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ABSTRACT

The estimation of sub-sample time-delay from the phase of the
cross-power spectrum (CPS) of signals received by widely-spaced
receivers requires unwrapped phase. Conventional phase unwrap-
ping methods require a continuous CPS that starts at zero frequency
or at a frequency with a known unwrapped phase. A novel phase
unwrapping method is proposed herein that is capable of carry-
ing out the task without these requirements. The proposed method
is applied to direction-of-arrival (DOA) estimation for a bandpass
signal—a case that conventional methods are unable to handle. An-
alytical performance and experimental results confirm the effective-
ness of the proposed method.

1. INTRODUCTION

A popular approach for DOA estimation is based on estimating the
time-delay (or Time Difference Of Arrival (TDOA)) of the signal,
as observed at a pair (or more) of spatially separated receivers, and
then estimating the DOA by exploiting geometry (e.g., [1, 2, 3]).
The most well known methods for time-delay estimation (TDE) are
those based on the generalized cross correlation (GCC) [4, 5]. In
general, GCC based TDE consists of weighting the Cross-Power
Spectrum (CPS) of the observed signals, and transforming the re-
sulting spectrum to the time-domain. In the time-domain, the peak
location is taken as the time-delay estimate, which is normally an
integer number of samples.

In many cases, it is more convenient to estimate the time-delay
directly from the phase of the CPS in the frequency-domain. The
advantage of this is in obtaining sub-sample delay estimates with-
out resorting to intra-sample interpolation [6]. Other advantages,
including optimality, are discussed in [7, 8]. In spite of this, GCC
based TDE has always been more popular than direct TDE from
CPS phase. The main disadvantage of estimating time-delay di-
rectly from the CPS is the requirement that phase has to be un-
wrapped before it can be used for TDE [7, 6]. The occurrence of
phase wrapping is common when the receivers are widely-spaced,
i.e., the receiver separation exceeds A,in/2, half of the minimum
wavelength of the impinging signal. In practice, wide spacing of re-
ceivers is required to enhance DOA resolution, reduce mutual cou-
pling between receivers, or make the sensor placement physically
realizable [9].

Phase unwrapping is well known to be a difficult problem.
Many phase unwrapping methods have been proposed in the lit-
erature (e.g., [2, 10, 11, 12, 13]). In general, these methods rely on
the fact that the signal spectrum is continuous, and that it starts at
zero frequency (i.e, the wideband signal case) or some wrapping-
free low frequency that can be used as the starting point of the un-
wrapping process. The phase is unwrapped progressively starting
from the lowest frequency, leaving the success of the whole process
dependent on the success of the unwrapping at the low frequencies.

In some cases in practice, even the lowest frequency is subject
to phase wrapping. An example of this is a bandpass signal, re-
ceived by receivers whose separation exceeds Ayqc/2, half of the
maximum wavelength [9]. Conventional phase unwrapping meth-
ods cannot be used in this case.
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In this paper, we report on a new phase unwrapping method that
unwraps phase at each frequency independently (not progressively).
The new method, does not require continuous phase or phase that
starts from zero, and can be applied even when the phase of the low-
est available frequency is uncertain. The proposed method exploits
knowledge of the upper limit of the phase-frequency line slope (the
maximum time-delay) to unwrap the CPS phases using a frequency
pairing approach. The proposed method is capable of handling the
degenerate case of the bandpass signal discussed above, which is
the example considered in this paper. The proposed method can be
generalized to handle the DOA spatial aliasing problem for a multi-
frequency signal using non CPS based methods. Analytical perfor-
mance formulae and experiments with ultrasonic signals show the
effectiveness of the proposed method.

This paper is organized as follows. Section 2 describes the
generic approach for DOA estimation from CPS phase. In Sec-
tion 3, the proposed phase unwrapping method for two frequencies
is explained. Section 4 studies the effect of noise on the proposed
phase unwrapping method. In Section 5, the proposed method is
applied to DOA estimation. Experimental results are presented and
discussed in Section 6, and Section 7 concludes the paper.

2. DOA ESTIMATION FROM CPS PHASE

Consider two signals received by a pair of spatially separated sen-
sors:
x1[t] = s[t] +ny [f] (1)

x[t] = st — 7] +nat] 2)
where s[f] (+ represents discrete-time) is a transmitted multi-
frequency signal; nj [t] and n; [f] are two random noise processes that
are assumed to be uncorrelated with each other or with the trans-
mitted signal; and 7 is the delay or TDOA of s[¢] between the two
receivers. The CPS of x;[¢] and x;[t] can be estimated by dividing
each of xi[¢] and x;[f] into a number (N) of (possibly overlapping)
frames and estimating the complex CPS from these frames accord-
ing to [14]
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where @ is the radian frequency which is assumed to be discrete;
X1 [®] and X, [@] are the discrete Fourier transforms (DFTs) of the
nth frames of x; [¢] and x,[t] respectively, each frame is multiplied
by an appropriate window function; and “*” denotes the complex
conjugate operation. The CPS G 1x, [@] can be related to that of the
transmitted signal by [6]

G, [0] = Gs[w]e/ T )
where GAm is an estimate of the real power spectrum of s[t], and €
is a phase error due to the effect of noise, finite data record, etc.
Now, assume that there are M frequencies ®y,,m =0,..,M — 1 in
the passband. The phase at each frequency can be estimated as

(ﬁm = arg (lexz [wm]) =0OnT+En ©)
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where arg(.) denotes the angle of a complex quantity. Considering
phase wrapping, the phases in Eq. (5) can be expressed as
Om = [¢£ + Sr[r'z] + 27k (6)
where k, € 7 are phase wrapping parameters; [¢} + &h] € [—7, 7]
are noisy principal phase components with ¢/, being the true prin-
cipal phase and &}, representing the contributions of noise and es-
timation errors. Normally phase determination yields [¢}, + &h].
Obtaining the true phases @), (i.e., unwrapping) requires finding the
correct integers k. It should be noted here that, in some cases, the
effect of noise could result in erroneous integers &, due to cycle
slips. Herein, such effects will be ignored in order to simplify the
presentation. In fact, the effect of noise in introducing cycle slips is
found to be significant only at low signal-to-noise ratios (SNRs).
For a bandpass signal with the unwrapped phases given by (5),
time-delay can be estimated using

YN Y G o

T =
M—1
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where y;,, are generic weights (see [2, 6, 7, 8]), for which a unity
value coincides with the linear least squares estimate of 7 [15]. Fi-
nally, DOA is calculated from geometry as [1]

N ct
6 = arcsin [ —
arcsin ( y )

where c is the speed of propagation and d is the receivers separation.

®

3. PHASE UNWRAPPING FOR TWO FREQUENCY
COMPONENTS

Consider two radian frequencies @, and ®,. The phases of the CPS
at these two frequencies following (6) are
(ﬁu =

P+ el +2mk, 9

by = OF + €l + 27k, (10)
Theorem 1. In a noise-free situation, a sufficient condition for the
true phases in Egs. (9) and (10) to be identifiable from the two prin-
cipal components, is that the inter-frequency separation be less than
the reciprocal of the maximum possible slope of the phase-frequency
line multiplied by 7, i.e. |®, — ®,| < wc/d .

Proof.
From the linearity of phase, we have

Oy = Pu—. an

where ¢, and ¢, are the error-free versions of ¢, and ¢@,, respec-
tively. By setting the noise contributions in Egs. (9) and (10) equal
to zero (also ignoring other sources of error), substituting Eq. (11)
in (10), and subtracting the resulting equation from (9), yields

[0)
o= {(Du ,uw‘:| [0F — ¢ +27ky ]

12)

where ky, £ k, — k,. Now phase unwrapping is transformed into a
problem of determining the correct value of the integer k,,. Hence,
it is convenient to write Eq. (12) in the form

Wy
Wy — Wy

13)

ol = | 5 2| for — o7 4274

where k is a general integer variable whose true value (k) is be-
ing sought. Now, define the identifiability criterion for the true

phase ¢ylk,y] as being the only valid phase amongst the phases
¢y [k], with the validity of phase defined as falling in the interval
[—w,d/c, w,d/c]. Consider the true phase value @, [k, ]. Any other
false candidate value of the phase @[k, £ ¢g],qg € N can be ex-
pressed, based on (13), as

(Pu [kuv iq] = ¢u [kuv} +2nq I: D :| . 14)

@, — Wy

Noting that a valid value of the phase ¢, must fall in the interval
[—w,d/c,w,d/c], for ¢ylkyy £ g] to be invalid phases, the following
inequality must be satisfied:

d
>0 _,Yq 1s)

wu
Ky £2
¢u[ uv] ﬂq |:wu _ O-)V:|

Considering all the sign (+/-) combinations of ¢y,[k,,] and [@, — @],
a sufficient and necessary condition for the true phase to be uniquely
identifiable can be stated as

Wy
@, — Wy

2

d
> wuz + |¢u [kuv” (16)

Since the true phase @, [k;y] is generally unknown, it is more conve-
nient to obtain a more strict—but accessible—version of the condi-
tion in (16) by setting |@u[kuv]| = |G ki) |pax = @ & After manip-
ulation, this results in the sufficient condition

o — o] <75

7 a7

Eq. (17) is the end of the proof of Theorem 1. In the following,
we show how the condition in (17) can be exploited to identify the
true value of ¢,. The same logic can be applied to ¢,, or otherwise,
the true value of ¢, can be directly determined from the true value
of ¢, using (11). By inspecting Eq. (13) in light of the condition in
Eq. (17), we obtain

of — o +2mk
3

d
| [K]| > O . (18)

It can be deduced from Eq. (18) that there are only three possible
values for k that one of them is anticipated to yield a valid phase
(i.e., |¢u[k]| < w,d/c). Literally, the search has to be confined to
the subset {—1,0, 1}. The true phase can simply be identified as the
minimum of a triplet.

To recover the true noisy phase (ﬁu = qsu [kyy] in a general case
where only noisy versions of the principal phases are available (as
in Egs. (9) and (10)), and when Eq. (17) is satisfied, the following
unwrapping algorithm can be used:

I. Calculate the candidate true phases @, [] from (13) for

{(pl[l)v 1{)} = {[ th) +£5]7 [(Pt[’) +€5]} and all k € {71505 1}'

IL. Find ¢! such that ’q)f,‘ = min (’(ﬁu [k]|), where min(.) denotes the
minimum value.

II. Substitute ¢/ in (9) and estimate k, = r({¢} — [0 +&!]}/2m),
where 1(.) is a round-off function.

IV. Substitute k, back in (9) and estimate ¢, = (oF + el + 21k,

The objective of the last two steps is to absorb the effect of noise in

the integer value representing k,. The success/failure of the above

algorithm will be discussed in the following section.

4. NOISE EFFECT

In this section, the effect of noise on the performance of the pro-
posed phase unwrapping algorithm is considered. By considering
the noise terms in Egs. (9) and (10), one can use the same proce-
dure used to obtain (13), and so obtain the noisy version as

(ﬁu [k} = { wuaj‘ o,

} +[0F — ¢F +27k] + €4y 19)
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where &,, = @, (&l —&!)/(w, — ®,) and represents the total effect
of noise. For the purpose of analyzing the performance under noise,
it will be assumed, without loss of generality, that &f and & are

two zero-mean Gaussian random variables with variances 63 and

sz, respectively. Hence, &, will be a zero-mean Gaussian random
variable with a variance given by

o2, = { Ou r [0'3+0'v2] (20)

W, — Wy

Noise can have the effect that the algorithm produces erroneous
(integer) values for k,, and/or k,, a situation which we refer to as
failure, while producing the correct integer is referred to as success.
First consider step II of the proposed algorithm, where a selection
between three phase values is made. Each of these three phase val-
ues corresponds to an integer; the integer corresponding to the cor-
rect selection is ky,; the other two integers corresponding to the false
phases will be denoted as k| and k;. The probability that step II will
produce the correct answer—under noise—can therefore be written
as

PS.,m:P(’éu[kuv” < |$u[k1]’ & ’éu[kuv” < |$M[k2]’)
= P (|¢u[kuv] + €| < |@ulk1] + 1]

& | Qulkuv] + €uv| < |Qulko] + Euv]) @1
where @, [kuy], ¢u[k1] and ¢y [k;] are the noise-free candidate phases.
The probability P, depends on the actual values of these phases. A
procedure for evaluating Py, from the cumulative distribution func-
tion (CDF) of the random variable g,, is described in Appendix A.

Now, the probability of success of step III (in restoring the cor-
rect integer k,, under noise) given the success of step II can be ex-
pressed as the probability that &, = k, when 0! = ¢y k] + 4. That
can be stated as

P, =P {I‘

By substituting for (@y[kuy] — ¢£)/2% = k, and manipulating,
Eq. (22) reduces to

o (22)

Qulkin] + € — ( f,’+s{3)] . }

P
8M v gu
Py,

’

P {70.5 < < 0.5}

Pl—-m<egy—€l <m|
= (I)ewfsf (m) _(bewfs[ (=) (23)
where &, _.r is the CDF of the random variable &, — €2, which is
has a Gaussian distribution with a zero mean and a variance equal
to 62, +62.

Now, the probability of success for the whole algorithm pre-
sented in Section 3 will be given by

Py = Px,mPS,r (24)
The probability P is directly a function of the variances 03 and sz.
In general, for large number of frames (N), &/ and & are approxi-
mately Gaussian and Gl-z,i = u,v can be approximated as [6, 8]

1 [y

2 i

o~ ———— (25)
" 2Ny w]?

where |y[w;]|? is the magnitude squared coherence (MSC) at fre-

quency @j;, which can be defined as [17]

2 _ G?x[wi]
| - {Gm[a’i]-FGnn[a),-]}z (26)

[Y{ax]

Probability of success

-20 0 2‘0 40
SNR (dB)

-40

Figure 1: Probability of success of the proposed method.

where Gy, is the noise power spectrum. It should be noted that
Egs. (25) and (26) rely on the assumption that the signal power is
equal at the two receivers and so are the noise powers. The quan-
tities Gy and Gy, are generally unknown. To be able to plot Ps
versus SNR, 62 and 62 must be obtained as functions of SNR. For
a deterministic signal (s[t]), it can be shown that (see Appendix B)

. [1+(a[a>,-]LA)’lr—l
o ~

! 2N

@7

where o] is the ratio of the power of the received signal at the
frequency ; to the total signal power, L is the length of the DFT
and A is the linear SNR. It is noted that for a deterministic signal,
the required parameter a[;] is fixed for a fixed DFT length and
does not depend on the signal amplitude, hence it can be calculated
directly from the DFT of a known version of the signal. This re-
quires that the channel does affect the signal frequencies, which is
consistent with the linear channel model in given by (1) and (2).
By using Eq. (27) to calculate the required variances, Py (and
also P, and Py ) can be plotted directly against the SNR. Fig. 1
shows an example of such a plot assuming a signal s[¢] that is a sum
of two sinusoids of frequencies, 40 and 45 kHz, and equal ampli-
tude. The two frequencies @, and , are selected to coincide with
the two peaks of the power spectrum (which correspond to 40 and
45 kHz). The DOA of the source is assumed to be 60°. Other pa-
rameters are d = 2 cm, L = 32 and N = 20. From Fig. 1, it can
be seen that both Py, and P fall when the SNR decreases. At low
SNRs, P is better than P, which suggests that step II alone can
be sufficient for phase unwrapping. However, the whole algorithm
is justified since when outliers are discarded, it can offer a smaller
error than step II. This can be seen from the variance of the output
in the case of success of step II as given by Eq. (20), compared to
that of the whole algorithm, which is expected to be equal to 63.

5. DOA ESTIMATION WITH PHASE UNWRAPPING

To estimate the DOA of a bandpass signal utilizing the CPS, each
frequency in the passband is paired with all possible frequencies
such that each pair satisfies (17). For each pair, the algorithm de-
scribed in Section 3 is applied to the wrapped phases obtained from
the CPS. The pairing results in multiple estimates for the integer &,
at each frequency w, (see step III, Section 3). To suppress outliers,
the mode of these estimates is taken as the final estimate of k,,. The
unwrapped phase ¢, is calculated based on this final estimate of the
integer k, (see step IV, Section 3). Finally, the delay is estimated
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Figure 2: Test room with the locations of the transmitter (Tx)
and the receivers (Rx) marked. Heights (H) are quoted be-
tween brackets.

from the unwrapped phases using (7), and the DOA estimate is cal-
culated from (8). In this paper, the weights v, in (8) are set to a
value of one.

6. EXPERIMENTAL RESULTS

The proposed approach for DOA estimation has been tested ex-
perimentally. The experiments were carried out in a normal office
(see Fig. 2). Ultrasonic bandpass signals consisting of 20 equally-
spaced frequencies in the range 35 - 49.5 kHz were used. The sig-
nals were constructed in a way that resembles a frequency hopping
spread spectrum (FHSS) scheme [18], with a hop duration of 3.2
ms. The sampling frequency was approximately 168 kHz. A frame
size of 512 with 384 sample overlap between successive frames was
used. A Fast Fourier Transform (FFT) was used to calculate the 512
length DFTs after windowing each frame by a Blackman window.
The receivers were kept 2 cm apart (which is approximately 6 times
Amin/2 and 4 times Apqx/2), and approximately 170 cm from the
transmitter. The receivers were maintained in the same location for
all of the tests. Changing the angle of arrival of the signal was
achieved by rotating the panel containing the two receivers. Four
different angles were tested, nominally, 0°, 20°, 45° and 60°.

Fig. 3 shows examples of the unwrapped phases for each angle
tested using the method described in Section 2.

Table 1 summarizes the results. The root mean square Error
(RMSE) and the bias (estimated by subtracting the true angle from
the mean) are used to evaluate the performance of the two proposed
approaches. The results were obtained from 20 independent tests
for each angle. Each test involved 3000 snapshots. The SNR was
found to be approximately 30 dB. The column titled “All estimates”
represents the results obtained directly from applying the proposed
method. It can be seen that large errors occur for the largest tested
angle—60°. As can be seen in Fig. 3 (d), more outliers appear
for this angle compared to the smaller angles. Performance can
be improved by excluding the outliers from estimation of the final
DOA, as demonstrated in the column titled “Ex. outliers ”. As it can
be seen, some improvements has been obtained by applying such a
two-stage approach to the larger angle cases.

To demonstrate performance at lower SNRs, artificial white
Gaussian noise was added in simulation. Performance versus SNR
is depicted in Fig. 4 for a DOA of 45°. The figure emphasizes the
fact that outliers can dominate the performance at low SNRs, how-
ever, performance is seen to asymptotically improve as the SNR
increases. The general trend in the figure is consistent with that
in Fig. 1. Note that experimental results can be affected by other
factors such as reverberation and the variation of signal power at
different frequencies.

2 8
oy -
5 0 % 6
S I
~ True ¢ ;
B 4l |- --True o @2
g 6 © Unwrapped¢ )
o * Observed ¢° o e S T
- Lo -
835 45 50 %5 45 50
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® x 20007 (rad.)
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® x 20007 (rad.)
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L
g X R X
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40 45 50
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Figure 3: Experimental results: The true, true principal, ob-
served principal and unwrapped phases for true DOA of a)
0°, b) 20°, ¢) 45° and d) 60°.

Table 1: Experimental Results: DOA estimation error for 4
different angles.

All estimates Ex. Outliers
DOA Bias RMSE Bias RMSE
0° 0.17° 0.76° 0.17° 0.76°
20° —1.42° 1.42° | —1.42° 142°
45° —1.33° 1.51° | —1.29° 1.30°
60° —3.06° 4.30° | —0.00° 0.15°

7. CONCLUSION

A novel method for linear phase unwrapping, applied to DOA es-
timation of a multi-frequency signal received at two widely-spaced
receivers, is presented. The method does not depend on the exis-
tence of unwrapped phases at low frequencies. Experimental results
with ultrasonic signals show the feasibility of the approach.

APPENDICES

A. EVALUATION OF THE PROBABILITY P&,

First, let us start with the probability P(|a+ €| < |aj + €|), where
€ is a random variable with Gaussian distribution and CDF ®¢ (x);
and a@ and a; are real constants, a # a;. This probability can be

1

C|).|.|1°
n
=5
(he
% 10 20 30
SNR (dB)
15
o 10
(7))
R
o 5
0 I o—6—9
0 10 20 30
SNR (dB)

Figure 4: Performance with noise for a DOA of 45°.
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evaluated as

P(la+e| <la;+e|) P(e> (), for a<ap

P(8<C1)7f0r a>a

(28)

where {1 £ —[a+a;]/2. Eq. (28) is also applicable for a; = ay, etc.
Now, consider the probability P = P(|la+ €| < |a; + €|&|a+ €| <
|ap + €]), a # a; # ap. Based on 28, four different cases can be
recognized as follows:

case l: a<ajand a < ap

P P(e>§ & e>8)

P(e>max|[¢y, &)
1 — @ (max[¢y, &5]) (29)

case 2: a > ay and a > ap

P Ple<l & e<b)
P(e <min[{y, &)

1= ¢ (—min[G, &) 30)

case 3: a < ay and a > ap

P = Ple>t & e<b)
P(e<)—P(e<{))
1= ®g(—8) —Pe(8y), for
= 0, for

<&
Gi>6 (31)

case 4: a>ay and a < ap

P = Ple<l & e>08)
P(e<§)—Pe<{)
1 =@ (=) —Pe(&p),  for
= 0, for

6>0
Gi<& (32)

where §, £ —[a+ay]/2. Hence, for P = P, given by (21), the
above procedure can be used be setting a = @y [k,], a; = ¢ylk1],
ay = ¢ylky] and € = gy,.

B. DERIVATION OF THE VARIANCE Giz AS A
FUNCTIONS OF SNR

From the definition of |y[e;]|? in (26)
_ Gilw)
1—|ylo) !~ GGl

ﬁ G?x[wi]
7] CRmEammi

{Gm[wi] +Gun [wi]}z - Gsz‘s[wi]

G%x[wi]
Gnn[wi]}2
= U -1 33
{ Gs_y[o)[] ( )
However, for white noise

Gn[w] % P, .
- = = {af[w]LA 34
Gyloi]  alo]Ps  afw]LPs {afwi]LA} (34

where P; and P, are, respectively, the total signal power and the total
noise power; o[@;] = Gys[@;]/Ps; L is the length of the DFT; and A
is the linear SNR. Inserting (34) into (33), and inserting the latter
back into (25), (27) is obtained.
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