18th European Signal Processing Conference (EUSIPCO-2010)

Aalborg, Denmark, August 23-27, 2010

SPLIT GRADIENT METHOD FOR NONNEGATIVE MATRIX
FACTORIZATION

Henri Lantéri *, Céline Theys

* Cédric Richard * and Cédric Févotte'

* Laboratoire Fizeau, Université de Nice Sophia-Antipolis
Observatoire de la Cote d’Azur, UMR CNRS 6525, Parc Valrose 06108 Nice France

E-mail: Henri.Lanteri,

Celine.Theys, Cedric.Richard@unice.fr

T Laboratoire Traitement et Communication de I'Information (LTCI )
Unité Mixte de Recherche CNRS - TELECOM ParisTech, E-mail: fevotte@telecom-paristech.fr

ABSTRACT

This article deals with an extension of the split gradient
method (SGM) applied to the optimization of any diver-
gence between two data fields, under positivity and flux
conservation constraints. SGM is guaranteed to con-
verge for convex cost functions. A SGM-based algorithm
is also derived to solve the nonnegative matrix factoriza-
tion (NMF) problem. It is shown that the multiplicative
algorithms that are usually used for NMF, under posi-
tivity constraints, are particular cases of SGM. Finally,
to validate the algorithm, we propose an example of ap-
plication to hyperspectral data unmixing.

1. INTRODUCTION

In the field of image reconstruction or deconvolution,
the minimization of a Euclidean distance or a Kullback-
Leibler divergence between noisy measurements and a
linear model is usually performed, subject to positiv-
ity constraints, using multiplicative algorithms. Most of
time, the latter are the well known Iterative Space Re-
construction Algorithm (ISRA) [3], and the Expectation
Minimization (EM) [4] or Richardson Lucy (RL) [13, 14]
algorithm. In the last ten years, a general algorithmic
method, called Split Gradient Method (SGM) [9, 10],
has been developed to derive multiplicative algorithms
for minimizing any convex criterion under positivity con-
straints. It leads to ISRA and EM-RL algorithm as par-
ticular cases. SGM has recently been extended to take
into account a flux conservation constraint [11].

During the last few years, many papers have been
published in the field of Nonnegative Matrix Factori-
sation (NMF) with multiplicative algorithms [2, 6, 12].
This problem is closely related to the blind deconvolu-
tion one [5, 8]. The aim of this paper is to propose a
unified framework based on SGM to derive algorithms
for NMF, in multiplicative form or not.

2. NONNEGATIVE MATRIX
FACTORIZATION

We consider here the problem of nonnegative matrix fac-
torization (NMF), which is now a popular dimension re-
duction technique, employed for non-subtractive, part-
based representation of nonnegative data. Given a data
matrix V of dimension F x N with nonnegative entries,
the NMF consists of seeking a factorization of the form

V~WH (1)

© EURASIP, 2010 ISSN 2076-1465

where W and H are nonnegative matrices of dimen-
sions F x K and K X N, respectively. Dimension K is
usually chosen such that FK+ KN < FN, hence reduc-
ing the data dimensionality. The factorization (1) is
usually sought through the minimization problem

%}%—11 @(V,WH) s.t. [W]ij 2 0, [H]ij Z 0 (2)

with [V];; and [WH];; the (7, j)-th entries of V. and WH,
respectively. In the above expression, Z(V,WH) is a
cost function defined by

2(V,WH) Zd lijs [WHI;)

Zdu (3)

In the general case, d(u,v) is a positive convex function
that is equal to zero if u =v. An additional condition
is the normalization of the columns of W and, as a di-
rect consequence of (1), a constant-sum condition on the
columns of H. Minimization problem (2) becomes:

min 2(V,WH) s.t.
W, H

The constant-sum constraint is motivated by applica-
tions such as, for example, hyperspectral data unmix-
ing. In this case, W is the matrix of basis spectra that
are supposed to be normalized. To solve (2) and (4),
one can use a minimization method of the SGM-type,
alternatively on W and H.

3. MINIMIZATION UNDER
NON-NEGATIVITY CONSTRAINTS ONLY

SGM was initially formulated and developed to solve
problem (2). Its Lagrangian function is given by:
Z(V,WH; A, Q) = 2(V,WH) — (A, W) — (2, H) (5)
where A and 2 are the matrices of positive Lagrange
multipliers, and (-,-) is the inner product defined by:

=Y [U]4[V]; (6)

ij

(U, V)

The Karush-Kuhn-Tucker conditions must necessarily
be satisfied at the optimum defined by W*, H*, A*,
and Q*.
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3.1 Minimization with respect to W

Minimization of (5) with respect to W leads to the fol-
lowing Karush-Kuhn-Tucker conditions for all i, j:

[Vw.Z(V,W*H;A*,Q)];; =0 (7)
[A*];; >0 (8)
*ij >0 9)
10)

[
(A*,W*>=O<:>[A*],~j[W*],-j:0 ( 0
Condition (7) immediately leads to
[A"]ij = [Vw2(V, W H)];; (11)
Condition (10) then becomes
[W*;i[Vw2(V,W*H)];; =0
& [W[-Vw2(V,W'H)];; =0 (12)

where the extra minus sign in the last expression is just
used to make a negative gradient descent direction of
2(V,WH) apparent. To solve this equation iteratively,
three points have to be noticed. The first one is that
M- (—Vw2) is a gradient descent direction of 2 if M
is a matrix with positive entries, where - denotes the
Hadamard product. The second one is that [—Vy Z];;
can always be decomposed as [P];; —[Q]ij, where [P];;
and [Q];; are positive entries, let us note that this de-
composition is obviously not unique. Last but not least,
the third one is that equations of the form (W) =0
can be solved with a fixed-point algorithm, under some
conditions on function ¢, by considering the problem
W =W + ¢(W). Implementing this fixed-point strat-
egy with equation (12) and using

1
[Qlij

we obtain the following gradient-descent algorithm

M];; = (13)

k).
[WHH, = [WH; + az‘kj [‘[g]]}cu [~Vw2(V,W*H)];;

(14)
with al»k]- a positive step size that allows to control con-

vergence of the algorithm. Using the second point de-
scribed above leads to

W,
(WA = (WA + o -

i (P-1Q) 09)

that is,
[P >

~1 (16)
Q]
Let us determine the maximum value for the step size
in order that [W**1];; >0, given [W¥];; > 0. Note that,
according to (15), a restriction may only apply if

[P - [QY; <0 (17)

since the other terms are positive. The maximum step
size which ensures the positivity of [WX*1];; is given by

W = (WA o (W

1
k
(aij)max = [Pk]ij (18)

(QF;j

which is strictly greater than 1. Finally, the maximum
step size over all the components must satisfy

(0 )max < min{(aikj)max} (19)

This choice ensures the non-negativity of the compo-
nents of W* from iteration to iteration. Convergence of
the algorithm is guaranteed by computing an appropri-
ate step size, at each iteration, over the range [0, (%) max]
by means of a simplified line search such as the Armijo
rule for example. Finally, it is important to notice that
the use of a step size equal to 1 leads to the very simple
and well-known multiplicative form

[PX;;
[Q];;

Positiveness is satisfied if [W?);; > 0, but convergence of
the algorithm is not guaranteed.

(W = (W5

(20)

3.2 Minimization with respect to H

Minimization with respect to H can be performed in the
same way, using the decomposition

[=Vu2)ij = [R]ij — [S];) (21)

where [R];; and [S];; are positive entries. The relaxed
expression of the algorithm takes the form:

k..
[Hk+l]ij _ [Hk]ij +Bilj' [Hk]ij <[[]:_S{k]]:lj — 1) (22)

Again, with a constant step size equal to 1, the algorithm
takes a simple multiplicative form

[RY);;

[Hkﬂ]ij = [Hk]ij [Sk]ij

(23)

As previously, positiveness is satisfied if [H%];; > 0 but
convergence of the algorithm is not guaranteed.

Before ending this section, let us compute VZ with
respect to H and W. It can be expressed in matrix form
as follows:

Va2 =W'A  Vy2=AHT (24)
where A is a matrix whose (i, j)-th entry is given by:
ad;;
Alji= —— 25
[ ]lj (9[WHL‘]' ( )

Equations (20) (23), associated to (24) (25), lead to the
multiplicative algorithms described in [2, 6, 12]. These
are particular cases of the relaxed algorithms (15) (22),
obtained by using a unit step size.

4. MINIMIZATION UNDER
NON-NEGATIVITY CONSTRAINTS
AND FLUX CONSERVATION

Let us now consider problem (4), which differs from (2)
by additional flux constraints. We make the following
variable changes:

[Z];

W= ——71—;
[ ]J Zm[ mj

(26)
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1), eVl

Zm[T]mj
In so doing, the problem becomes unconstrained with
respect to the flux. To ensure that the problem remains
convex w.r.t. the new variables, the solution is searched
in a domain where the denominator is a constant, it is
precisely what is performed by our method. To deal with
the non-negativity constraints, let us consider again the
SGM algorithm and compute gradient with respect to
new variables:

[H];; = (27)

9?%1‘ T &9 [aW@]ij . aa[[vz‘;k] (28)
3?’?!; 4 3([9131 ‘ 3%1;]]17 (29

where, in a compact form,
e <GVl 6)
L

with §; the Kronecker symbol. As a consequence, the
components of (the opposite of) the gradient of 2 with
respect to the new variables can now be written as

_a?zgij - Zm[lZ]mj <<_9[27V@}U> _;[W]U <_‘9[8W9]U)>

(32)
and
99 LVl (92 \ LM, ( 92
ITlj X[ Tlmj (( 9[H]zj> Zm[V]mj< 3[H(]g3>))
It can be noticed that any shift of the form
(_a@/a[w]u)s A (—3@/9[“7]11)4'717 V(l,])
(=02,/0H];j)s «— (=02/9M]ij)+u, V(i)

leave equations (32) and (33) unchanged. Consequently,
using

——min(—a@) ——min(— 07 )
U T B W =

does not modify the gradient of & with respect to the
new variables Z and T, but ensures the non-negativity
of (-02,/9[W];j)s and (=02, d[H];j);. Let us note
that this particular decomposition allows to ensure that
the denominator in 26 and 27 remains constant and then
we are always in the convexity domain. We shall now
apply the SGM method.

4.1 Minimization with respect to W

Consider the following gradient (32) decomposition

[~=Vz2]ij = [P]i; — Qi (34)

that involves the non-negative entries defined as follows

Pl = (_3[8‘73}1‘1)3

ad
[Qlij = [Ql; = YWl (_B[VVD],/)

The relaxed form of the minimization algorithm can be
expressed as

(35)

(36)

[Zk+l}1‘=[zk]1'+06k[zk]z' ( (—89/8[Wk]1j)s _1>
! ’ ! Jij)s

Yi[WHij(—02,/9[Wk

We clearly have Y,[ZKM1],; = ¥,[Z];;, for all af. This
allows to us to express the algorithm with respect to
the initial variable W, that is,

(—02,/9[WIj,)s
]k

WI(=02,/9[W})s - )

Again, with a constant step size equal to 1, the algorithm
takes a simple multiplicative form

 (=92/9[WH))s
Yy IWH (=02, I [WH,;);

(W = [Wm + ak[W]lfj (Zi[

(W] = [WH (37)

4.2 Minimization with respect to H

In an analogous way, consider the following gradient (33)
decomposition

[=Vr2]ij = [R];; - [S];j (38)

that involves the non-negative entries given by
R} = — 39
[R]; nlTlmj \ I[H]ij / )

m Vln,j Hi; 99
1Sl =S, = Zm{[T]]m}'j z,: Z,L [\]I]jmj <_9[H]ij)s 1)

This leads to the relaxed form of optimization algorithm
with respect to variable T, that is,

(-92,/3H ),
L gl (09, 9[HH),

J

[T = [T+ ok [T

It can be seen that ¥,[T¥'!); = ¥,[T*];;, for all a,
which implies that

[H), = [HY;+ o [HY,

(—07/ o),
¥ soie (~07,/9[HH ),

The multiplicative form is obtained with a constant step
size equal to 1, namely,

 (=02/9[1Y;)),
Yy [HY,(-92,/9[HHN;)),

[H 1), = H] Y [Vinj

m
(41)
In the next section, we propose to illustrate this algo-
rithm within the field of hyperspectral imaging.
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5. CHOICE OF THE DESCENT STEP SIZE
AND CONVERGENCE SPEED

On one hand, if the descent step size is fixed to one, there
is no way to modify the convergence speed and the iter-
ations number can be high, moreover, the convergence is
not ensured but the algorithm takes a simple form. On
the other hand, if the descent step size is searched by
a simple rule, Armijo for example, the iterations num-
ber decreases but the duration of one iteration increases,
from our experience, when the step size is computed, the
overall gain is about ten or twenty percents and in this
case the convergence is ensured.

6. SIMULATION RESULTS

Hyperspectral imaging has received considerable atten-
tion in the last few years. See for instance [1], [7] and ref-
erences therein. It consists of data acquisition with high
sensitivity and resolution in hundreds contiguous spec-
tral bands, geo-referenced within the same coordinate
system. With its ability to provide extremely detailed
data regarding the spatial and spectral characteristics of
a scene, this technology offers immense new possibilities
in collecting and managing information for civilian and
military application areas.

Each vector pixel of an hyperspectral image charac-
terizes a local spectral signature. Usually, one consider
that each vector pixel can be modeled accurately as a lin-
ear mixture of different pure spectral components, called
endmembers. Referring to our notations, each column
of V can thus be interpreted as a spectral signature ob-
tained by linear mixing of the spectra of endmembers,
i.e., the columns of W. The problem is then to estimate
the endmember spectra W and the abundance coeffi-
cients H from the spectral signatures V.

Many simulations have been performed to validate
the proposed algorithm, egs. (37) and (41). The exper-
iment presented in this paper corresponds to 10 linear
mixtures of 3 endmembers, the length of each spectrum
being 826. The three endmembers used in this example
were extracted from the ENVI library [15] and corre-
spond to the spectra of the construction concrete, green
grass, and micaceous loam. Equations (37) and (41)
were implemented in the case of a Frobenius norm .
Fig. 2 shows the estimated endmembers (columns of
W), and their abundance coefficients (rows of H) af-
ter 12000 iterations, and compared them with the true
values. Note that the initial values for W and H were
chosen to satisfy the constraints, i.e., positivity, sum to
one of the columns of W. Fig. 1 shows the behaviour
of the criterion 2 as a function of the number of iter-
ations, and the 10 reconstructed spectra in comparison
with the true ones. We clearly see that the curves coin-
cide almost perfectly. The normalization of the columns
of matrix W, as well as the flux conservation between
V and H, are satisfied at each iteration. Let us note
that H and W could be estimated up to a permutation
of the columns of W, and to an analogous permutation
of the rows of H.
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Figure 1: Frobenius 2(V,WH) as a function of the
number of iterations. Columns of V at the end of the
iterations, solid line for true values, dashed line for esti-
mated values.
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Figure 2: From top to bottom. Columns of W and rows
of H. On each plot: solid line for true values, dashed
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