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ABSTRACT

This paper deals with the application of Diametri-
cal Clustering to the design of structured dictionaries
in order to reduce the computational complexity of the
Matching Pursuit algorithm for sinusoidal modeling. Di-
ametrical Clustering organizes the dictionary in clusters,
so that the similarity measure (average squared correla-
tion coefficient between two atoms) is maximized. The
optimal centroids are the dominant right singular vec-
tors of the average correlation matrix of the atoms in the
cluster. Some experiments are presented which show the
suitability of this clustering algorithm, because the cor-
relations of the atoms in a cluster with its centroid are
much higher than the correlations with the centroids of
other cluster. A dictionary of sinusoids has been divided
in four clusters, and the centroids have been obtained
and represented.

1. INTRODUCTION

The classical sinusoidal or harmonic model [1] comprises
an analysis-synthesis framework that represents a signal,
x[n], as the sum of a set of K sinusoids with time-varying
frequencies, phases, and amplitudes:

x[n] ≈ x̂[n] =

K
∑

k=1

Ak[n] · cos

(

ωk[n] · n + φk[n]

)

(1)

where Ak[n], ωk[n] and φk[n] represent the ampli-
tude, the instantaneous frequency and the instantaneous
phase of the k-th sinusoid, respectively. This is a linear
model, whose parameters must be estimated using the
available data.

Assuming that the parameters of expression (1) do
not change considerably along the analysis frame, the
signal can be reconstructed from the harmonic parame-
ters with expression (2):

x[n] ≈ x̂[n] =
K
∑

k=1

Ak · cos

(

ωk · n + φk

)

(2)

The length of the analysis frame should be signal
dependent so as to achieve an adapted multi-resolution
analysis [2].

A large number of methods have been proposed for
estimating the parameters of the sinusoidal model. Esti-
mation of parameters is typically accomplished by peak
picking the Short-Time Fourier Transform (STFT).
Usually, analysis by synthesis is used in order to ver-
ify the detection of every spectral peak.

When the parameters of the sinusoidal model vary
with time, the harmonic synthesis model involves a
peak-tracking process, which is usually carried out by
means of linear interpolation of the amplitudes, while
cubic interpolation is used for the phases [1, 3]. This
type of interpolation supposes an important limitation
due to the need to overlap adjacent frames so as to track
changes in the input signal.

Assigning tones to spectral peaks is a direct and sim-
ple method to obtain the parameters of the sinusoidal
model. Nevertheless, the accuracy of the model, spe-
cially in frequency, is limited by frequency sampling,
inherent to the discrete Fourier transform.

Another possibility is the definition of over-complete
dictionaries which contain enough elements to obtain a
precise model. Finding the best linear expansion using
a redundant dictionary is a hard problem, that can be
NP-hard in the general case. Suboptimal solutions can
be sufficiently good. Among them, the Matching Pur-
suit (MP) algorithm proposed by Mallat and Zhang [4]
which has been applied with success for sinusoidal mod-
eling. Unfortunately, the computational complexity of
this algorithm is so high, that real time implementa-
tions are difficult. Several proposals have appeared in
the literature in order to save operations to implement
the MP algorithm with particular over-complete dictio-
naries, like sinusoidal or wavelet functions [5] [6].

Another interesting approach, that can be applied
to any kind of dictionary, is the organization of the el-
ements in clusters, in order to implement a Tree-Based
Pursuit (TBP) [7]. Highly redundant sub-dictionary
of atoms are represented by a unique element, called
molecule. In the original proposal of TBP, the authors
studied how to structure redundant dictionaries in clus-
ters, and the computational complexity of tree-based
search, compared with MP. In this paper, the use of Di-
ametrical Clustering [8] to organize the over-complete
dictionary of sinusoidal functions is proposed. The ob-
tained clusters have molecules whose correlation has
been minimized, but the correlation with the atoms of
the cluster is maximized.

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 1306



2. MATCHING PURSUIT

The Matching Pursuit algorithm was introduced by
Mallat and Zhang. So as to explain the basic ideas con-
cerning this algorithm, let’s suppose a linear expansion
approximating the analyzed finite length signal, repre-
sented by vector x in terms of vectors gi chosen from a
over-complete dictionary D = {gi; i = 0, 1, . . . , L − 1}.
The L elements of the dictionary span CL and are re-
stricted to have unit norm. It is possible to build the
approximation one term at a time by selecting at each
step the atom which best correlates with the residual
vector. Greedy algorithms, like MP, extend this idea to
general dictionaries. It offers a suboptimal solution for
decomposing a vector x in terms of unit norm expan-
sion vectors gi chosen from an overcomplete dictionary
D. At the first iteration, the atom gi with the largest
inner product with the analyzed signal is chosen. The
contribution of this vector is then subtracted from the
signal, and the process is repeated on the residual.

The problem of choosing the vector gi which repre-
sent the largest part of energy of the analyzed signal or
vector is computationally very complex. MP is an al-
gorithm that offers a sub-optimal solution by means of
an iterative algorithm. Every step of the iterative proce-
dure the vector in the set D which gives the largest inner
product with the signal (< x,gi >= xT gi) is chosen.
The iterative procedure is repeated on the subsequent
residue rm:

r0 = x

rm = αi(m) · gi(m) + rm+1 (3)

gi(m) = arg min
gi∈D

‖rm+1‖2 (4)

The orthogonality principle (< rm+1,gi(m) > = 0)
allows us to compute the value of αi(m):

αi(m) =
< gi(m), r

m >

< gi(m),gi(m) >
=

< gi(m), r
m >

‖gi(m)‖2
(5)

where αi(m) is the weight associated to the the opti-
mum function (or atom) gi(m) at the m-th iteration.

This algorithm is quite suitable for signal represen-
tation because the procedure converges to the vector x
[4], and the signal energy is conserved:

‖x‖2 =

M−1
∑

m=0

| < rm,gi(m) > |2 + ‖rM‖2 (6)

3. COMPUTATIONAL COMPLEXITY OF
THE MATCHING PURSUIT ALGORITHM

The computational complexity of the MP algorithm is
very high, and is caused by the following factors:

• For initializing the algorithm, correlations of signal
to be decomposed with the dictionary atoms must
be calculated, which results in a computational com-
plexity of O(Mlog(M)) [9]. If the dictionary is com-
posed of complex exponentials or wavelets, an effi-
cient algorithm can be found in order to calculate
correlations [5] [6].

• Correlations must be updated every iteration of the
algorithm, which results in a computational com-
plexity of O(M).

• At each iteration, the possible coefficients of the lin-
ear expansion must be calculated and the optimum
one, must be selected.

• The computational complexity grows up with the
number of extracted atoms. On the other way, the
quality of the signal model can be related to this
number of atoms. Therefore, a trade-off relation be-
tween complexity and accuracy must be taken into
consideration.

In order to reduce the complexity, several approaches
have appeared in the literature, that use orthogonal
transforms, like DFT or wavelet transform, to calcu-
late the coefficients at each iteration. Another interest-
ing approach to reduce the computational complexity is
to organize the dictionary. Similar atoms are grouped
together, and represented by a unique atom, which is
called molecule. The reduced complexity does not have
a penalty on the approximation accuracy [7]. The ad-
vantages of using this idea become more evident if two
dimensional signals are considered, such as Synthetic
Aperture Radar images [10].

4. DIAMETRIC CLUSTERING

Jost et al. [7] studied the properties of subdictionaries
in order to be used to obtain sparse approximations of
signals using greedy algorithms. They established that
if the atoms in the dictionary D are sufficiently uncor-
related, a simple greedy algorithm is able to recover a
sparse approximation of the signal. Unfortunately, over-
complete dictionaries are highly correlated redundant
dictionaries. The idea behind Tree-Based Pursuit is the
representation of correlated dictionaries by molecules,
minimizing the correlation among molecules at the same
time.

First of all, let set the nomenclature in the same
way used in [7]. Let the elements of the dictionary D =
{gi}i∈Γ be labeled by the index set Γ. A subdictionary is
defined as the set of elements such as i ∈ Λ, where Λ ⊂
Γ. The subdictionaries have the following properties:
∪iΛi = Γ and Λi ∩ Λj = ∅, ∀i 6= j. The subdictionary
or cluster is represented by a molecule or centroid (m),
which minimizes the mean distance to all the elements
of the cluster:

mΛ = arg min
m

∑

i∈Λ

d(m,gi) (7)

In order to minimize coherence of a subdictionary,
defined by:

λΛ = min
i,j∈Λ

| < gi,gj > | (8)

the distance between two unit energy atoms is de-
fined by [7]:

d(gi,gj) = 1 − | < gi,gj > |2 (9)

Therefore, for the defined distance to be minimum,
the magnitude of the correlation between atoms must
be maximum.
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The Diametrical Clustering algorithm proposed by
I.S. Dhillon [8], is used to find clusters containing vec-
tors that are highly positively correlated or highly neg-
atively correlated. The square of the correlation coef-
ficient S(g,h) = (gT h)2, where g and h are vectors
with mean zero and norm one, is known as similarity
measure. This measure is high if the vectors have high
positive or negative correlation. Our objective is to find
the representative vector xj that maximizes the similar-
ity measure:

max
xj

∑

g∈Cj

(gT xj)
2 = max

xj

∑

g∈Cj

xT
j (ggT )xj (10)

The optimal solution to this problem was provided
by Golub and Loan [11]. It is achieved when xj

is the dominant right singular vector of the matrix
∑

g∈Cj
ggT . A measure of quality is given by the total

squared correlation coefficient, being vj the dominant
vectors mentioned above:

Q(C1,C2, ...,Ck) =
k
∑

j=1

∑

g∈Cj

(gT vj) (11)

Diametrical clustering is implemented as an iterative
process, with two main tasks: singular vector analysis,
and reorganization of clusters, according to the similar-
ity measure.

5. EXPERIMENTS

In order to illustrate the performance of diametrical
clustering and its potential utility to implement TBP, we
have carried the following experiment. A dictionary of
sinusoids has been built, with 512 atoms of 128 samples
each. The set of functions can be modeled as follows:

gm[n] = cos
(mπn

512

)

(12)

being m ∈ {1, ..., 512} and n ∈ {1, ...128}.
We have implemented the necessary code to divide

the dictionary in four clusters. The clusters and cen-
troids have the following properties:

• Correlation between the centroid and each atom in
its cluster must be higher than the correlation with
the atoms of other clusters.

• If the correlation is maximum, the distance defined
in expression (9) is minimum. It means that cluster-
ing is useful for MP implementation, because we can
focus the search to the atoms of the selected cluster,
reducing the computational complexity. This idea
can be iterated.

• The centroid of each cluster is the dominant right
singular vector of the matrix

∑

g∈Cj
ggT .

The computational complexity is reduced compared
to the direct implementation of Matching Pursuits, once
the structure of clusters and centroids is obtained. This
reduction is due to the following reasons:

• The first step in the implementation of MP is the
calculation of the correlations between the original
signal and the atoms. If 2N atoms are defined in the

dictionary, 2N correlations should be obtained with
the direct implementation. If we use TBP, only two
correlations are calculated in each layer of the tree,
giving rise to 2N correlations in total.

• The second step is the calculation of the residue.
This residue is obtained by subtracting the projec-
tion of the signal in the selected atom (exp. (3)).

• The direct implementation of MP requires to calcu-
late < rm[n], gi[n] >, ∀i, at each step of the algo-
rithm. This calculation can be substituted by an
updating procedure, where the correlations at each
step are obtained by updating the correlations used
in the previous step. The knowledge of the correla-
tions among atoms is necessary, which demands huge
amounts of memory. If TBP is used, we can calcu-
late the 2N correlations that are necessary in each
step, without the used of any updating procedure.

Figures 1 to 4 represent the centroids of the four clus-
ters. On the other hand, Figure 5 represents the magni-
tude spectra of the centroids, demonstrating that they
concentrate the energy in different frequency bands.
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Figure 1: Centroid of the first cluster.

The absolute value of the correlations of the elements
of each cluster with the first, second, third and fourth
centroids are represented in Figures 6 to 9. It must be
highlighted that the correlation between the atom and
the centroid of the cluster it belongs to is almost always
higher.

6. CONCLUSIONS

In this paper, we have discussed about the applicabil-
ity of Diametrical Clustering to reduce the computa-
tional complexity of Matching Pursuit. The Tree-Based
Pursuit algorithm is considered to implement Matching
Pursuit.

Diametrical Clustering is proposed for organizing the
atoms in clusters and also for calculating the centroids
of each cluster. It has been implemented as an iterative
process, with two main tasks: singular vector analysis,
and reorganization of clusters, according to the similar-

1308



0 20 40 60 80 100 120
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Sample

Figure 2: Centroid of the second cluster.
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Figure 3: Centroid of the third cluster.

ity measure. This measure is defined as the squared
correlation coefficient between two atoms. The result is
an organization of the dictionary, where the correlation
of the atoms in a cluster with its centroid is higher than
their correlation with the other centroids.

To illustrate performance, a simple experiment has
been presented, where a dictionary composed of 512 si-
nusoids is organized in four clusters. Some figures are
included in the paper to show the performance of the
algorithm, demonstrating its utility in this task.

The centroids of each cluster have been represented
in the time domain and the frequency domain, demon-
strating that they concentrate energy in non-overlapping
bands. We have also obtained the correlations of the
elements of each subdictionary with the molecules or
centroids, demonstrating that the correlation are higher
with the centroid of the corresponding cluster.
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Figure 4: Centroid of the fourth cluster.
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Figure 5: Magnitude spectra of the four centroids.
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