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ABSTRACT

In this paper, we propose a coder for stereoscopic color im-
ages based on the binocular properties of the human visual
system (HVS). In the preprocessing stage we modeled some
properties of the simple and complex cells. These cells char-
acterized by their orientation and amplitude are responsible
for binocular fusion; they take as input a set of signals rep-
resenting the two retinal images and give as output binocular
signals. To model this process we have used mathematical
functions that have the same characteristics as the simple and
complex cells such as wavelet and bandelet. After the match-
ing process, we obtain a residual image, a disparity map and
the reference image; these allow to predict the target image.
The residual image contains the matching error. The one ob-
tained with our approach contains a very few amount of data
generating low bitrate. The experimentation stage showed
that our coder gives better results than the two famous coders
coming from literature.

1. INTRODUCTION

The stereoscopy can be defined as the association of two eyes
in the visual analysis of the same region of the scene. it im-
proves significantly this analysis but it comes along, in re-
turn, with an increase of the information to be treated and
to be stored. The main advantage to have two shots of the
same scene is that each of them takes a slightly different
view. The space between eyes generates binocular dispari-
ties (difference between the retinal images of the left and the
right eyes) which are exploited, via the stereoscopic vision,
to reconstruct the third dimension from flat retinal images.
The matching is a crucial stage, for all stereo applications
(stereo coding, stereo quality assessment, . . . ) because the
quality of the 3D reconstruction depends on it.

Stereo coding aims to reduce the size of the couple of
images by exploiting the redundancy between them. The
most significant research addressing this problem has been
carried out during the last decade. Among the first pro-
posed approaches, we find the one introduced by Dinstein
et al. [1] based on the deletion theory in the human visual
system (HVS). The method was subjectively estimated by
a panel of observers asked to compare stereo compressed
images with original images and then rate them on a dis-
crete scale. Aydinoglu et al. [2] proposed an approach based
on regions matching. Three kinds of regions are consid-
ered: the occulted regions, the redundant regions and the
contours. A matching is performed between regions of the
same type which is not efficient for the disparity map com-
putation. Tzovara et al. [3] proposed a solution based on
the object contours. This is by supposing that all pixels in

the estimated region have the same disparity. The coordi-
nates of estimated regions must be transmitted with the esti-
mated disparity. This increases the size of transmitted infor-
mation. Techniques based on the object contours can be gen-
erally classified into two distinct categories: shape-oriented
or blocks-oriented (blocks can be of variable or fixed size).

Woo et al. [4] and Magnor et al. [5] proposed approaches
based on a hierarchical representation of images. The disad-
vantage lies in the fact that the disparity is computed for all
the scales that do not reduce effectively the size of the com-
pressed images. Boulgouris et al [6] proposed an approach
in closed circuit where the residual image with its disparity
are calculated by using the reference image locally decoded
because such an image is available for the decoding stage.
For coding residual images, Frajka et al. [7] proposed that
the occluded and the non occluded regions are coded sepa-
rately, and for this reason they used a technique containing
variable blocks. Kim et al. [8] and Woo et al. [9] proposed an
approach based on blocks of the same size with a directional
search of the best match which does not allow to find the best
one, but reduces the computation time. Pagliari et al. [10]
and Moellenhoff et al. [11] proposed approaches based on
DCT transform which do not exploit the spatial distribution
of the information and consequently the stereo properties are
not exploited. Aydinoglu et al. [12] proposed an approach
based on a subspace projection that allows the adaptation to
the local transform. This approach is not efficient on textured
images.

The most important work using wavelet representation
has been introduced by Ellinas et al. [13]. These latter used
the wavelet decomposition for coding residual images. The
originality of both approaches is the separated processing of
the occulted regions and the rest of regions represented on the
residual image. Nath et al. [14], Ellinas et al. [13] and Moran
et al. [15] proposed wavelet-based approaches. These ap-
proaches present a set of common drawbacks relative to the
calculation of the disparity map. Indeed, this map is calcu-
lated on each scale of the decomposition which do not reduce
efficiently the size of the compressed images.

The major drawback of the previous works is the lack of
taking into account the binocular process allowing to gener-
ate the 3D image in the HVS. All the coders tries to minimize
the residual information, obtained by the subtraction of the
similar regions in both images; in that case we can have two
similar images allowing a bad depth reconstruction but giv-
ing a good PSNR. The second drawback is that the matching
of the images, in these coders, is realized without considera-
tion of the behavior of the HVS.

In this work, we propose a stereo coder that takes into
account the binocular process performed by the HVS. It con-
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sists in modeling the behavior of the simple and complex
cells whose are the main actors, of the matching operation in
the primary visual cortex. From this, we formalize a model
for the calculation of the binocular energy. This latter is ex-
ploited then in addition to stereoscopic constraints to find the
best matching. So this is the main innovative part and which
offers a better comprehension of the HVS 3D perception.

The rest of this paper is organized as follows: After the
description of the proposed approach in section 2, a brief de-
scription of the bandelet transform used to model the simple
and complex cells behavior is given in section 3. Section 4
is dedicated to the proposed binocular energy model (BME).
The experimentation is described in section 5 and this paper
ends with some conclusion and future directions.

2. PROPOSED APPROACH

In this section, we describe our coder illustrated in Fig-
ure 1. The first step in our coder is to represent images in
CIE L∗a∗b∗ color space; that choice will be justified later.
Then, some transformations are applied on the stereoscopic
images to be able to model the properties of simple and com-
plex cells. These latter are characterized by their size, their
orientation and their phase.

Fig. 1. Proposed approach.

The simple cells work in pairs. As shown in Figure 3,
a cell complex takes as input two simple cells. The simple
cells belonging to the same pair has a shift phase equal to
π/2. From this description, we modeled simple cells, tak-
ing into account some of their characteristics. A complex
wavelet transform (CWT) is applied to the luminance com-
ponent (L) of the right and left image. To obtain the real
and imaginary parts of the luminance component we use two
filters with a shift phase equal to π/2. For the chromatic
component a discrete wavelet transform (DWT) is applied to
the component (a∗) and also to the component (b∗), of the
two images. In the CIE L∗a∗b∗ color space, the two color
components are orthogonal. Thus the first component (a∗)
represents the real part of the color information and the sec-

ond represents the imaginary part (b∗). This explains why
it has been chosen for our approach. The real part of the
luminance (Re [CWT(L)]) and chrominance (Re [DWT(a)])
have a shift phase equal to π/2 with their imaginary parts
(Im [CWT(L)]) and (Im [DWT(a)]).

This preprocessing step is realized to separate the re-
sponses obtained with cells belonging to the same pair
(Fig. 3). Both cells belonging to the same pair have the same
size in the same orientation the same position and the same
amplitude with a shift phase equal to π/2. The next step is to
define the size and position of each pair of simple cells. For
this we applied the bandelet transform on the wavelet coef-
ficients obtained with the CWT and the DWT. Figure (fig 2)
shows the obtained result by applying the same geometry on
the real and imaginary parts of luminance and chrominance
components of each image. After this last stage, the left and
the right images are represented with a set of dyadic squares
characterized by their orientation phase, size and position. A
dyadic square belonging to the real part of the luminance (Re
[CWT(L)]) with the dyadic square that have the same posi-
tion in the imaginary part of the luminance (Im [CWT(L)])
represent one pair of dyadic squares (the same for chromi-
nance) (Fig. 2).

Fig. 2. Wavelet and Bandelet transform of both retinal im-
ages.

Once the simple cells modeled, we model the complex
cells to match dyadic squares pairs of the couple of images
(See Section 4). The matching process generates a dispar-
ity map and a residual image. The residual image under-
goes adaptive quantization according to different scales of
the CWT and DWT decomposition. The quantized image
is encoded with the disparity map using arithmetic coder.
The quality of the reconstructed target image depends on the
quality of compressed residual image. In the decoding pro-
cess, the reverse of coding operation is performed. It uses
the reference image with the residual image and the disparity
map to reconstruct the target image.

3. BANDELET TRANSFORM

In the previous section, we mentioned the spatial-frequency
transform that we use in our metric scheme. As shown in the
following figure, a CWT is applied to the luminance compo-
nent [L∗] of the left and right retinal images. The filters used
to compute the real and the imaginary parts presents a shift-
phase equal to π/2. DWT is applied to the chromatic com-
ponent of the both images (a∗ and b∗), knowing that these
components are orthogonal. This preprocessing step allows
a complex writing of the luminance and chrominance com-
ponents as described by equation 1.

Image = {Re[L], Im[L],Re[C], Im[C]}
= {Re[CWT (L∗)], Im[CWT (L∗)],DWT [C(a∗)],DWT [C(b∗)]}
L : luminance,C : Chrominance

(1)

121



To ease the comprehension of the approach, a brief review of
the Bandelet transform is given in the following paragraphs.
The reader can refer to [16] for a full detailed description of
the Bandelet transform.

The bandelets are defined as anisotropic wavelets that
are warped along the geometric flow, which is a vector field
indicating the local direction of the regularity along edges.
The dictionary of bandelet frames is constructed using a
dyadic square segmentation and parameterized geometric
flows. The ability to exploit image geometry makes its ap-
proximation optimal for representing the images. For image
surfaces, the geometry is not a collection of discontinuities,
but rather areas of high curvature. The Bandelet transform
recasts these areas of high curvature into an optimal estima-
tion of regularity direction. Figure 2 shows an example of
bandelets along the geometric flow in the direction of edges.
In real applications, the geometry is in the direction of the
edge. The support of the wavelets is deformed along the ge-
ometric flows in order to exploit the edge regularity.

4. BINOCULAR ENERGY MODELS (BEM)

4.1 State-of-the-art
Modeling the binocular energy created by the simple and
complex cells is an important step to be included in com-
puter vision applications dedicated to stereoscopic images.
Several works exist in literature and we propose, in this sec-
tion, to describe the most important ones related to our work.
Hubel and wisel [17] defined two types of binocular cells,
namely the simple cells and the complex cells, qualifying the
degree of complexity in the internal structure of a receiver.
The complex cells in their model are built by the association
of a number of simple cells as described in Fig. 3. According
to Campbell et al.[18], the receiving fields of this cells are
described as a linear filter constituted by different regions of
type ”ON” (activated) and ”OFF” (inhibited). The optimal
activation of these cells is made by a grating of luminance so
that the white bar covers all the ON region while the black
one covers the OFF region.

-a-

-b-

-c-

Fig. 3. Illustration of the receiving fields of simple and com-
plex cells. (a) identical for both eyes, (b) a shift position, (c)
a phase shift (In the model of binocular energy, the neurone
of energy Cx represents the complex cell)

The complex cells are not like the simple cells in the
sense that they have different receiving fields. These lat-
ter have positive and negative responses for the simple cells

while the responses are positive or zero for complex cells. In
1990, Ohzawa et al.[19] proposed a complete model to com-
pute the binocular energy. This work has inspired ours for
the definition of the BEM used in our metric. The function
of the simple and complex cells can be mathematically de-
scribed by the orientation adaptive wavelets (Gabor wavelet,
curvelet, bandelet, . . . ). The ON and OFF regions, of these
cells, correspond respectively to peaks and hollows of these
functions.

4.2 Proposed binocular energy model
Starting from the definition given above, the model that we
propose to calculate the binocular energy is based on the
model proposed by Ohzawa [19] and the one proposed by
Fleet [20]. Bandelet transform, applied on the wavelet coef-
ficients of luminance and chrominance components, allows
to define the image geometry. This latter is defined by a
set of dyadic squares (the same geometry is applied to the
real and imaginary parts of the luminance and chrominance).
Each dyadic square is characterized by its size and orienta-
tion. Dyadic squares obtained with CWT applied to the lu-
minance are arranged in pairs, similar to the dyadic squares
obtained with the DWT, applied to both chrominance com-
ponents. Dyadic squares of a given pair belong to the real
part of the CWT (Re[L(x)]L) and the imaginary part of the
CWT (Im[L(x)]L). Dyadic square pairs of the chromatic
component belong respectively to the real part represented
by the DWT (Re[L(x)]C), applied to the component a∗ and
the imaginary part represented by the DWT (Im[L(x)]C), ap-
plied to the component b∗. Dyadic squares of a pair have
given the same orientation and same size with a shift-phase
equal to π/2. L(x) and R(x) (responses of two simple cells
(Fig. 3)), Complex-valued response in left and right eyes, are
expressed by their amplitude and orientation of the complex
function(L(x) = ρl(x)exp(φl(x))). where:

ρ
2
l (x) = |L(x)|2 = Re [L(x)]2 + Im [L(x)]2 (2)

ρl(x) is the monocular amplitude of the complex function
and φl(x)(Eq. 3) is the monocular phase of the complex func-
tion.

φl(x) = arg |L(x)|= arctan(Im [L(x)]/RE [L(x)]) (3)

Table 1. parameters table.
parameters Definitions
X Retinal position
L(x), R(x) Complex-valued response in left and right eyes, at

position x
Re[L(x)]L Luminance real part of left monocular re-

sponse(dyadic square)
Im[L(x)]L Luminance imaginary part of left monocular re-

sponse
Re[L(x)]C Color real part of left monocular response
Im[L(x)]C Color imaginary part of left monocular response
ρl/r(x) Monocular (left eye) amplitude signal
φl/r(x) Monocular (left eye) phase signal
φ
′
l/r(x) Left-eye instantaneous frequency at position x

∆ψ simple cell phase shift
d Stimulus disparity
∆φ(x) phase difference
E(x) Binocular energy response at retinal position x
E(x,d) Response of binocular energy neuron with simple

cell position shift
E(x,∆ψ) Response of binocular energy neuron with simple

cell phase shift
E(x,d,∆ψ) Response of binocular hybrid energy neuron with

position shift d and phase shift ∆ψ

After all the preprocessing steps comes the stage of
matching of the retinal pairs of images. For this, the dyadic
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squares pair of one image are matched with another pair of
the second image by calculating the binocular energy pro-
duced by these two pairs of dyadic squares (which represents
the response of two simple cells). The cell responsible of the
information fusion, in the human visual system, is the com-
plex cell. The binocular complex cell takes as input two re-
sponses from two simple cells (two pairs of dyadic squares
belonging respectively to the left and right retinal images). If
the complex cell is of type monocular, it will take as input
a response of a simple cell (a pair of dyadic squares). In the
case of a binocular complex cell, the binocular energy (Eq. 4)
is calculated as described in [20].

E(x) = |L(x)+R(x)|2 = (Re [L(x)]+Re [L(x)])2

(Im [L(x)]+ Im [R(x)])2 (4)

The two pairs of matched dyadic squares, belonging respec-
tively to the right image R(x) and the left image L(x) must
have the same orientation and the same size.
When we replace L(x) = ρl(x)exp(φl(x))and R(x) =
ρr(x)exp(φr(x)) by their respective definition, we obtain the
following equation :

E(x) = ρ
2
l (x)+ρ

2
r (x)+2ρl(x)ρr(x)cos(∆φ(x)) (5)

E(x) is the energy of the response obtained by the binocular
complex cell. When the both pairs of dyadic squares have
not a same position, the right monocular response R(x) is
a shifted version of the left monocular responses L(x), i.e.
R(x) = L(x−d). Similarly, when the phase signal is not the
same between the pairs of dyadic squares φ(x) = φ(x− d).
From this, we can express the inter-ocular phase difference
using a Taylor series of φl(x−d)(Eq. 6):

∆φl(x,d) = φl(x)−φr(x) = φl(x)−φl(x−d) = dφ
′
l/r +O[d2] (6)

Combining equation 6 with equation 5 gives us a useful char-
acterization of a binocular energy as described by equation 7.
As the disparity is increased slightly above zero, the binocu-
lar energy response decreases as the cosine of disparity times
instantaneous frequency, cos(dφ

′
l/r).

∆φl(x,d) = φl(x)−φr(x) = φl(x)−φl(x−d) = dφ
′
l/r +O[d2] (7)

In [19], authors showed that if the simple cells have not the
same orientation, the disparity between them is useless. Fleet
[20] defined this relation in the following way:

R(x) = exp(i∆ψ)L(x−d) = ρl(x−d)exp(φl(x−d)+∆ψ) (8)

∆ψ denotes a phase shift between the couple of simple cells.
So, the binocular energy of the left and the right pairs of
dyadic squares are then related. The phase difference has
now the form:

∆φl(x,d,∆ψ) = φl(x)−φr(x)−∆ψ = dφ
′
l/r−∆ψ (9)

Finally, the binocular energy(Eq. 7), computed by the com-
plex cell for the both pairs of dyadic squares, is equal to:

E(x,d,∆ψ) = ρ
2
l (x)+ρ

2
r (x)+2ρl(x)ρr(x)cos(dφ

′
l −∆ψ) (10)

When the two dyadic square pairs (left and right) are
matched, if the binocular energy E(xl , xr)≈ E(xl , xl) the er-
ror between the two dyadic squares is equal to 0, nothing is
saved in the residual image. In the case of an important dif-
ference between E(xl , xr) and E(xl , xl) , this latter is saved
n the residual image (Re(residual image)=Re[xl]-Re[xr]) and
(Im(residual image)=Im[xl]-Im[xr]) to be used in the recon-
struction of the target image.

5. EXPERIMENTAL RESULTS
In this section, the experimental evaluation of the proposed
coder is reported. Two stereo image pairs were employed for
the experimental evaluation (cf. fig. 4). The evaluation of the
proposed method is performed by using the PSNR calculated
using the following equation:

PSNR = 10log10
2552

(MSEL +MSER)
(11)

where MSEL and MSER are respectively the mean square er-
rors of the left and the right images. In this section we present
results obtained with our coder. The results are presented
as comparative curves between the results obtained with our
coder and Woo et al. [4] and Ellinas et al. [13].

Fig. 4. Cones (top) and Teddy (bottom) stereo images.

The results obtained with our coder are very interesting
compared to those obtained with the coder of Woo and
Ellinas. This can be explained by several factors related to
the conception of our coder and to the functions used in mod-
eling. In our model we took into account the characteristics
of 3D vision. In the case of 3D vision we have all artifacts
unique to the 2D vision and artifacts unique to 3D vision.
To assess the quality of our compressed stereoscopic im-
ages we used PSNR although it is not the best metric for that.

We can classify the 3D artifacts in two categories. In
the first category are artifacts caused by the loss of depth.
This case may be caused by an intense filtering of textured
areas in the image. Such artifacts can be caused by the JPEG
2000 coder for example. In our coder, we use bandelets
transform, the advantage of this transform is the preservation
of contours using its adaptive quantization function. For
each pair of dyadic squares is kept the significant wavelet
coefficients (which respect the geometry of the dyadic
square). This quantization method preserve the geometry of
dyadic squares pair ensuring a good depth perception.

The second category of artifacts that we find in the 3D
perception are the appearance of false depth artifacts caused
by 2D encoder used as it is the case with the block effects
caused by the JPEG coder. With the block effect we seem
to see the blocks in depth especially in uniform areas where
there is no geometry.

6. CONCLUSION

In this paper, we proposed a coder for stereoscopic color
images based on properties of human visual system. Both
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Fig. 5. Quality performance evaluation of the proposed coder
vs. woo et al. [9] for (a) Teddy image and (b) Connes.

images undergo series of preprocessing before coding. The
pretreatment phase models the operation of simple and com-
plex cells responsible for binocular fusion. To model some
properties of simple cells we applied CWT on the luminance
component and a DWT on the color components of two im-
ages. A bandelets transform was then applied on the ob-
tained wavelet coefficients. We obtained after this treatment
a set of dyadic squares pair (real and imaginary) character-
ized by their size amplitude and orientation as the simple
cells. To match these square dyadic pairs we propose a binoc-
ular energy model (BEM). After the match we get a disparity
map and a residual image. These are quantified and coded
with the arithmetic coder. The obtained results showed bet-
ter performance than the literature coders used in this paper.
The validation of this coder will continue by a specific psy-
chophysical study.
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