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Signals and Systems research Unit, National Engineering School of Tunis
BP 37, Le Belvédère, 1002, Tunisia

email: U2S@enit.rnu.tn

ABSTRACT

This paper deals with the benefits of mixing an orthogonal-
ization procedure to the sub-quantization of the input op-
eration, in order to reduce the complexity and to enhance
the robustness implementation of optimal polynomial filters.
These non linear filters are now generic devices for real-time
high speed multimedia applications. We propose an optimal
polynomial filtering scheme based on Sub-quantization/ Or-
thogonalization operations, related to the current interest to
complexity, power consumption and areas reduction.
The orthogonal polynomial basis is chosen to be in a simple
closed-form expression and the input is sub-quantized with a
desired sub-quantization degree. We explore, from stability
and accuracy tests, the suitable choice of sub-quantization in
order to achieve performances of the proposed optimal poly-
nomial filtering scheme with robustness performances almost
similar to the corresponding continuous input case.

1. INTRODUCTION

The complexity reduction for implementation of generic sig-
nal operations (such as FFT, convolution,. . . ) on devices
namely DSP, micro-controller and FPGA, has been exten-
sively analyzed. With the expansion of real-time multimedia
applications, especially in embedded systems, we are brought
to optimize complexity of more complicated generic opera-
tions such as echo cancelation, noise reduction, predistor-
sion/equalization... with respect to some quality criteria [7].
For example, to overcome distortions induced by non linear
characteristics of audio systems, studies are proposed [8, 9] in
order to synthesize loudspeakers with different level of quali-
ties, according to intended applications (industrial, real-time
public applications, . . . ). RF Power Amplifier modeling and
predistorter design has been proposed in [1, 2, 5] to linearize
such systems in order to improve spectrum bandwidth uti-
lization in multi-users applications.

NL system features is done commonly by a memoryless
polynomial, thanks to its simplicity and ease of implementa-
tion. However, the real-time optimization is computationally
expensive (matrix inversion, multiplication) and presents nu-
merical instability problem.

In this paper, we explore the benefits achieved by a
sub-quantization operation, leading to power complexity re-
duction and implementation area optimization [11], coupled
with a polynomial orthogonalization procedure improving
the numerical stability, for both optimal and adaptive poly-
nomial filtering [3, 10]. We select a robust closed-form basis
expression of orthogonal polynomials proposed in [1]. This
basis presents the emrit to be a non-iterative procedure, com-
pared to Hermite polynomials which are presented in a com-
pact form but they are really derived from the Gram-Schmidt
procedure, which is well known to be an iterative one.

The paper is organized as follows: we present in section
2, the sub-quantization/orthogonal polynomial optimal fil-

tering scheme with a suitable choice of the quantization op-
eration and the orthogonal procedure. We establish, in sec-
tion 3, through simulations results, that the sub-quantized
input gives the same results as the continuous one, under
certain conditions. We specify the sub-quantization degree
allowing to code the signal without loss of stability proper-
ties ensured by the continuous input. The accuracy of the
sub-quantization/orthogonalization scheme is illustrated and
discussed in section 4.

2.
SUB-QUANTIZATION/ORTHOGONALIZATION

SCHEME FOR OPTIMAL POLYNOMIAL
FILTERING

2.1 Sub-quantization and filtering scheme

Deserving attention to optimization of algorithm-
architecture adequacy for polynomial filtering with good
numerical stability, the proposed identification scheme is
based on a sub-quantization operation for fixed-point signal
input coding, and a non iterative polynomial orthogonal
procedure to enhance the performances of a real-time opti-
mal system. Consequently we combine a sub-quantization
operation with an orthogonalization procedure according to
figure (1).
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Figure 1: Sub-quantization/Orthogonalization scheme for
robust optimal NL filtering implementation.

Now we propose to analyze the input/output relationship
of filtering scheme with/or not the presence of the inserted
box.

2.1.1 Conventional polynomial filtering scheme

Denoting by xn the input of the NL system, and by yn the
corresponding output, at sample n. We observe N samples
of xn and yn; and we note:

• x = [x1, . . . , xN ]T : the input data vector,

• y = [y1, . . . , yN ]T the system output vector,

• ỹ = [ỹ1, . . . , ỹN ]T the expected output vector.

The conventional input/output relationship, for a memory-
less polynomial structure with order p, is given by:

ỹ = Φb, (1)
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where:
• b = [b1, b2, . . . , bp]

T the parameter vector,
• Φ is theN×pmatrix, characterizing the input features.

2.1.2 Orthogonal polynomial filtering scheme

The aim of orthogonalization procedures is to alleviate the
numerical instability problem which rises from the inversion
of the basis Φ [1], and to enhance the convergence speed of
adaptive algorithms [10].
Based on polynomial orthogonalization procedures, the
relationship (1) becomes [1, 3]:

ỹ = Ψβ, (2)

The orthogonal basis Ψ spans the same space as the conven-
tional basis Φ, and satisfies the following relationship:

Ψ = ΦU. (3)

The orthogonal polynomial basis construction problem re-
sults on finding the upper triangular matrix U such that:

E(ΨHΨ) = diag(d1, . . . , dp),

where {di}i=1,...,p (d1 > d2 > . . . di . . . > dp) are the corre-
sponding eigenvalues.

2.1.3 Proposed filtering scheme

The proposed scheme for NL system identification, presented
in figure (1), is based on the cascade of two blocks:
• Sub-quantization operation: Block Q

Achieving an uniform quantization operation into B bits
signal coding. The finite alphabet set is with cardinality
Nc = 2B .
The quantization procedure aims to reduce the im-
plementation complexity of algorithms with fixed-point
arithmetic.

• Orthogonalization procedure: Block Orth
Instead of (2), the system’s input/output relationship is
given by:

ỹ = Ψqβq, (4)

where Ψq is defined in the same manner as Ψ, and is
applied to the sub-quantized input xq

n.
Since our major interest is on real-time applications, we
have considered a closed-form basis expression of orthog-
onal polynomial proposed in [1]. The kthorder orthogonal
polynomial basis is given by:

ψk(xq) =

k
∑

l=1

(−1)l+k (k + l)!

(l − 1!)(l + 1)!(k − l)!
|xq |

l−1
xq.

(5)
Having the input sequence {xq}, the terms {ψk} are de-
rived directly for any order k, contrary to Hermite poly-
nomial basis which requires the knowledge of lower or-
ders. This selected basis is generated under the hypoth-
esis of uniformly distributed inputs in [0, 1].

2.2 Optimal filtering

By minimizing the Mean Squared Error (MSE) E[|yn− ỹn|
2],

the orthogonal optimal coefficient set βopt
q is then given by

[12]:

β
opt
q = (ΨH

q Ψq)−1ΨH
q y, (6)

where [.]H stands for the Hermitian transpose.
Thanks to the orthogonality between elements of Ψq, we ex-
pect that the matrix (ΨH

q Ψq) has a better condition number

K((ΨH
q Ψq)) = |

λmax

λmin

|, (7)

where λmax and λmin are, respectively, the maximum and
minimum eigenvalue of the matrix (ΨH

q Ψq).

3. LIMIT OF SUB-QUANTIZATION BENEFITS

We describe in this section the sub-quantized states genera-
tion.
Through a stability evaluation of the proposed filtering
scheme, we give an idea to the system designer about the
accurate sub-quantization degree, namely the value of bits
number B leading to equivalent performances, ensured in the
continuous case.

3.1 Sub-quantized states

To satisfy the hypothesis of xn belonging in [0, 1], considered
by Raich in order to apply the orthogonal polynomials basis
expression [1], we impose that the finite alphabet states vary
also in [0, 1] as shown in figure (2).
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Figure 2: Sub-quantized states varying in [0, 1] from 32 states
to 4 states.

As expected, the quantized inputs have equivalent probabil-
ity of apparition, according to the states level, as shown in
figure (3).

0 0.2 0.4 0.6 0.8 1
0

1

2
N

c
=4

0 0.2 0.4 0.6 0.8 1
0

1

2
N

c
=8

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1
N

c
=16

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

States in [0,1]

A
p

p
a
ri

ti
o
n

p
ro

b
a
b

il
it

y
of

st
at

es

N
c
=64

Figure 3: Effect of sub-quantization on states distribution
(from 32 states to 4 states). The initial distribution were
uniformly distributed in [0, 1]
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Notations

Through all the paper, we denote by:

• QI: Sub-Quantized Input with B bits,
• QOI: Sub-Quantized and Orthogonal Input,
• CI: Continuous Input,
• COI: Continuous and Orthogonal Input.

We note that a continuous input is equivalent to the sub-
quantized input case where B → ∞.

3.2 Stability of optimal polynomial filtering

The considered stability indicator is the condition number of
the matrix (ΨH

q Ψq) as defined in (7).

3.2.1 Real-valued uniformly distributed in [0, 1] process

When we observe the evolution of the condition number
(figure(4)-a), without orthogonal procedure, we deduce that
continuous and sub-quantized inputs have high and similar
values of the condition number.

For this reason, we propose to apply the orthogonal
polynomial procedure.

The benefit of the introduction of the orthogonal
polynomial procedure is shown on figures((4)-b,(4)-c).
Figure ((4)-c) shows that the use of the closed-form basis
expression of orthogonal polynomials, under the uniformly
distributed in [0, 1] hypothesis, allows to reduce consid-
erably the condition number, for both continuous and
sub-quantized inputs, when considering a sub-quantization
degree B > 4. It is interesting to note also, that coding
the signal on only 6 bits is sufficient to have exactly the
same robustness of the identification scheme when using
continuous input (figure(4)-c).

For small states ((4)-b), the condition number is not con-
siderably improved, only for small orders of nonlinearities,
since the hypothesis of being uniformly distributed in [0, 1]
is not properly guaranteed (figure (3)).

3.2.2 WCDMA process

Since closed-form basis expression of orthogonal polynomial,
generated under uniformly distributed in [0, 1], has shown
robustness for others commonly used PDF [1, 4], we propose
to test the effect of combining a quantized operation on iden-
tification performances.
We focus on RF power amplifiers, which are subject to non-
constant modulus signals such as WCDMA or OFDM signals
where the amplitude is of Rayleigh distribution [5].
Let us consider a complex-valued signal as:

xn = In + jLn,

where: In and Ln are two real-valued gaussian processes,
having the same power as the uniformly distributed in [0, 1]
process. |xn| is then of Rayleigh distribution.
If Iq

n = Q(In) and Lq
n = Q(Ln), then the quantized version

of xn is given by:

x
q
n = I

q
n + jL

q
n.

Figure (5) emphasizes the result that the sub-
quantization/orthogonalization scheme for optimal
polynomial filtering presents a better numerical stabil-
ity than the conventional one, even with the use of gaussian
input. This confirm the previous result which demonstrates
that working with only 6 bits presents the same stability
improvements than when coding the signal with 64 bits.
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Figure 4: Stability evaluation of the proposed sub-
quantized/ orthogonalization based filtering scheme : evo-
lution of the condition number for conventional and orthog-
onal basis versus polynomial order, for sub-quantized input
cases with B bits values (2; 3; 4; 5; 6) and B → ∞. Case of
real inputs uniformly distributed in [0, 1]
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Figure 5: Stability evaluation of the proposed sub-
quantized/ orthogonalization based filtering scheme: evolu-
tion of the condition number of conventional and orthogo-
nal basis versus polynomial order, for sub-quantized input
cases with B bits values (2; 3; 4; 5; 6). The continuous case
(B → ∞) is related to complex Gaussian input (WCDMA
input).

4. ROBUSTNESS EVALUATION OF THE
SUB-QUANTIZED/ORTHOGONALIZATION

FILTERING

4.1 Experimental set up and simulations hypothesis

We consider a Saleh model for the NL system (figure(1)),
when xn is a real-valued process uniformly distributed in
[0, 1]. This model is given by the following input/output
relationship:

yn =
αa|xn|

1 + βa|xn|2
exp

[

j

(

6 xn +
αφ|xn|

2

1 + βφ|xn|2

)]

. (8)

The chosen parameters of Saleh model, for simulations tests
are αa = 2, βa = 2.2, αφ = 2 and βφ = 1. The AM/AM
conversion related to the amplitude distortion is then:

αa|xn|

1 + βa|xn|2
,

represented on figure (6), for αa = 2.

From figure (6), the tested NL system presents a high order
of nonlinearity. We consider N = 100.000 samples, and 100
independent realizations of Monte-Carlo.

4.2 Accuracy evaluation

4.2.1 Dispersion effect

To study the accuracy of the proposed identification system,
we insist on the dispersion of error measurements.
We consider the Normalized Mean Squared Error (NMSE):

NMSE(dB) = 10 log10

[

∑N

n=1
|yn − ỹn|

2

∑N

n=1
|yn|2

]

. (9)

Let us evaluate the dispersion of the NMSE, with a non-
linearity order p = 16 for different sub-quantization degree
B, relatively for corresponding signal to quantization noise
ratio defined as RSBQ(dB) = 10 log10(

Ps

PQ
) where Ps is the

signal’s power, and PQ is the noise quantizer’s power.

We set from figure(7) the following:

Figure 6: Non linear RF power amplifier tested : AM/AM
conversion of Saleh Model when αa = 2 and for different
nonlinearities factor βa.

• Orthogonalization reduces the dispersion in the continu-
ous case.

• Sub-quantization/Orthogonalization operations show ac-
curacy improvement when coding signal with more than
B = 5 bits.
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Figure 7: Accuracy evaluation of the proposed sub-
quantized/ orthogonalization based filtering scheme versus
sub-quantized degree B and the related signal to quantiza-
tion noise ratio RSBQ: Dispersion of the NMSE for 100
independent realizations of sub-quantized inputs and poly-
nomial nonlinearity order p = 16. The continuous input |xn|
is uniformly distributed in [0, 1]. CI: black cross, COI: blue
cross, QI: green circle, QOI: red circle

For the complex-valued WCDMA process, the sub-
quantized/orthogonal input shows good accuracy results,
and the dispersion of the NMSE is optimized even with only
B = 3 bits, as shown on figure (8).

4.2.2 Error evaluation

Figure (9) shows the evolution of the NMSE versus the NL
order of the memoryless polynomial model, for the continu-
ous case and the sub-quantized case for different signal bits
coding B.
We can conclude, that even the best NMSE is reached when
using orthogonal polynomial basis in the continuous case, the
NMSE reached using the proposed sub-quantization proce-
dure is acceptable in RF amplifier identification [6].
Furthermore, for higher orders of nonlinearities (p > 10),
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Figure 8: Accuracy evaluation of the proposed sub-
quantized/ orthogonalization based filtering scheme versus
sub-quantized degree B and the corresponding signal to
quantization noise ratio RSBQ: Dispersion of the NMSE
for 50 independent realizations of sub-quantized inputs xn

and polynomial order p = 16. The continuous input |xn| is
of Rayleigh distribution. CI: black cross, COI: blue cross,
QI: green circle, QOI: red circle

2 4 6 8 10 12 14 16
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

NL order

N
M

S
E

(d
B

)

 

 

CI
COI
QI 64 states
QI 32 states
QOI 64 states
QOI 32 states
QOI 16 states
QOI 8 states

Figure 9: Error evaluation of the proposed sub-quantized/
orthogonalization based filtering scheme versus nonlinearity
order, from continuous case to quantized one for different
sub-quantization degree B = log2(Nc). Continuous input is
real-valued uniformly distributed in [0, 1].

two gains are achieved by the quantization of the input:

• Error reduction: from figure (9), we conclude that the
NMSE in the continuous case, with the use of conven-
tional polynomial Ψ, is higher than the NMSE in the
quantized case using the orthogonal polynomial basis Ψ,

• Complexity reduction: it is sufficient to quantify the in-
put on only 5 bits to have satisfactory results for both
condition number and NMSE improvement.

According to the previous simulations results, we can de-
duce that a B = 6 bits of sub-quantization degree is sufficient
to approximate the continuous case, namely:

• Ensure stability by improving the condition number when
using orthogonal polynomial procedure,

• Optimize the accuracy of system identification, with dis-
persion errors reduction.

These results still valid when coding the signal with B = 8
bits. Since it is well known that implementation of opera-
tions on DSP or micro-controller needs at least B = 8 bits.
Consequently, when reducing the complexity from B = 64

bits (continuous cas) to B = 8 bits, we expect the reduction
of power and area with a minimal impact on performances.

5. CONCLUSION

In this paper we have investigated the impact of sub-
quantization/orthogonalization scheme for optimal memo-
ryless polynomial filtering, with optimization of algorithm-
architecture adequacy. Orhtogonalization procedure, chosen
in a closed-form expression for computational cost reduction
of real-time applications, is associated to sub-quantization
operations in order to ensure stability of system features
design, with optimization of power consumption and areas
implementation properties. Performances relying on stabil-
ity and accuracy evaluation, of the proposed identification
scheme have shown similarities with the conventional case,
when coding signal with only B = 8 bits.
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