diagonal blur
(BSNR=30dB); (d,e,f) Restored images from (a,b,c), respec-
tively; (g,h,i) Restored blurs from (a,b,c), respectively.

be 21x21. The ISNR results are shown in Table 3, and ex-
ample restored images and blurs are shown in Figure 4. It
is clear from the Table 3 and Figure 4 that ALG also per-
forms very well with blindly restoring images exposed to
non-parametric blurs. Note that although no ad hoc post-
processing methods have been utilized during blur estima-
tion (such as denoising, thresholding, etc), as is the case with
many existing algorithms, the blur point spread functions are
estimated with high accuracy.

Table 3: ISNR values for the Cameraman image degraded by
non-parametric motion blurs shown in Figure 1.

Image BSNR [dB] Blur Method ISNR [dB]

Cameraman
40 Blur 4 ALG 3.34

Blur 5 ALG 5.31

30 Blur 4 ALG 4.68
Blur 5 ALG 5.79

629



(a) (b)

(c) (d)

(e) (f)

Figure 4: (a,b) Images degraded by the non-parametric blurs
(BSNR=40dB); (c,d) Restored images from (a,b), respec-
tively; (e,f) Restored blurs from (a,b), respectively.

5. CONCLUSIONS

In this paper a novel blind image deconvolution algorithm is
presented. The proposed algorithm was developed within a
Bayesian framework utilizing an lp-norm based sparse prior
on the image, and a total-variation prior on the unknown blur.
Experimental results demonstrate that using sparse priors and
the proposed parameter estimation, both the unknown image
and blur can be estimated with very high accuracy. Further-
more, we have shown that, as a special case of the proposed
algorithm, very competitive non-blind image restorations can
be obtained if the blurring function is assumed to be known.

Finally, it was shown that the performance of the proposed
algorithm is higher than existing state-of-the-art blind image
deconvolution algorithms. Future work includes extending
the proposed method for blind deconvolution of color im-
ages.
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