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ABSTRACT

We investigate optimal bias corrections in the problem of lin-
ear minimum mean square error (LMMSE) estimation of a
scalar parameter linearly described by a set of Gaussian mul-
tidimensional observations. The problem of finding the op-
timal scaling of a class of LMMSE filter implementations
based on the sample covariance matrix (SCM) is addressed.
By applying recent results from random matrix theory, the
scaling factor minimizing the mean square error (MSE) and
depending on both the unknown covariance matrix and its
sample estimator is firstly asymptotically analyzed in terms
of key scenario parameters, and finally estimated using the
SCM. As a main result, a universal scaling factor minimiz-
ing the estimator MSE is obtained which dramatically out-
performs the conventional LMMSE filter implementation. A
Bayesian setting assuming random unknown parameters with
known mean and variance is considered in this paper, but ex-
actly the same methodology applies to the classical estima-
tion setup considering deterministic parameters.

1. INTRODUCTION

A large number of signal processing problems can be ad-
dressed by performing a filtering operation on a set of mul-
tidimensional observations in order to extract a certain para-
meter of interest. In many of these applications, the under-
lying structure of the observations is linear in the unknown
parameter to be estimated. By forcing the parameter esti-
mator to be unbiased, a linear transformation can be found
under the linear model assumption having the smallest mean
square-error, or equivalently minimum variance, among all
linear transformations. The former is known as the best lin-
ear unbiased estimator (BLUE), which in statistical signal
processing is usually referred to and commonly implemented
via the minimum variance distorsionless response (MVDR)
filter. Under the further assumption of Gaussian observa-
tions, the previous linear estimator is also the minimum vari-
ance unbiased estimator (MVUE) [1].

Allowing for some bias in the design of optimal estima-
tors by considering the MSE as design objective leads in gen-
eral to unrealizable estimators, in the sense that they depend
on the unknown parameter to be estimated. Nevertheless, ex-
amples of realizable biased estimators can be found in the lit-
erature with a MSE lower than that of the MVUE, and even
below of the unbiased Cramér-Rao Bound (CRB). Seminal
works following this approach are the ones by James and
Stein [2, 3], who in the context of estimating the mean of a
Gaussian random vector showed that the MSE can be further
reduced by using a biased estimator consisting of a nonlinear
shrinkage of the maximum likelithood (ML) method. In [4],
the problem of estimating the unknown variance of a set of
independent and identically distributed (i.i.d.) Gaussian ran-
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dom variables with mean zero is addressed. In particular, it is
shown that introducing a linear scaling factor in the MVUE
leads to a reduced MSE, even outperforming the unbiased
CRB. In [5] and [6], a more general framework than in [4]
is considered in order to further reduce the MSE of a general
MVUE by considering a biased version of the estimator ob-
tained via a linear scaling factor, which is optimized in terms
of the minimum MSE achievable. Furthermore, it is shown
that even in the case of an optimal biased estimator depend-
ing upon the unknown parameters, a minimax approach can
be applied to circumvent the problem and to effectively re-
duce the MSE of the MVUE.

In case some distributional information is available re-
garding the unknown parameter, a Bayesian approach can be
followed in order to find a way to further minimize the MSE
of a linear estimator by effectively controlling the amount of
bias introduced. This is regarded in the literature as the lin-
ear or affine minimum mean square-error (MMSE) estimator
and, under some weak regularity assumptions, is uniquely
defined as the conditional expectation of the unknown ran-
dom parameter given the observed sample [1]. Moreover, if
the sample and the random parameter are jointly Gaussian,
then the linear MMSE estimator is also the MMSE.

In this paper, we will consider the previous setup in order
to investigate a class of improved bias corrections in linear
MMSE estimation applied to a set of samples linearly de-
scribing an unknown parameter embedded in noise. More
specifically, the problem of optimally scaling the MVDR fil-
ter implementation based on the sample covariance matrix
(SCM) with the aim of reducing the MSE is addressed. Our
approach is based on recent results from the theory of the
spectral analysis of large random matrices, or random matrix
theory (RMT). First, the MSE performance measure is as-
ymptotically approximated as a function of the linear scaling
factor, the unknown theoretical covariance matrix defining
the scenario, and the problem dimensions, i.e., the number
of samples and the observation dimension. Then, the optimal
scaling factor effectively rendering the bias correction is es-
timated by using the SCM. We notice that the same approach
can be directly applied to the classical minimum variance es-
timation setup where the unknown parameter is assumed to
be deterministic.

2. OPTIMAL SCALING OF LINEAR MMSE
FILTERS

Consider a collection of multivariate observations
{y(n) eCn=1,... ,N} obtained, for instance, by
sampling across an antenna array with M sensors, namely,
{mm),n=1,... . Nym=1,... M}, such that the observa-

tions y (n) = [ y1(n) yum (n) ]T can be described
according to the following linear data model that properly
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defines the structure of a vast number of estimation problems
in statistical signal processing, namely,

y(n)=x(n)s+n(n),

where x(n) is an unknown parameter, denoting the signal
of interest (SOI) waveform, that is observed in unknown
colored noise n (n) € CM after being operated upon by the
known signature vector s € C*. Conventionally, signal and
noise are assumed to be uncorrelated wide-sense stationary

Gaussian random processes, with mean zero and covariance

given by E {x (m)x(n)H} = 8nn0’ and E [n (m)n(n)H] =

OmnRn, respectively, where 8, , is the Kronecker delta func-
tion, ze is the SOI power and R, is the covariance matrix
of the interference-plus-noise contribution. In particular, the
observation y (n) € CM may be modeling the matched fil-
ter output sufficient statistic for the received unknown sym-
bols in, for instance, a multiuser detector, where the columns
of s is the effective user signature associated with a certain
desired user; an array processor, where s contains the an-
gular frequency information (steering vectors) related to the
intended source, represented by x (n).

In the following, we concentrate on the problem of es-
timating the SOI waveform and assume that the SOI power
is known (if the SOI power is unknown, an estimate of the
value of 67 is customarily obtained from the data observa-
tions and used in conjuction with the SOI waveform). For
the sake of ease of notation, and without loss of general-
ity, we drop the constant ze in the following exposition (i.e.,
62 = 1). Consider the problem of estimating the signal wave-
form via a linear transformation of the received observations,
ie., £(n) = wy(n). The optimum MVDR/Capon filter
can be obtained by solving the following linearly-constrained
quadratic optimization problem, namely,

WMVDR = arg min wiR,w subjecttost =1. (1)
weCM

The solution to (1) can be easily obtained applying the
method of Lagrange multipliers as

R,'s R's
WMVDR = STR-Ts = JTR-Ts’ 2

where R € CM*M g the covariance matrix of the observed
process, i.e.,
R =ss"+ R,,

and the second equality in (2) can be checked using the ma-
trix inversion lemma (in particular, the Sherman-Morrison-
Woodbury identity for rank augmenting matrices).

Formally, this intuitive criterion may be formulated from
a statistical estimation perspective as the problem of con-
structing a linear estimator minimizing the mean square-error
(MSE), i.e., for £ =% (n) and x = x (n),

MSE(%) = E [\xﬂeﬂ = var(®) + (bias(¥))>,  (3)

where the expectation is taken wrt. the random interference
distribution, var stands for variance and bias(£) = E[%] — x.
The problem of obtaining a linear transformation minimizing
(3) under the unbiasedness constraint (bias(£) = 0) is equiva-
lent to the optimization problem above, and the result is usu-
ally referred to as the BLUE. Interestingly enough, when the

observations are Gaussian or have a linear model structure,
the MVUE of the desired parameter turns out to be linear.
Thus, as mentioned above, in these cases both BLUE and
MVUE are equivalent.

The previous linear estimator of the signal waveform
based on the filter in (2) assumes that the unknown quantities
x(n), n=1,2,..., are fixed or deterministic. In case some
information on the distribution of the unknown parameter is
available for inference purposes, a probabilistic characteriza-
tion of the parameter can be exploited by the Bayesian esti-
mation framework in order to further reduce the MSE risk
in (3). Indeed, under the previous statistical assumptions on
the signal model, the filter minimizing (3) with the expecta-
tion being taken wrt. the joint distribution of both the sig-
nal waveform and the noise is the so-called linear minimum
mean square-error (LMMSE) filter, namely,

wimmse = R 's. “

Note that the estimator £ (1) = W, \,sg¥ (1) is no longer un-
biased. In fact, the latter is an example of estimation method
aiming at reducing the overall loss function by allowing for
a degree of "biasedness" (see Introduction). In particular,
the optimal bias-variance trade-off is fixed by the minimiza-
tion of the Bayes MSE risk in (3), where the bias correction
is determined as the solution of the following optimization
problem:

mO%n{MSE (awmvpr) =E [‘x(n) — awl bRy (n)ﬂ } ,
)
where the effective linear transformation is now given by
w = awpmypr. Of course, we have opvpr = 1. More-
over, the optimal ¢ under the LMMSE criterion is clearly
o mmse = sTR s, leading to the optimal filter in (4).
In general, for an arbitrary filter, observe that

MSE (w) = 1 —2Re{w's} + w/Rw
=1- SHR?IS + MSEeycess (WMMSE7W) , (6)

where
MSEexcess (Wnmse, W) = (Wumse — W)™ R (Wwmse — W) .

is the excess mean-square error. Note that min-
imizing MSE(w) is equivalent to minimizing
the distance  MSEeycess (WMMSE, W), and, from
MSE excess (WMMSE,WMMSE) = 0, the MMSE is given
by

MSE(WMMSE) =1 —SHRils. (7

An alternative performance measure particularly spread
across the communications literature is the so-called signal-
to-interference-plus-noise ratio (SINR), defined as

H|? -1
SINR (w) = [w?s| :<WHRW—1) . ®

|wis|®

In principle, maximizing the SINR performance measure
does not guarantee a good estimate of the signal waveform,
which is the actual objective in this work (see discussion in
[7] and also [8, Chapter 5]). However, any scaled version of
the LMMSE filter in (4) maximizes the output SINR. Indeed,
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assuming the signal model is error-free and that exact knowl-
edge of R is available, the LMMSE estimator is well-known
to achieve the optimum performance trade-off in the sense of
both minimizing the MSE as well as maximizing the output
SINR, simultaneously, with a maximum SINR (MSINR) at
the output of the MMSE filter being equal to

1 o -
SlNR(WMMSE) = (m_l> :SHRn]S.

3. BIAS CORRECTIONS WITH SAMPLE FILTERS

In situations where the signal model is uncertain or the co-
variance matrix of the observations is unknown, only an un-
balanced optimization of the previous two performance mea-
sures can be expected to be achieved by the LMMSE estima-
tor. An analysis of this effect for the first source of mismatch
is provided in [7] and also [8, Chapter 5]. Here, we concen-
trate on the case of estimation strategies based on the sample
covariance matrix (SCM) estimator of the unknown observa-
tion covariance matrix, which is defined as

S ¥ (n)y" (n). ©)

More specifically, we focus on the generalized asymptotic
regime used in [9] for the analysis of the performance of sam-
ple reduced-rank LMMSE estimators. Our approach here is
based on an asymptotic interpretation of the bias factor in (5).

Consider the above linear estimation problem, where the
unknown covariance matrix of the observations is replaced
with a function of the SCM. Here, in order to allow for an
invertible covariance matrix estimator even in the case that
M > N, we generally consider a diagonal loading (DL) es-
timator of R, namely based on a diagonally loaded SCM,

R ~1
ie., (R—|— yIM) , for a given loading factor ¥, and so the
MVDR filter is implemented as

(f{—i-}/IM)il s

st (IA{—I—}/IM>71 s'

WDL-MVDR =

In the case ¥ = 0, we recover

f{’ls

WMVDR = — =
sfiR-Is

(10)
In the sequel, we will focus on the latter for the sake of nota-
tional simplicity and will omit the details on the former due
to space limitations. Nevertheless, notice that all our deriva-
tions can be easily extended to the DL-base filter estimator,
and final results for this case will be provided in the paper
regarding the asymptotic performance analysis and the gen-
eralized consistent estimation.

Then, the sample bias correction factor is obtained from

m(%n{MSE (aWwmvpr) =E Ux(”) — oaWigyprY () ﬂ } ,

where, with some abuse of notation, here we have used
E[]=E {| f{} The solution to the previous optimization

problem can be straightforwardly shown to be

. 2
(SHR_IS>
SHR*IRRAS.

Consequently, if the covariance matrix is unknown, the
MSE-optimal linear filter in the Bayesian estimation frame-
work is Wi mMMse = GLmMMsEWMyDR. In particular, observe
that

)

O MMSE =

(SH R™! s)
MSE(WLMMSE) = 1—’\7’\71 (12)
sfR-IRR s
Clearly, the SINR measure is invariant to scaling. However,
by comparing (12) with the MSE achieved by the conven-
tional implementation of the LMMSE filter, i.e.,

MSE (f{_ls> —1-2"R s+ s"RIRR 's, (13)

a strictly smaller MMSE can be shown to be achieved by
WLMMSE, since

MSE (Wimmise) < MSE (fr‘s) .

To see this, we just need to show that
R 2
(SHR_IS)

s/R-IRR s
but this readily follows by completing the square as

>2sfR1s — SHR_IRﬁils,

“ 2 N . N N . 2
(SHR*‘S) _2"RIRR lssHR’ls—i—(sHR"RR ‘s)

= () (rromas))

and noting that the quadratic term in the RHS is strictly pos-
itive.

The quantity in (11) depends on both the SCM as well
as the unknown theoretical covariance matrix. In prac-
tice, the implementation of & pmmse is conventionally based

on replacing R with R. In this case, we clearly have

O MMSE (R) = s"R~'s, which leads to the sample imple-
mentation of wusg obtained by directly replacing R with
R. The theoretical foundations of the conventional imple-
mentation of & mmse can be set as follows. The SCM is the
minimum variance unbiased estimator of the theoretical co-
variance matrix, as well as the maximum likelihood estima-
tor for Gaussian observations. For a sufficiently large number
of samples N, implementations of the optimal scaling factor
in (11) based on directly replacing the unknown theoretical
covariance matrix with its sample estimate can be consid-
ered to provide a fairly accurate approximation. However,
such an assumption does hardly hold under realistic scenario
conditions given in a practical setting, where the number of
samples per observation dimension is finite.

In this work, contrary to conventional practice, we con-
sider an asymptotic approximation of the solution in (11),
such that the ratio between the sample size and the obser-
vation dimension is fixed or constant. In particular, we
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deal here with the following general problem. Consider a
bounded scalar function of the unknown theoretical covari-
ance matrix R, say f(R), which represents a parameter
that needs to be estimated. Under the practically more rel-
evant assumption M, N — oo at a constant rate c = M /N €

(0,40), the conventional estimator given by f (fi) is not

consistent, i.e., f’ (R) —gR)#f(R),asN=N(M) — o

(in the sequel, we will only consider strong consistency and,
therefore, almost sure stochastic convergence of the estima-
tors). Motivated by this fact, we propose an estimator con-

sisting of a certain function of the SCM, say % (f{), and
which is consistent in the previous, practically more mean-
ingful doubly-asymptotic regime, i.e., A (ﬁ) — f(R), with

probability one as N = N (M) — oo,

The two previous ideas on the asymptotic convergence
(or consistency) analysis of conventional SCM-based estima-
tors, and the construction of improved consistent estimators
based on the SCM and a fixed ratio ¢, are developed next.
Before proceeding, we notice that the distribution of the ran-
dom quantity in (11) is known in the literature (see [10]).

4. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we apply recent results from RMT to de-
rive asymptotic deterministic equivalents of the quantities
MSE (Wimmse) in the limiting regime defined by M,N —
+00 with ¢ = M/N € (0,4). To that effect, it is enough
to study the convergence of the quantities s R !s and

S"RIRR s describing the the previous performance
measure. Regarding the asymptotic convergence of these two
quantities, we have the following (a < b means both quan-
tities are asymptotic equivalents, i.e., |a —b| — 0, and the
convergence is with probability one):
SR s < (1—¢) 'R s,

(14

and |
STRTRR s=(1-¢) "R 1s. (15)

For a proof of (14) and (15) we refer the reader to [11, Propo-
sition 1] (see also [8, Chapter 4]) and [9, Theorem 1] (see
also [12]), from where also the result for the more general
case of a DL-based covariance matrix estimator can be ob-
tained.

Finally, based on the previous results we notice that
the asymptotic (deterministic) approximation of the MMSE
achieved by the proposed bias correction is

(16)

where ¥, (¢) = (1 —c). The previous measure is to be com-
pared with the asymptotic limit of the MSE achieved by the
conventional LMMSE filter implementation in (13), i.e.,

MSE(WLMMSE) =1- 191, (C) SHRils,

MSE (R‘ls> =1-2(1—¢) 'sR7's+(1—¢) *s"R s
=1—3.(c)sR7 s, (17)

where ¥, (c)

comparison between proposed and conventional approaches,
please see the section Numerical Results.

(2 (1—c) ' =(1— c)73>. For a quantitative
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Figure 1: Asymptotic MSE achieved by the conventional
(R~'s) and the proposed (& mmseR™'s) LMMSE filters,
compared to theoretical MMSE.

5. CONSISTENT ESTIMATION OF OPTIMAL
SCALING FACTOR

In order to implement the proposed filter, the bias correction
in (11) given in terms of the unknown covariance matrix has
to be estimated by using the available SCM. For that purpose,
as introduced above, we find an expression only depending
on the signature vector s and the matrix R (both available for
estimation purposes) that converges in our general asymp-
totic regime to the desired quantity. In particular, from the
asymptotic analysis in the previous section, it suffices to find
an estimator converging to

. 2
(sH R! s)
—— 5 =(l—¢ s’R7's.
sfR-IRR s
From above, it straightforwardly find that

(1—c)?s"R7 s < (1—c)s"R s,

so that the proposed LMMSE filter implementation is

(1— c)2 R ls. Interestingly enough, observe that the latter
corresponds to the classical implementation of the LMMSE
filter up to the nontrivial scaling (1—c)>. More impor-
tantly, we notice that the optimal scaling minimizing the
MSE achieved by any practical implementation of the SCM-
based LMMSE filter is universal, and so it does not depend
on the theoretical covariance matrix R, but only on the ratio
c.

6. NUMERICAL RESULTS

In this section, the performance of the proposed filter is eval-
uated by means of numerical simulations. In Figure 1, the
asymptotic approximation of the MSE achieved by both the
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Figure 2: Finite sample-size MSE performance of the con-
ventional (R~'s) and the proposed (& mmse R~'s) LMMSE
filters, compared to theoretical MMSE (M = 10).

proposed and the conventional LMMSE filters, defined by
6 mmse R ~''s and R~ s, respectively, and given by (16) and
(17) as a function of the ratio c¢ is depicted along with the
theoretical MMSE in (7). It can be observed that when ¢ =0
both filters converge to the MSE of the theoretical LMMSE
filter, i.e., R™!'s. This corresponds to the case of classical
asymptotics, so that the sample covariance matrix converges
to the true covariance matrix. On the other hand, when the
number of available samples N is decreased with respect to
the dimension of the observations M, i.e., the value of the ra-
tio ¢ approaches 1, the performance of the proposed LMMSE
filter dramatically outperforms that of the conventional one,
as the former is optimized for any value of ¢ whereas the
latter is only optimal for ¢ = 0.

In Figure 2, the performance of the proposed method in
the case of a finite sample-size and in the context of an ar-
ray signal processing application is considered. Specifically,
the scenario consists of the SOI and four interferers in addi-
tive white Gaussian noise with variance normalized to 1. The
powers of the SOI and all interferers are fixed to 1, and their
direction-of-arrival is 0°, 20°, 30°, 50° and 60, respectively.
The steering vectors are normalized such that ||s||, = 1. For
simulation purposes, M was fixed to 10 and the MSE per-
formance measure defined in (6) is shown for both the con-
ventional and the proposed LMMSE filter implementations.
The theoretical MMSE is also shown. Similar conclusions as
for the previous simulation are observed, therefore validating
the improved performance of the proposed bias correction in
a realistic scenario compared to the classical approach.

7. CONCLUSIONS

The problem of finding the optimal scaling of a class of
LMMSE filter implementations, based on a general SCM-
based estimator of the actual covariance matrix, including

diagonal loading, has been addressed. The proposed opti-
mal scaling factor is a correction of the bias of the Bayesian
MMSE estimator that optimizes the bias-variance tradesoff
in an attempt to further reduce the overall MSE when the
estimator is constructed based on the SCM.The scaling fac-
tor minimizing the MSE and depending of both the unknown
covariance matrix and its sample estimator is firstly asymp-
totically analyzed in terms of key scenario parameters, and
finally approximated via the SCM constructed using the set
of available samples. To that effect, recent results from ran-
dom matrix theory on the asymptotic analysis of large sample
covariance matrices have been applied. As the main contri-
bution of the paper, for the case of a non-loaded SCM esti-
mator, a universal optimal scaling factor has been obtained
which dramatically outperforms the conventional LMMSE
filter implementation.
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