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ABSTRACT
In this paper, we propose a new approach for blind separation
of noisy linear instantaneous mixtures of cyclo-stationary
sources using pseudo-correlation matrices in the frequency
domain. This approach is an extension of a new method
based on spectral decorrelation that we recently proposed and
which assumes that all the cyclo-stationary sources and the
stationary noise signals are mutually uncorrelated. Contrary
to most of noisy BSS algorithms, our approach provides good
performance in the determined case even if the noise signals
are colored and/or non-Gaussian and of different variances.
The simulation results show the much better performance of
our approach in comparison to a classical BSS algorithm.

1. INTRODUCTION

This paper deals with the Blind Source Separation (BSS)
problem for noisy, linear instantaneous mixtures of cyclo-
stationary sources (which represent an important class
of non-stationary sources and include telecommunication
signals).

Considering K noisy mixtures xi(t) of M discrete-time
sources s j(t), K ≥M, this problem can be modeled by:

x(t) = As(t)+n(t), (1)

where A is a K × M real mixing matrix and
x(t) = [x1(t), ...,xK(t)]T , s(t) = [s1(t), ...,sM(t)]T and
n(t) = [n1(t), ...,nK(t)]

T are respectively the observation,
source and noise vectors, and T stands for transpose. BSS
aims at restoring source signals s(t) from their mixtures by
estimating the pseudo-inverse of the matrix A, denoted by
A+, provided that A is of full rank (equal to M). To this end,
the approaches based on Independent Component Analysis
(ICA) and exploiting higher-order statistics assume the
sources s j(t) are mutually independent and non-Gaussian
and the noise signals ni(t) are independent from them
[3]. Other approaches, based on second-order statistics,
assume the sources are only mutually uncorrelated, but
autocorrelated and/or non-stationary, and the noises are
only uncorrelated to them [1, 2, 4]. These BSS approaches
may be split into two principal classes depending on their
assumptions about noise:

1. The higher-order approaches like JADE [3], or
second-order approches like SOBI [2], which start
by a whitening step using the correlation matrix
Rx(τ) = E

[
x(t)xH(t− τ)

]
computed at τ = 0 (where

xH(t) represents the Hermitian transpose of x(t)).
These approaches suppose the noise signals ni(t) are
stationary and of the same variance σ2 and the mixture
is strictly over-determined (i.e. K > M), so that the
noise variance σ2 can be estimated and then used to
estimate the whitening matrix. In the second step, which
determines a unitary separating matrix, the noises ni(t)
are supposed white for the second-order approaches and
Gaussian for the higher-order ones.

2. The second-order approaches like SOBI-RO [1] (used
for stationary and autocorrelated signals) and SEONS [4]
(called also SONS1, used for non-stationary and/or auto-
correlated signals), which start by a Robust Whitening
using correlation matrices E

[
x(t)xH(t− τk)

]
computed

this time at τk 6= 0. These approaches require the noise
signals ni(t) to be white (although non-stationary and/or
of possibly different variances, which is a first advantage
of these approaches), so that their correlation matrices
E
[
n(t)nH(t− τk)

]
in whitening step are zero for τk 6= 0.

The second advantage is that these approaches also work
in the case of determined mixtures (i.e. K = M).

The new approach presented in this paper is an extension
to the noisy case of one of the two ”spectral decorrelation”
methods that we recently proposed [6]. These methods
exploit second-order statistics of the signals in the frequency
domain and are used for blind separation of noiseless,
determined, real mixtures of non-stationary, zero-mean
and mutually uncorrelated real sources. The first method
exploits both correlation and pseudo-correlation matrices
of the mixtures in the frequency-domain while the second
method only uses correlation matrices. An extension of
the second method to the noisy case has been recently
proposed in [8]. Contrary to the approaches from the
literature mentioned above, it allows the noise signals
ni(t) to be colored and/or non-Gaussian and only mutually
uncorrelated to each other and to the sources. However in
[8] the noises were supposed stationary and of the same vari-

1For Second (or SEcond) Order Non-Stationary approach.
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ance, and the mixture was supposed strictly over-determined.

In this paper, we propose an extension to the noisy case
of our first spectral decorrelation method. It principally
exploits the properties of the pseudo-correlation matrix of
the noise vector in the frequency domain and only assumes
that the noise signals ni(t) are stationary and mutually
uncorrelated to each other and to the source signals s j(t).
Thus, like for our extension proposed in [8], and contrary
to the classical approaches, the noise signals ni(t) are not
necessarily white and/or Gaussian, which is a first advantage.
Moreover, these noise signals are not necessarily of the same
variance and the mixture may be determined, like for the
classical approaches belonging to the second class presented
above.

The remainder of this paper is organized as follows. A
review of our basic (noiseless) first spectral decorrelation
method is presented in Section 2. In Section 3, we describe
the extension proposed in this new work. Simulation results
are presented in Section 4, before we conclude in Section 5.

2. BASIC METHOD FOR NOISELESS MIXTURES

As presented in [6], our first spectral decorrelation method
deals with noiseless determined mixtures (i.e. K = M and
n(t) = 0). It assumes the sources are real, non-stationary
and mutually uncorrelated. It processes the mixtures in the
frequency domain. In fact, in a determined, noiseless con-
text, we have

x(t) = As(t). (2)

with x(t) = [x1(t), ...,xM(t)]T , s(t) = [s1(t), ...,sM(t)]T .
Computing the Fourier transform, we obtain

X(ω) = AS(ω), (3)

where X(ω) = [X1(ω), ...,XM(ω)]T , S(ω) =
[S1(ω), ...,SM(ω)]T ; S j(ω) and Xi(ω), (i, j) ∈ [1,M]2,
are respectively the Fourier transforms2 of s j(t) and xi(t).
Thus, the frequency-domain observations Xi(ω) are linear
instantaneous mixtures of the frequency-domain sources
S j(ω).

Using the correlation matrix RX (ω) = E
[
X(ω)XH(ω)

]
and the pseudo-correlation matrix QX (ω) =
E
[
X(ω)XT (ω)

]
, where XH(ω) and XT (ω) are re-

spectively the Hermitian transpose and the transpose of
X(ω), our first method in [6] is based on the following
theorem.

Theorem 1: Let s j(t) ( j = 1,2, · · · ,M) be M real, zero-
mean and mutually uncorrelated signals. If there is a fre-
quency ω1 such that E[|S j(ω1)|2] 6= 0,∀ j, and

E[S2
i (ω1)]

E[|Si(ω1)|2]
6=

E[S2
j(ω1)]

E[|S j(ω1)|2]
, ∀ i 6= j, (4)

and if we note V a complex matrix whose columns are the
eigenvectors of the matrix R−1

X (ω1)QX (ω1), then the sepa-
rating matrix A−1 is given, up to a permutation and a real

2The Fourier transform of a discrete-time stochastic process u(t) is a
stochastic process U(ω) defined by U(ω) = ∑

∞
t=−∞ u(t)e− jωt [7].

diagonal matrix, by:

A−1 = ℜ
{
VT} . (5)

The implementation of this method requires one to es-
timate the matrices RX (ω) and QX (ω). Since generally
only one realization of the mixtures is available and the
frequency-domain mixtures are often non-ergodic (because
they are non-stationary), our method may be implemented
in practice only for cyclo-stationary sources. In this case,
by splitting the mixtures into several time frames, each one
containing an integral number of cyclo-stationarity periods,
we obtain several realizations of the mixtures which may be
used for estimating the expected values. Thus, denoting Nc
the cyclo-stationarity period of the temporal mixtures xi(t),
the matrices RX (ω) and QX (ω) are estimated as follows:

1. Split the mixed signals xi(t) into L frames, denoted
xi,l(t)(l = 1,2, · · · ,L), whose length F is an integral
multiple of Nc (F = kNc).

2. Compute the Fourier transform of each frame xi,l(t),
denoted by Xi,l(ω)(l = 1,2, · · · ,L). Define the vector of
frequency-domain observations Xl(ω) by:
Xl(ω) = [X1,l(ω),X2,l(ω), · · · ,XM,l(ω)]T .

3. Estimate the matrices RX (ω) and QX (ω) by averaging
Xl(ω)XH

l (ω) and Xl(ω)XT
l (ω) over the L frames:{

R̂X (ω) = 1
L ∑

L
l=1 Xl(ω)XH

l (ω)

Q̂X (ω) = 1
L ∑

L
l=1 Xl(ω)XT

l (ω)
(6)

In [6], we show that the possible candidates for sat-
isfying the identifiability condition (4) are the frequencies
ω1 = kωcl/2, where k is an integer and ωcl is the least com-
mon multiplier of M− 1 source cyclo-stationarity frequen-
cies. Moreover, as used in some classical time-domain BSS
algorithms (see for example [1] and [4]), it is also possible to
jointly diagonalize several matrices R−1

X (ω1)QX (ω1) corre-
sponding to several frequencies ω1 = kωcl/2. This extension
generally improves the performance of our method because
in this case the identifiability condition (4) is needed to be
satisfied only for one of these frequencies.

3. EXTENSION TO NOISY MIXTURES

In this section, we consider the noisy, determined3 linear in-
stantaneous mixture defined by Eq. (1), with K = M. Our
working hypotheses are:
• the sources s j(t) are real, zero-mean, cyclo-stationary

and mutually uncorrelated,
• the noises ni(t) are real, zero-mean, stationary (not nec-

essarily of same variance, and may be colored) and mu-
tually uncorrelated,

• s j(t) et ni(t) are mutually uncorrelated ∀ i, j.

3Note that if we have an over-determined mixture (i.e. K > M), know-
ing the number of sources M, we can transform it into a determined mix-
ture either by considering only M observations among K, or by applying a
Principal Component Analysis (PCA) and holding only the first M principal
components.
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By mapping Eq. (1) in the frequency domain we obtain:

X(ω) = AS(ω)+N(ω) (7)

where N(ω) = [N1(ω), ...,NM(ω)]T , Ni(ω) are the Fourier
transforms of the noises ni(t).

Thanks to the properties verified by the Fourier trans-
forms of mutually uncorrelated temporal signals, the
pseudo-correlation matrices QS(ω) = E

[
S(ω)ST (ω)

]
and

QN(ω) = E
[
N(ω)NT (ω)

]
are diagonal, and the matrices

E
[
S(ω)NT (ω)

]
and E

[
N(ω)ST (ω)

]
are zero, ∀ω . In

fact, if u(t) et v(t) are two mutually uncorrelated signals,
i.e. if E [u(t1)v(t2)] = 0,∀ t1, t2, then their Fourier transforms
U(ω) = ∑

∞
t=−∞ u(t)e− jωt and V (ω) = ∑

∞
t=−∞ v(t)e− jωt ver-

ify E [U(ω1)V (ω2)] = 0,∀ω1,ω2, because we have

E [U(ω1)V (ω2)] =
∞

∑
t1=−∞

∞

∑
t2=−∞

E [u(t1)v(t2)]e− j(ω1t1+ω2t2),

and E [u(t1)v(t2)] = 0,∀ t1, t2.

Thus, due to (7), by computing the pseudo-correlation
matrix of the vector X(ω) we obtain:

QX(ω) = E
[
X(ω)XT (ω)

]
= AE

[
S(ω)ST (ω)

]
AT +E

[
N(ω)NT (ω)

]
= AQS(ω)AT +QN(ω). (8)

The extension of the method presented in Section 2 to the
noisy case is based on the exploitation of the properties of the
pseudo-correlation matrix QN(ω) which reads:

QN(ω) =

E
[
N2

1 (ω)
]

. . . 0
...

. . .
...

0 . . . E
[
N2

M(ω)
]
 . (9)

The noises ni(t) being stationary, we can use the following
proposition.

Proposition: Let u(t) be a real stationary signal with
Fourier transform U(ω). Then, E[U2(ω)] = 0, ∀ω 6= kπ ,
where k is an integer.

Proof : See Appendix A.

Following this proposition, E
[
N2

i (ω)
]
= 0, ∀ω 6= kπ ,

and consequently:

QN(ω) = E
[
N(ω)NT (ω)

]
= 0M, ∀ω 6= kπ, (10)

where 0M is the null matrix of dimension M×M. Then, Eq.
(8) becomes:

QX(ω) = AQS(ω)AT , ∀ω 6= kπ. (11)

Since the matrix QS(ω) is diagonal ∀ω and reads

QS(ω) =

E
[
S2

1(ω)
]

. . . 0
...

. . .
...

0 . . . E
[
S2

M(ω)
]
 , (12)

a new identifiability theorem for the mixing matrix A in the
noisy case can be formulated as follows.

Theorem 2: Let s j(t) ( j = 1,2, · · · ,M) be M real, zero-
mean and mutually uncorrelated signals. If there are two
frequencies ω1 6= k1π and ω2 6= k2π such that E[S2

j(ω1)] 6=
0,∀ j, and

E[S2
i (ω2)]

E[S2
i (ω1)]

6=
E[S2

j(ω2)]

E[S2
j(ω1)]

, ∀ i 6= j, (13)

and if we note V a complex matrix whose columns are the
eigenvectors of the matrix Q−1

X (ω1)QX (ω2), then the sepa-
rating matrix A−1 is given, up to a permutation and a real
diagonal matrix, by:

A−1 = ℜ
{
VT} . (14)

Proof : See Appendix B.

For implementing this extended algorithm, the sources
are supposed to be cyclo-stationary, so that the matrices
QX (ω1) and QX (ω2) can be estimated as explained in
Section 2 and Eq. (6). Once more, it can be shown that the
possible candidates for satisfying the identifiability condition
(13) are the frequencies ω1 = k1ωcl/2 and ω2 = k2ωcl/2,
where k1 6= k2 are two integers and ωcl is the least common
multiplier of M − 1 source cyclo-stationarity frequencies.
It is also possible to jointly diagonalize several matrices
Q−1

X (ω1)QX (ω2) corresponding to several couples of
frequencies (ω1 = k1ωcl/2 , ω2 = k2ωcl/2), as mentioned in
Section 2. In this case, it is sufficient that the identifiability
condition (13) is satisfied only for one of these couples
(ω1,ω2).

Once an estimate of the separating matrix denoted Â−1 is
obtained, a noisy estimate of the source vector s(t), denoted
ŝn(t), can be obtained using Eq. (1) as follows:

ŝn(t) = Â−1x(t)

= Â−1As(t)+ Â−1n(t)

' s(t)+ Â−1n(t). (15)

Since this extension of our Spectral Decorrelation
method only uses the Pseudo-Correlation matrices, it will be
called SpecDec-PC in the following.

4. SIMULATION RESULTS

We consider a determined noisy mixture of two random
cyclo-stationary autocorrelated sources s j(t)( j = 1,2).
In our first experiment, the sources are two 8192-sample
artificial signals generated using s j(t) = r j(t)µ j(t), where
r j(t) are random stationary signals obtained by filtering two
i.i.d. Gaussian, zero-mean and mutually independent signals
by two different 31th-order FIR filters, µ1(t) = sin(ω0t)
and µ2(t) = cos(ω0t) with ω0 = π/8. It can be easily
shown that the sources s j(t) are cyclo-stationary with a
cyclo-stationarity frequency ωc = 2ω0. In the second
experiment, the sources are two real-world cyclo-stationary
telecommunication signals already used in [6]. The first
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signal is a recorded GMSK-modulated burst signal, used
in the European digital cellular communication system,
called GPS, whereas the second one is a very noisy
QAM16-modulated signal. Both signals were shifted to
the central frequency 20MHz and resampled at 80 million
samples per second. Each cyclo-stationarity period con-
tains Nc = 4 samples and we use 9984 samples of the signals.

In both experiments, the mixing matrix is

A =

(
1 a12

a21 1

)
, (16)

where a12 and a21 are two random variables uniformly
distributed on [0,1]. We consider two cases for the additive
noises ni(t)(i = 1,2). In the first case, the noise signals are
white and uniformly distributed. In the second case, they are
colored and obtained by filtering two uniform white noises
by two 31th-order FIR filters. In both cases, the signal to
noise ratio is equal to 10dB at the first sensor and 15dB at
the second one4.

The separation performance for each source s j(t) is mea-
sured using the performance index, defined, in the case of M
sources, by

∀ j ∈ [1,M], I j = maxi10log10

 g2
i j

∑
k 6= j
k∈[1,M]

g2
ik

 , (17)

where gi j, (i, j) ∈ [1,M]2, are the entries of the M-
dimensional square matrix G = Â−1A, called the perfor-
mance matrix. The global separation performance for M
sources is then measured by the global performance index,
defined by

I =

(
M

∑
j=1

I j

)
/M. (18)

Since the artificial sources used in the first experi-
ment are cyclo-stationary with a cyclo-stationarity period
Nc = 2π/ωc = 8, we split the temporal mixtures into 512
frames of length F = 16 (= 2Nc). We use the first and the 9th
multiples of the frequency ωc/2 as the frequencies ω1 and
ω2. The cyclo-stationarity period of the telecommunication
sources used in the second experiment being equal to 4,
their mixtures are split into 1248 frames of length F = 8
and the first and the 6th multiples of ωc/2 are used as the
frequencies ω1 and ω2

5.

In the following, we compare the performance of our
method with that of the SEONS algorithm [4]. According to
the simulation results presented in [4], SEONS outperforms
some other classical BSS algorithms like SOBI-RO [1], SOBI
[2] and JADE [3] in the determined case6. Moreover, in the

4More precisely, the variances of the noises n1(t) et n2(t), denoted re-
spectively σ2

1 and σ2
2 , are chosen such that 10log10(1/σ2

1 ) = 10dB and
10log10(1/σ2

2 ) = 15dB, knowing that s j(t) are normalized to have unit
power.

5This choice leads to the best results but other choices provide acceptable
results too.

6The moderate performance of SOBI and JADE in the determined case
is not surprising because, as mentioned in Section 1, in the noisy case these
methods are specially adapted to over-determined mixtures.

noisy over-determined case, the tests in [8] show that SEONS
is more efficient than SOBI. Note that all the three methods
SEONS, SOBI and SOBI-RO exploit time correlation of
the sources but SEONS also exploits their non-stationarity.
Hence, it is a good candidate for the comparison with our
method.

Thus, using the ICALAB toolbox [5], we tested the
SEONS algorithm with 16 frames of 512 samples in the first
experiment and 19 frames of 512 samples in the second one
and using 5 covariance matrices on each frame. The mean
and the standard deviation of the global performance index
I for our method and SEONS using 50 MonteCarlo simu-
lations corresponding to 50 different values of the mixing
matrix entries a12 and a21 (and 50 different realizations of
the random signals r j(t) in the first experiment), with and
without an additive noise vector n(t) are reported in Table 1.

This table deserves the following comments:
• Noiseless mixtures: Our SpecDec-PC method is very ef-

ficient and outperforms SEONS even in the noiseless case
(about 6dB in the first experiment and 15dB in the sec-
ond one). This result may be explained by the assumption
of piece-wise stationarity made by SEONS which is not
verified by the cyclo-stationary signals used in our tests.

• Noisy mixtures: Our method always outperforms
SEONS especially in the presence of colored noise. This
result is not surprising because SEONS assumes that the
noise is white, while our method does not need this as-
sumption.

5. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a new BSS approach, called
SpecDec-PC, for noisy mixtures of cyclo-stationary sources,
based on exploitation of Pseudo-Correlation matrices in the
frequency domain. Our assumptions about source and noise
signals are much less restrictive than those made by classi-
cal BSS methods. In fact, our method is able to handle the
determined case in the presence of stationary noises which
may be colored and/or non-Gaussian and of different vari-
ances. Our simulations confirmed the better performance of
our approach compared to the SEONS algorithm for separat-
ing cyclo-stationnary signals especially with colored noise.
A more detailed statistical performance test seems however
necessary and will be done in the future. Moreover, we ex-
pect the performance of our method improves when consid-
ering several matrices Q−1

X (ω1)QX (ω2) defined for different
values of ω1 and ω2, which are diagonalized simultaneously
like in [1] and [4].

Appendix A: Proof of Proposition

Let u(t) be a real stationary signal with Fourier transform
U(ω). We want to show that E[U2(ω)] = 0, for ω 6= kπ .
Using the definition of the Fourier transform, we can write

E[U2(ω)] =
∞

∑
t1=−∞

∞

∑
t2=−∞

E[u(t1)u(t2)]e− jω(t1+t2). (19)

Since u(t) is stationary, its autocorrelation function only
depends on t2− t1: E[u(t1)u(t2)] = f (t2− t1). Denoting the
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Without noise White noise Colored noise
Algorithm I (dB) σI (dB) I (dB) σI (dB) I (dB) σI (dB)

Artificial SpecDec-PC 44.2 7.1 41.6 6.5 40.0 6.5
signals SEONS 38.2 7.0 35.7 8.6 23.4 8.8
Real SpecDec-PC 52.0 2.2 40.0 5.9 38.0 10.4

signals SEONS 37.0 1.1 34.0 2.5 30.9 10.1

Table 1: Mean and standard deviation, in dB, of the global performance index I , obtained using 50 MonteCarlo simulations.

auxiliary variable t = t2− t1,

E[U2(ω)] =
∞

∑
t1=−∞

∞

∑
t=−∞

f (t)e− jω(2t1+t)

=
∞

∑
t1=−∞

e− j2ωt1
∞

∑
t=−∞

f (t)e− jωt . (20)

The inner sum represents the power spectral density of
u(t), denoted by F(ω). Thus, we can write

E[U2(ω)] = F(ω)
∞

∑
t1=−∞

e− j2ωt1 . (21)

Moreover, since ∑
∞
t1=−∞ e− j2ωt1 is the discrete-time

Fourier transform of the constant 1, evaluated at 2ω , we have

∞

∑
t1=−∞

e− j2ωt1 = 2π

∞

∑
k=−∞

δ (2ω−2kπ). (22)

Hence, Eq. (21) can be rewritten as

E[U2(ω)] = 2πF(ω)
∞

∑
k=−∞

δ (2ω−2kπ), (23)

which yields

E[U2(ω)] = 0, ∀ ω 6= kπ. (24)

Appendix B: Proof of Theorem 2

From (11), for two frequencies ω1 6= k1π and ω2 6= k2π we
have:

QX (ω1) = AQS(ω1)A
T (25)

and
QX (ω2) = AQS(ω2)A

T . (26)

If QS(ω1) is nonsingular, i.e. if E[S2
j(ω1)] 6= 0 ∀ j, then

left multiplying (26) by the inverse of (25) yields

Q−1
X (ω1)QX (ω2) = AT−1

Q−1
S (ω1)QS(ω2)A

T . (27)

Since following (12), Q−1
S (ω1)QS(ω2) is a diagonal ma-

trix, the above equation is nothing but an eigenvalue decom-
position of the matrix Q−1

X (ω1)QX (ω2). If the M eigen-
values are distinct (i.e. if the algebraic multiplicity of each
eigenvalue equals one), then the dimension of the eigenspace
corresponding to each eigenvalue equals one. Moreover, it
is clear that the eigenvalues may be arranged as diagonal en-
tries of a diagonal matrix in an arbitrary order. Hence, if the

matrix Q−1
X (ω1)QX (ω2) has M distinct eigenvalues (which

are the diagonal entries of Q−1
S (ω1)QS(ω2)), i.e. if we have

E[S2
i (ω2)]

E[S2
i (ω1)]

6=
E[S2

j(ω2)]

E[S2
j(ω1)]

, ∀ i 6= j, (28)

and if VΛV−1 is an eigenvalue decomposition of
Q−1

X (ω1)QX (ω2), then the columns of V are equal to the
columns of AT−1

up to scaling factors and a permutation, so
that

V = AT−1
DP1, (29)

where D is a complex diagonal matrix and P1 is a permuta-
tion matrix. It follows that

VT = P1
T DT A−1 = PDA−1, (30)

where P = P1
T is a permutation matrix too. Moreover, A

and P being two real matrices, we can write

ℜ{VT}+ jℑ{VT}= P(ℜ{D}+ jℑ{D})A−1, (31)

so that
ℜ{VT}= P(ℜ{D})A−1. (32)
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