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ABSTRACT 

We establish the dynamic Radar Cross Section (RCS) signal 
model for a conical ballistic missile warhead with preces-
sion motion. Two Maximum Likelihood Estimation (MLE) 
approaches are presented for the estimation of the important 
missile precession frequency. In one method we approximate 
a log-normal multiplicative process by a Gaussian process. 
In the second method we assume zero additive noise. While 
the approximations in both methods are introduced to make 
the mathematics tractable, simulations show the practical 
usefulness of both approaches. 

1. INTRODUCTION 

Interception of separating ballistic missiles is particu-
larly difficult because the warhead is a distinct object that 
needs to be discriminated from the nearby objects such as the 
booster, the attitude control module, and the debris [1], all of 
which are separated in mid-course flight. 
      Since many warheads are spin-stabilized, they will pre-
cess due to the separation disturbance, and will keep the pre-
cession motion until they re-enter the atmosphere [2, 3]. Pre-
cession motion, which is a kind of micro-Doppler motion [4], 
will impose a micro-Doppler modulation effect on the radar 
echoes, and this is a unique feature of the ballistic targets. 
The precession frequency is an important feature parameter 
in ballistic target recognition, and it can reflect kinematical 
characteristics as well as structural and mass distribution 
features. 
       Due to the precession motion, the radar aspect angle 
varies periodically. Since the RCS return signal fluctuates as 
a function of radar aspect angle, the precession period can be 
extracted by analyzing the RCS signal. The static RCS of a 
warhead can be predicted by approximate methods. However, 
due to the wide variability of RCS scintillation sources, the 
RCS signal is modelled statistically as a random process. 
Evidence from the analysis of RCS measurements has shown 
that the RCS distributions of ballistic targets are log-normal 
[5]. So taking the receiver noise into account, the signal 
model for the RCS signal for a ballistic missile should be in 
the form of the product of the deterministic signal with log-
normal multiplicative noise and Gaussian additive noise. 
While the estimation of a deterministic signal observed in 
additive white Gaussian noise is a well-researched problem, 

not much attention has been given to the corresponding 
multiplicative noise problem [7, 8].  

In order to estimate the parameter of precession fre-
quency from the RCS signal, we will propose in this paper 
two different approaches based upon maximum likelihood 
estimation. Both approaches will include some simplification 
of the RCS signal model in order to keep the mathematics 
tractable. 

So the structure of the paper is as follows. In Section 2, 
we analyze the variation of the radar aspect angle when the 
warhead is precessing, and then establish the model for the 
RCS signal of a conical warhead. Then two methods of 
Gaussian Maximum Likelihood (GML) estimation and 
Maximum Likelihood Estimation (ML∞) with infinity sig-
nal-to-noise-ratio (SNR) will be proposed in Section 3. 
Simulation results are presented in Section 4 and concluding 
remarks are given in Section 5. 

2. SIGNAL MODE 

Most radar systems use the RCS signal as a means of 
missile discrimination and so an accurate prediction of target 
RCS is critical in order to design and develop robust dis-
crimination algorithms. Exact methods of RCS prediction are 
very complex, even for simple shaped objects. Due to the 
difficulties associated with exact RCS prediction, approxi-
mate methods have become the only viable alternative.  
 

 
Fig. 1 Geometric model of a precessing conical warhead with veloc-

ity ࢜ m/s. 
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Most approximate methods can predict the RCS within few 
dBs of the true value and such an error is usually deemed 
acceptable. 

Now, a conical tip is a commonly seen feature in many 
ballistic missiles. The RCS signal from a cone can be de-
scribed as [9] 
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where ߮ is the radar aspect angle, ߣ is the wavelength,  ܿ is 
the speed of light, ܮ is the length of the warhead, ߛ is the half 
cone angle of the conical warhead, ሺߛ ൌ tanିଵሺݎ ⁄ܮ ሻሻ, and  
 .is the bottom radius of the conical warhead (see Fig. 1) ݎ

When missile warheads are released, they usually spin in 
order to keep their orientation [10]. It is known in geostatic 
theory that a spinning rigid body will precess if there is lati-
tudinal disturbance. Generally, this disturbance is unavoid-
able during missile release. Therefore, missile warheads will 
keep precessing until re-entering the atmosphere. Fig.1 illus-
trates the precession motion model of a conical warhead. The 
warhead spins around its geometrical axis and precesses 
along the direction of velocity ࢜ (see Fig.1). 

        

  
Fig. 2 RCS (ߪሺ߮ሻሻof a conical warhead versus aspect angle ߮. 

(Note that “dBsm” refers to “dB relative to a square meter” and is 
commonly used for RCS signal precessing) 

 
According to the geometry and the precession model of 

a rigid body object, as illustrated in Fig.1, the relationship 
between the aspect angle ߮, the precession angle ߠ, the pre-
cession frequency ௣݂ and the observation time ݐ can be ex-
pressed by 
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where ߶଴ is the initial reference angle,  ݐ଴ is the initial refer-
ence time and  ߚ is the angle between the radar line sight 
(LOS) and the vector direction of the warhead velocity, ࢜.  

 

 
Fig. 3 Theoretical RCS signal ߪሺݐሻ versus observation time ݐ. 

 
        It can be seen from (2) and Fig. 2 that the aspect angle 
߮ሺݐሻ is pseudo-periodic and the period is determined by the 
precession frequency  ௣݂ . If we can compensate the time-
variation of parameters ߠሺݐሻ and ߚሺݐሻ, the period of the as-
pect angle  ߮ሺݐሻ  will be the same as the precession 
riod ௣ܶ ൌ 1/ ௣݂. In fact, compared with the aspect angle ߮ሺݐሻ, 
 ሻ change very slowly. So it is not complicated toݐሺߚ ሻ andݐሺߠ
compensate for the time-variation of the parameters 
 ሻ and this compensation need not be discussedݐሺߚ ሻ andݐሺߠ
in this paper.  

So here we may treat the parameters ߠሺݐሻ and ߚሺݐሻ as 
constant over the observation time, and substituting (2) into 
(1) we can get the RCS signal versus time (i.e., ߪሺݐሻ). As 
shown in Fig. 3, which is the plot of theoretical RCS signal 
 of a conical warhead, there is pseudo-periodicity in (ሻݐሺߪ)
ሻ, where the precession frequency is set as ௣݂ݐሺߪ ൌ 0.5Hz.. 

In most practical radar systems there is relative motion 
between the radar and an observed target. Therefore, the RCS 
signal measured by the radar over a period of time fluctuates 
not only as a function of frequency and the target aspect an-
gle, but also in amplitude and/or in phase. Phase fluctuation 
is called “glint”, while amplitude fluctuation is called “scin-
tillation” [10]. For most radar applications, glint introduces 
linear errors in the radar measurements and thus it is not a 
major concern. RCS scintillation is quite complicated and it 
cannot be ignored in radar measurements. It can vary slowly 
or rapidly depending upon the target size, shape, dynamics, 
and its relative motion with respect to the radar. Many of the 
RCS scintillation models were developed and verified by 
experimental measurements. Swerling [5, 6] points out that 
some experimental analysis conducted on RCS measure-
ments of ships and missiles show that the fluctuation of these 
target types is often well modelled as a log-normal random 
variable. 

So taking the scintillation effect and receiver noise into 
account, the RCS sequence model can be written as  
 

ሻݐොሺߪ ൌ ሻݐሺߪ · ݃ሺݐሻ ൅  ሻ.                 ሺ3ሻݐሺݒ
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Here we treat the scintillation effect as multiplicative log-
normal ൫݃ሺݐሻ~ܮሺݑ଴, ଴ߪ

ଶሻ൯ and where ݒሺݐሻ is white Gaussian 
additive noise  ൫ݒሺݐሻ~ܰሺݑ௩, ௩ߪ

ଶሻ൯ . The probability density 
function (pdf) of  ݃ሺݐሻ is 
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where ݑ଴ and ߪ଴ are the mean and standard deviation of the 
natural logarithm of  ݃. The expected value and variance are 
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Fig. 4 RCS signal from a conical warhead with scintillation 
 
As shown in Fig. 4, a sampled sequence of the RCS sig-

nal is quite random in appearance. In order to analyze the 
performance of the estimation methods, the RCS 
quence  ߪሺݐሻ is modelled by curve fitting in the discrete-time 
domain as follows,  
 

ሺ݊ሻݏ ൌ ܽ ൅ ܾ݊ ൅ ሺܿ ൅ ݀݊ሻ cos ቆ2ߨ ௣݂

௦݂
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   ݊ ൌ 0,1,2, ڮ , ܰ െ 1                        ሺ6ሻ 
 

where ௦݂  is the sampling frequency, the parameters 
ܽ, ܾ, ܿ, ݀ and  ߴ  are all deterministic constants,  ௣݂ is the pre-
cession frequency, and  ܰ  represents the total number of 
samples taken. Note that for simplicity, we write ݏሺ݊ሻ instead 
of  ݏሺ݊ ௦ܶሻ , where  ௦ܶ ൌ 1/ ௦݂ . Thus the discrete-time ob-
served signal model can be expressed by: 
 

ሺ݊ሻݔ ൌ ሺ݊ሻ݃ሺ݊ሻݏ ൅ ,ሺ݊ሻݒ ݊ ൌ 0,1, … , ܰ െ 1    ሺ7ሻ 
 
with the following assumptions: 
AS1): ݃ሺ݊ሻ is a real stationary, log-normal, stochastic proc-
ess with mean ݑ௚ ൐ 0 and variance ߪ௚

ଶ; 

AS2): ݒሺ݊ሻ is a real stationary, white, Gaussian process with 
mean ݑ௩ and variance ߪ௩

ଶ; 
AS3): ݃ሺ݊ሻ and ݒሺ݊ሻ are mutually independent, where ݃ሺ݊ሻ 
is a multiplicative process with a log-normal distribution, 
݃ሺ݊ሻ~ܮሺݑ଴, ଴ߪ

ଶሻ, ݒሺ݊ሻ~ܰሺݑ௩, ௩ߪ
ଶሻ, and where (without loss 

of generality) ݑ௩ ൌ 0. 
 

3. PARAMETER ESTIMATION 

MLE is a popular approach in estimation theory [10]. 
However, if we want to estimate the precession frequency ௣݂ 
via MLE then the pdf of the observed signal (ݔሺ݊ሻ in (7)) 
must be derived. The pdf of ݔሺ݊ሻ is the convolution of the 
pdfs of ݃ሺ݊ሻ and ݒሺ݊ሻ, which are log-normal and Gaussian 
distributed respectively. Even if both ݃ሺ݊ሻ and ݒሺ݊ሻ have the 
same pdf, it may be hard to obtain an analytic expression for 
the pdf of ݔሺ݊ሻ except in special cases such as Gaussianity 
[7].  

So addressing this point, we propose two Maximum 
Likelihood estimators for the parameter ௣݂. One considers the 
lognormal multiplicative noise ݃ሺ݊ሻ  as an approximately 
Gaussian distribution and in the other simply ignores the 
noise term  ݒሺ݊ሻ. With these two approximation assumptions 
we can now derive the pdf of  ݔሺ݊ሻ. 

 
3.1 Gaussian Maximum Likelihood (GML) 

Although the multiplicative noise ݃ሺ݊ሻ is a log-normal 
distributed, let us assume it is Gaussian. Let ࢄ  ൌ
ሾݔሺ0ሻ, ڮ , ሺܰݔ െ 1ሻሿ் and then the log-likelihood function 
of the process ࢄ can be written as 
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The estimators of the unknown parameters are: 
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If parameters ݑ௚ෞ and ߪ௚

ଶ෢ are known, we have to maximize the 
function with respect to just one unknown. If not, ݑ௚ෞ can be 
obtained as 
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And so replacing ݑ௚ in (8) gives  
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and ௣݂

෡  can be obtained by 
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3.2 Maximum Likelihood with Infinity SNR (ML∞) 

Before the derivation of the ML∞ estimator the signal-
to-noise-ratio (SNR) should first be defined. The multiplica-
tive noise ݃ሺ݊ሻ is deemed as a part of the signal in (7) and so 
let 
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Now ݕሺ݊ሻ  is from a non-stationary, log-normal process with 
time-varying mean and variance: 
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The SNR is then defined as 
 

SNR ൌ 10logଵ଴ ቐ
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      If we assume ߪ௩

ଶ ൌ 0, which means that ݔሺ݊ሻ in (7) is pu
rely from a multiplicative process, then the SNR defined in 
(15) is infinity. With this premise, we can get easily obtain th
e pdf of ݔሺ݊ሻ, and then develop the ML estimation for the pa
rameter ௣݂. We will refer to this as “ML∞ Estimation”. 
        So with the infinity SNR, the signal model of the pdf of 
 ሺ݊ሻ is given byݕ
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where once again ݑ଴ and ߪ଴ are respectively the mean and 
standard deviation of the natural logarithm of ݃ሺ݊ሻ, and they 
can be derived from the mean and variance of ݕሺ݊ሻ is (14). 
Thus 
 

଴ݑ ൌ ln ቆ
௬ݑ

ଶሺ݊ሻ

ඥߪ௬
ଶሺ݊ሻ ൅ ௬ݑ

ଶሺ݊ሻ
ቇ 

 

଴ߪ
ଶ ൌ ln ቆ

௬ߪ
ଶሺ݊ሻ

௬ݑ
ଶሺ݊ሻ

൅ 1ቇ.                               ሺ17ሻ 

 
And now we have  
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If ݑ଴ and ߪ଴

ଶ are known, we can get easily estimate ௣݂. If not, 
then  ݑ଴ෞ can be obtained as 
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Then, using  ݑ଴ෞ  and ߪ଴

ଶ ෢ instead of  ݑ଴ and ߪ଴
ଶ in (18), we get 
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Finally, ௣݂

෡  can be obtained by 
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෡ ൌ argmax
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4. SIMULATION AND EXPERIMENTAL RESULTS 

       In order to evaluate the performance of the two proposed 
methods, 300 independent Monte-Carlo trials were per-
formed. The parameters were: (a) radar carrier 
quency ଴݂ ൌ 10GHz; (b) sampling frequency ௦݂ ൌ 20Hz; (c) 
bottom radius of warhead ݎ ൌ 0.329m (see Fig.1); (d) length 
of warhead  ܮ ൌ 2.09m. 
       The plots of the precession frequency estimation mean 
square error (MSE) versus SNR by the methods of GML and 
ML∞ are shown in Fig.5. We set the mean and variance of 
݃ሺ݊ሻ as ݑ௚ ൌ 1 and ߪ௚

ଶ ൌ 0.4. It can be seen from Fig. 5 that 
when the SNR is higher than 8dB, the performance of the 
two estimation methods are comparable. However the ML∞ 
approach is always superior.  
       Note from Fig.5 that there is an abrupt drop in the MSE 
curve for the GML method. This is because for low SNR, the 
GML does not accurately predict the MSE. This phenomenon 
is commonly known as the outlier or threshold effect. It is 
worth pointing out that ML∞ estimation exhibits a lower 
threshold value than GML estimation. Apparently forcing the 
Gaussianity assumption onto the multiplicative noise incurs a 
higher penalty than ignoring the additive noise. Further, 
ML∞ estimation not only provides better performance but 
also has a lower complexity. Indeed it only requires a one-
dimensional search unlike the GML method which requires a 
two-dimensional search.   
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Fig.5 MSE of ௣݂

෡  (versus SNR) by GML and ML∞  
estimation methods. 

 
         As shown in Fig.6, if the observation duration is ex-
tended, the MSE performances (as expected) will improve. In 
Fig.6, we set the variance of the additive Gaussian noise as 
constant and let the SNR of the 20-seconds observation pe-
riod be 6dB. However, in a ballistic target recognition system, 
the shorter the observation period the better. As we can see in 
Fig.6, if we set the MSE threshold approximately to 10ି଺ , 
then both approaches will achieve this for observation win-
dows approximately 45 seconds or longer. 
 

 
Fig. 6 MSE for ௣݂

෡  versus observation duration for GML and ML∞ 
methods. 

 

5. CONCLUSIONS 

       A ballistic missile will precess during flight, and this 
will cause periodicity in the RCS radar return signal. In or-
der to extract the important precession frequency  ௣݂ , we 
established the model of the RCS signal from the conical 
warhead. The RCS signal is a deterministic signal multiplied 
by a log-normal process plus an additive Gaussian noise. We 

proposed two maximum likelihood estimators for ௣݂: GML 
and ML∞ estimation. Both of these two approaches made 
certain approximations about the signal model in order to 
make the mathematics tractable. However, even with these 
assumptions/approximations, both MLE methods perform 
well in Monte Carlo simulations, with ML∞ (i.e., assuming 
infinity SNR) outperforming GML (i.e., where we assumed 
that the log-normal multiplicative process was Gaussian).  
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