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ABSTRACT
Consensus algorithms have generated a lot of interest due to
their simplicity in computing globally relevant statistics ex-
ploiting only local communications among sensors. How-
ever, the inherent iterative nature of consensus algorithms
makes them prone to a possibly large energy consumption.
Because of the strong energy constraints of wireless sensor
networks, it is then of interest to minimize energy consump-
tion necessary to achieve consensus, within a prescribed ac-
curacy requirement. In this work, we propose a method for
optimizing the network topology and power allocation over
each link, in order to minimize energy consumption, while
ensuring that the network reaches a global consensus. Inter-
estingly, we show how to introduce a relaxation in the topol-
ogy optimization that converts a combinatorial problem into
a convex-concave fractional problem. The results show how
the sparsity of the resulting network depends on the propaga-
tion model.

1. INTRODUCTION

Average consensus algorithms have received considerable at-
tention in recent years because of their simplicity: Every
node in the network is eventually able to reach globally rel-
evant statistics of the data, by only exchanging information
with nearby nodes, without the need for a centralized fusion
center [1]. The price paid for this simplicity and the under-
lying decentralized philosophy is that consensus algorithms
are inherently iterative, which causes a repeated expenditure
of energy in the iterated exchange of data among the nodes.
This must be contrasted with a centralized strategy where
there is a sink node that, after collecting the observations
from all the sensors (perhaps over multiple hops), is virtually
able to compute the desired statistic in one shot. To make a
distributed approach useful in a sensor network context, it is
then necessary to minimize the energy consumption neces-
sary to reach consensus. Clearly, the network topology plays
a fundamental role in determining the convergence rate. It is
well known in fact that, as network connectivity increases, so
does the convergence rate. However, having a densely con-
nected network requires a high power consumption, to guar-
antee reliable links between the nodes. In principle, having
a fully connected network is equivalent to having as many
sink nodes as sensors, so that the convergence time of fully
connected networks is minimum. But the power consump-
tion necessary to maintain a fully connected network is also
maximum. On the other hand, a network with minimal con-
nectivity requires small power consumption to mantain the
topology, but it is also slow to converge. So, it is of interest

to look at what topologies provide the best trade-off between
convergence time and power consumption necessary to es-
tablish the links with the desired reliability.

If the links are symmetric, or, equivalently, the graph de-
scribing the network topology is undirected, the convergence
rate can be measured through the so called algebraic connec-
tivity, defined as the second smallest eigenvalue of the graph
Laplacian [2]. For this reason, there has been work on maxi-
mizing the algebraic connectivity of an undirected graph, by
a suitable choice of the weights associated with each edge,
for a given topology [3] [4]. In [5] it was shown how some
network topologies, like small world graphs, for example,
can greatly increase the convergence rate. On the other hand,
enforcing a small world, or scale-free, graph is not an easy
task, in a wireless network. In [6] it was shown how to add
edges from a given set to a graph in order to maximize its al-
gebraic connectivity. There has also been work on topology
optimization in order to minimize the power consumption
necessary to guarantee connectivity, e.g., [7, 8], but without
any specific reference to the running application. Conversely,
it is now well known that an efficient design of wireless sen-
sor networks requires the exploitation of their specificity, or
applications, which make them intrinsically different from
communication networks.

Since what really matters is energy consumption rather
than minimizing convergence time (although there are impor-
tant applications where the latter could be more important),
it was shown in [9] that one should actually minimize the
product of the global power spent to enforce a given topol-
ogy and the convergence time. As shown in [9], there typi-
cally is an optimum power that minimizes the energy neces-
sary to achieve consensus within a prescribed accuracy. The
results obtained in [9] assumed a random geometric graph
model, with no knowledge of the node position. In such a
case, the task was to find out the (common) transmit power
to be associated to each node to minimize energy consump-
tion. However, if the node positions are known, we have the
potential of improving the performance considerably by op-
timizing the power budget over each link. In this work, we
extend the approach of [9] to arbitrary networks, where the
positions are known, and we show how to optimize the net-
work topology jointly with the power allocation across each
link, in order to minimize the energy necessary to reach con-
sensus within a predefined accuracy.

2. CONSENSUS ALGORITHMS

Let us consider a wireless network with n sensors represented
by an undirected graph G = {V,E}where V denotes the set of
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n vertices vi and E ⊆ V×V is the set of bidirectional edges
ei j = e ji connecting vi and v j. Furthermore, let be A the
n× n-dimensional symmetric adjacency matrix of the graph
G with elements ai j = 1 if ei j ∈ E and ai j = 0 otherwise.
According to this notation and assuming no self-loops, i.e.,
aii = 0 ∀i = 1, . . . ,n, the degree of the node vi is defined as

deg(vi) =
n

∑
j=1

ai j =
n

∑
j=1

a ji. Let Ni denote the set of neighbors

of node i, so that |Ni|= deg(vi). The Laplacian matrix of the
graph G is the n×n symmetric matrix L(G) defined as

`i j = ` ji =
{

deg(vi) if j = i
−ai j if j 6= i . (1)

Reaching consensus over a common measurement or deci-
sion can be seen as the minimization of the disagreement be-
tween the states xi of the interacting nodes. One of the nice
properties of the Laplacian is that the disagreement can be
measured as a quadratic form built on the Laplacian [10]:

J(x) :=
1
2

n

∑
i=1

∑
j∈Ni

(xi− x j)2 = xT Lx. (2)

The minimization of this quadratic form can be achieved in a
decentralized strategy, using a simple steepest gradient tech-
nique. In continuous time, we may achieve the minimization
through the following dynamical system [11]

ẋ(t) =−Lx(t), (3)

with x(0) := x0, where x0 is the n-size column vector whose
entries are the measurements of each node 1. The conver-
gence of (3) depends on the eigenvalues of L. In partic-
ular, the convergence of (3) to a consensus is guaranteed
if L has a null eigenvalue of multiplicity one, which cor-
responds to having a connected graph. Under such a cir-
cumstance, the convergence rate is dictated by the second
smallest eigenvalue of L, namely λ2(L). More specifically,
the dynamic system converges to consensus exponentially,
i.e., ‖ẋ(t)−ω∗‖ ≤ O(e−rt), with r ∝ λ2(L) and ω∗ the n-
dimensional vector with all entries equal to the common con-
sensus value.
The Laplacian matrix L depends, in turn, on the topology
of G, i.e., the power used by any node to exchange messages
with other nodes and on the propagation model. More specif-
ically, given two nodes i and j, at a distance ri j, we assume
that there is a link between them if the received power at
node j exceeds a threshold, i.e., if pR j > pmin, in which case
ai j = 1; otherwise ai j = 0. In this paper, we assume the fol-
lowing propagation model:

pR j =
pi j

1+(ri j/r0)η (5)

where r0 is a scaling factor representing a reference distance,
η is the channel loss exponent, pi j is the power used by node
i to transmit messages to node j. In (5), the distance r0 typ-
ically corresponds to the so called Fraunhofer distance, such

1The discrete-time counterpart of (3) is [10]

x[k +1] = x[k]− ε̃Lx[k] := Wx[k], (4)

where ε̃ is a coefficient chosen in order to ensure that no eigenvalue of W
is greater than one.

that for ri j À r0 we are in the antenna far-field, where the
power attenuation is inversely proportional to rη

i j, whereas for
ri j ¿ r0, we are in the antenna near-field, where the power is
approximately equal to the transmitted one. The unity term
in the denominator of (5) is used to avoid the impossible sit-
uation in which the received power could be greater than the
transmitted one.

3. MINIMIZING ENERGY TO ACHIEVE
CONSENSUS

The overall energy spent to reach consensus can be measured
as the product of the transmit powers necessary to establish
the links between neighboring nodes and the convergence
time, namely

E = K
∑n

i=1 ∑ j∈Ni pi j

λ2(L(pT ))
, (6)

where K is a constant factor depending only on the desired
accuracy, and pT := vec(pi j, i, j = 1, ...,n, i 6= j) is the vector
of transmit powers with pi j = p ji.

Our goal in this paper is to find out the optimal network
topology and choose pT so as to minimize the energy con-
sumption in (6), while ensuring network connectivity, i.e.,
λ2(L(pT )) > 0. Unfortunately, the search for the optimal
topology involves a combinatorial strategy that makes the so-
lution of the problem extremely hard, especially for networks
with a large number of nodes. To make the problem analyt-
ically tractable and obtain a numerically appealing solution,
we relax the constraint that the coefficients ai j are either zero
or one and assume, instead, the following expression

ai j =
1

1+(ri j/rci j)α (7)

where α is a positive coefficient and rci j is the coverage ra-
dius, depending on the transmit power. In particular, given
the propagation model (5), we have:

rci j = r0

(
pi j

pmin
−1

)1/η
. (8)

We are now able to formulate our optimization problem as
follows:

min
pT

pT
T 1

λ2(L(pT ))
s.t. ε ≤ λ2(L(pT ))

1pmin ≤ pT

(9)

where 1 is the column vector of all ones and ε is an arbi-
trarily small positive constant used to prevent the algebraic
connectivity from going to zero, i.e., ensuring that the net-
work is connected. In (9), using (8) in (7), the coefficients
ai j composing the Laplacian are written explicitly in terms
of the propagation parameters as:

ai j(pi j) =
rα

0 (pi j− pmin)α/η

rα
0 (pi j− pmin)α/η + rα

i j pα/η
min

. (10)

In principle, the last inequality in (9) makes any link feasi-
ble. But this does not mean that the final network will be
fully connected, because some coefficients ai j might equal
zero, thus implying that the link between node i and j is not
active. The first important result, for the solution of (9), is
the following
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Theorem 1 Given the propagation model (5) and the posi-
tions (7)-(8), the minimization problem

min
pT

pT
T 1

λ2(L(pT ))
s.t. ε ≤ λ2(L(pT ))

1pmin ≤ pT

(11)

is a convex-concave fractional problem if η ≥ α .

We omit the details of the proof here, because of lack of
space. The full proof is in [12] and is based on the fact that
λ2(L(pT )) can be shown to be a concave function of pT .

Proving that the problem (9) is a convex-concave frac-
tional problem is a basic step in finding a numerical solu-
tion, as several methods are available to solve quasi-convex
optimization problems, see e.g. [13, 14]. In this paper, we
consider the nonlinear parametric problem proposed in [14],
expressed as

h(µ) = min{pT
T 1−µλ2(L(pT )) : pT ∈ Γ} (12)

where µ is a real positive parameter while Γ =
{pT : pT ≥ 1pmin, λ2(pT )≥ ε}. The solution of this prob-
lem can be obtained using the following result proved in
[14, 15]:

Theorem 2 : Let ψ(x) =
f (x)
g(x)

be a continuous function

∀x ∈ Θ where Θ is a nonempty compact set of Rn, the func-
tion f (x) is convex and g(x) is concave with g(x) > 0 ∀x∈Θ.
Then y∗ ∈Θ is an optimal solution of

min{ψ(x) =
f (x)
g(x)

: x ∈Θ} (13)

if and only if y∗ is an optimal solution of the following para-
metric problem

min{ f (x)−ψ(y∗)g(x) : x ∈Θ} . (14)

Within this setup, Dinkelbach developed an algorithm for
solving non-linear fractional program in the case where nu-
merator and denominator of the objective function are, re-
spectively, a convex and a concave function [14]. Given the
parametric problem

h(µ) = min{ f (x)−µg(x) : x ∈Θ} (15)

Dinkelbach’s algorithm is based on the following observa-
tions. Choosing as initial µ a value ψ(x1) = µ , we observe
that h(µ) < 0 if and only if f (x)−µg(x) < 0 for some point
x ∈Θ. Thus, there are two possible solutions to (15):

- h(µ) ≥ 0: then f (x)− µg(x) ≥ 0 and
f (x)
g(x)

≥ µ for all

x ∈Θ then y∗ = x1 and µ = µopt .
- h(µ) < 0: then solving (15) a point x̃ ∈ Θ is found with

ψ(x̃) < µ .
With this in mind, the algorithm is as follows:
1. Set i = 1 and let xi be a feasible point of Θ, with µi =

ψ(xi);
2. Set µ = µi and find xi+1 ∈Θ that solves (15);
3. If h(µi) = 0, stop and xi+1 is optimal, otherwise set i =

i+1, µi = ψ(xi) and go to step 2.

The above considerations suggest us to substitute the
convex-concave optimization problem in (11) with the fol-
lowing one

min
pT

pT
T 1−µλ2(L(pT ))

s.t. ε ≤ λ2(L(pT ))
1pmin ≤ pT

. (16)

It can be noted that λ2(L(pT )) is a concave function of pT
(see Theorem 1). Hence, the objective function, as a sum
of convex functions, is a convex function. The constraint
functions are convex. Then, problem (16) is a convex para-
metric problem whose unique solution is a function of the
parameter µ that controls the trade-off between the global
transmit power and the convergence time. The problem in
(16) can be solved numerically using cvx, a Matlab software
for disciplined convex programming [16]. Indeed, the use of
cvx is possible through a preliminary change of variables to
avoid the nonlinear dependence of the Laplacian matrix on
the power vector pT . To this end, the problem in (16) has
been reformulated as

min
y

φ(y)−µλ2(L(y))

s.t. ε ≤ λ2(L(y))
0≤ y < 1

(17)

where the n(n− 1)/2 entries yi j = y ji of the vector y :=
vec(yi j, i, j = 1, ...,n, i 6= j) are given by yi j(pi j) = ai j(pi j),
so that according to (10), we obtain

pi j = q(yi j) = pmin + k1

(
yi j

1− yi j

)η/α
, (18)

with

k1 = pmin
rη

i j

rη
0

and φ(y) =
n

∑
i=1

n

∑
j=1

q(yi j) . (19)

Let us now verify the convexity of problem (17). To study
the behavior of φ(y), we compute the second order derivative
of q(yi j), obtaining

d2q(yi j)
dy2

i j
= k1

η
α

(
yi j

1− yi j

)η/α−2 1
(1− yi j)4

(η
α
−1+2yi j

)
.

(20)
This shows that

d2q(yi j)
dy2

i j
≥ 0⇔ η−α +2αyi j ≥ 0 (21)

or
yi j ≥ 1

2

(
1− η

α

)
. (22)

We note that, if η ≥ α , then
d2q(yi j)

dy2
i j

≥ 0 for 0≤ yi j < 1, so

that φ(y), as a sum of convex functions, is convex. Finally,
the algebraic connectivity λ2(L(y)) is a concave function of
y, as can be proved following the same steps as in Theorem
1. Then the optimization problem in (17) is a convex para-
metric problem equivalent to the original problem in (16),
since the change of variables pi j = q(yi j) in (18) ensures a
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Figure 1: Nodes configuration on the plane and optimal ac-
tive links for r0 = 0.19 and several quantization thresholds.

one-to-one mapping q : R→ R for 0 ≤ yi j < 1 with image
covering the problem domain in (16) (see [17][p. 130]).

Thus we have proved that the optimization problem in
(17) is convex; the convexity guarantees that a solution ex-
ists, is unique, and can be found via efficient numerical tools.
Furthermore, µ can be optimized using Dinkelbach’s algo-
rithm by assuming 0 ≤ y ≤ 1− ε ′ with ε ′ an infinitesimal
positive constant so that the feasible set of (17) is a compact
set of Rn(n−1)/2.

4. NUMERICAL RESULTS

In our simulations, we considered a sensor network com-
posed of n = 30 nodes, randomly deployed within a unit
square. In all the simulations, we assumed ε = 10−3, pmin =
1 and η = α . The scaling distance r0 was chosen to guar-
antee network connectivity, although only in a probabilistic
sense. More specifically, we set

r0 = r0(n) =

√
1.1log(n)

π n
(23)

to guarantee that the graph is connected with probability one,
as the number of nodes tends to infinity [18]. Recall that we
use the relaxation expression of the coefficients ai j given in
(10), thus, in practice, the coefficients ai j resulting from the
optimization algorithm are compared to a threshold ath, so
that if ai j ≤ ath the link between nodes i and j is suppressed.
Of course, this thresholding operation will affect the final re-
sult in terms of convergence time and energy consumption.
To check the sensitivity of our algorithm with respect to the
threshold value, we report the active links obtained for dif-
ferent values of ath and η = 6. From Fig. 1, we notice that,
below a certain value of ath, the algebraic connectivity re-
mains practically constant. In the same figure, we also re-
port the normalized difference |E (p∗T )−Eq|/E (p∗T ) between
the minimum energy E (p∗T ) and the energy pertaining to the
graph with quantized coefficients Eq. We can see that this
difference becomes very small, even with very small thresh-
old values. This means that the algorithm, in spite of the
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Figure 2: Optimal energy consumption and fraction of active
links versus η for ath = 0.09.

relaxation step, is rather stable in finding the links that can
be turned off, with no appreciable performance loss. This is
indeed a crucial property, as it provides a topology control
mechanism, although passing through an intermediate relax-
ation step. From Fig. 1, for example, we can say that the
topology in the top left side is practically equivalent to the
almost full topology of the bottom right plot, from the point
of view of energy consumption and convergence time.
It is also interesting to look at the impact of the path loss ex-
ponent on energy consumption and optimal network topol-
ogy. In Fig. 2 we report, respectively in the upper and lower
subplots, the optimal energy consumption and the percent-

age of active links
∑n

i=1 |Ni|
n(n−1)

, versus η = α . The fraction

of active links gives us a measure of the sparsity of the final
network. It is interesting to observe, from Fig. 2 (bottom
plot) that, for low path loss exponents, the network tends to
be fully connected, because evidently, for those values of η ,
the most critical contribution to energy consumption is con-
vergence time. Hence, the resulting topology is the one that
minimizes convergence time. Conversely, as η increases, the
power consumption tends to assume more and more impor-
tance and the resulting optimal topology becomes more and
more sparse. In all cases, clearly the energy consumption in-
creases as η increases (top plot).
Finally, in Fig. 3 we compare the energy consumption ob-
tained using a common transmit power (solid lines) or the
optimal power allocation p∗T (colored dots). The results have
been averaged over 100 independent random deployments of
n = 30 nodes, uniformly placed on the unit square. For the
same random node configurations, we consider a random ge-
ometric graph where each node transmits with the same per
link power p to the nodes lying within its coverage area. We
compute the average energy consumption Ē (p) by averag-

ing the measure E (p) =

p
n

∑
i=1

ni(p)

λ2(p)
for different values of

p, where ni(p) denotes the random number of neighbors of
node i, when transmitting at power p. We plot this curve ver-
sus the average network power (i.e., the mean of the sum over
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Figure 3: Average network energy consumption versus the
average network power.

all the nodes of the per link powers). We observe from Fig. 3
that, also using a common transmit power, there typically is
an optimal value that minimizes energy consumption. That
value is the result of a trade-off between transmit power and
convergence time. As expected, for any path loss exponent,
the proposed joint optimization of transmit power and topol-
ogy leads to a smaller energy consumption with respect to
the common transmit power case.

5. CONCLUSIONS

In this paper we have proposed a method to optimize the
network topology that, for a given arbitrary position of the
nodes, minimizes the energy consumption necessary to reach
average consensus. In particular, through an appropriate
relaxation technique, we have converted a topology opti-
mization problem, which is typically a combinatorial prob-
lem, into a convex-concave fractional program that admits
a unique solution, obtainable through efficient numerical al-
gorithms. As a by-product of our optimization procedure,
we get both network configuration and optimal power allo-
cation across all links. After applying the proposed relax-
ation, the topology is obtained by applying a thresholding
mechanism. In principle, this operation may induce non neg-
ligible errors. Nevertheless, for the application at hand, we
showed, through numerical results, that the thresholding op-
eration does not affect the network performance appreciably.
Interestingly, it turns out that, at low path loss exponents,
the best topology tends to be fully connected. Conversely, at
higher values of the path loss exponent, the optimal topology
tends to be more and more sparse, so as to reduce as much
as possible the number of active links. The problem formu-
lation required to have a number of degrees of freedom equal
to the number of possible links. In this way we end up with,
potentially, different powers on each link. Hence, we do not
exploit the broadcast capabilities of wireless networks. This
is an issue that could be further investigated, together with
the choice of the appropriate radio access technique, to see
whether there can be further margins of improvements.

REFERENCES

[1] R. Olfati Saber and R. M. Murray, “Agreement Problems
in Networks with Directed Graphs and Switching Topology,”
Proc. 42nd IEEE Conf. on Decision and Control (CDC 03),
Maui, HI, USA, December 2003.

[2] M. Fiedler, “Algebraic Connectivity of Graphs,” Journal of
Czechoslovak Math., Vol. 23, pp. 298–305, 1973.

[3] L. Xiao, S. Boyd and S.-J. Kim, “Distributed Average Con-
sensus with Least-Mean-Square deviation,” Journal of Parallel
and Distributed Computing, Vol. 67, pp. 33–46, January 2007.

[4] S. Boyd, “Convex Optimization of Graph Laplacian Eigen-
values,” Proc. Intern. Congress of Mathem., pp. 1311–1319,
Madrid, Spain, 2006.

[5] R. Olfati-Saber, “Ultrafast Consensus in Small-World Net-
works,” Proc. 2005 American Control Conf. (ACC 05), pp.
2371–2378, Portland, OR, USA, June 2005.

[6] A. Ghosh and S. Boyd, “Growing Well-Connected Graphs,”
Proc. of the 45nd IEEE Conf. on Decision and Control (CDC
06), pp. 6605–6611, San Diego, CA, USA, December 2006.

[7] A. K. Das and M. Mesbahi, “K-node Connectivity Power Ef-
ficient Topologies in Wireless Networks: A Semidefinite Pro-
gramming Approach,” Proc. IEEE Globecom, Vol. 1, pp. 468–
473, St. Louis, MO, USA, Nov-Dec 2005.

[8] R. Ramanathan and R. Rasales-Hain, “Topology Control of
Multihop Wireless Networks Using Transmit Power Adjuste-
ment,” Proc. IEEE INFOCOM, pp. 404–413, Tel-Aviv, Israel,
2000.

[9] S. Barbarossa, G. Scutari and A. Swami, “Achieving Consen-
sus in Self-Organizing Wireless Sensor Networks: the Impact
of Network Topology on Energy Consumption,” Proc. IEEE
ICASSP 2007, Honolulu, HI, USA, April 2007.

[10] R. Olfati-Saber, J. A. Fax, R. M. Murray, “Consensus and
Cooperation in Networked Multi-Agent Systems,” Proc. of the
IEEE, Vol. 95, pp. 215–233, January 2007.

[11] S. Barbarossa and G. Scutari, “Decentralized Maximum-
Likelihood Estimation for Sensor Networks Composed of Non-
linearly Coupled Dynamical Systems,” IEEE Trans. on Signal
Process., Vol. 55, pp. 3456–3470, July 2007.

[12] S. Sardellitti, S. Barbarossa, A. Swami, “Optimal Topology
Control and Power Allocation for Minimum Energy Consump-
tion in Consensus Networks,” to be submitted to IEEE Trans.
on Signal Process., 2010.

[13] A. Jeflea, “A Parametric Study for Solving Nonlinear Frac-
tional Problems,” An. St. Univ. Ovidius Constanta, Ovidius
University, Romania, Vol. 11, pp. 87–92, 2003.

[14] W. Dinkelbach, “On Nonlinear Fractional Programming,”
Management Science, Vol. 13, pp. 492–498, 1967.

[15] R. Jagannathan, “On Some Properties of Programming Prob-
lems in Parametric Form Pertaining to Fractional Program-
ming,” Management Science, Vol. 12, pp. 609–615, 1966.

[16] M. Grant, S. Boyd and Y. Ye, Matlab Software for Dis-
ciplined Convex Programming, February 2007. Available at
www.standford.edu/∼boyd/cvx.

[17] S. Boyd and L. Vandenberghe, Convex Optimization, Cam-
bridge University Press, 2004.

[18] P. Gupta and P. Kumar, “Critical Power for Asymptotic Con-
nectivity in Wireless Networks,” In Stochastic Analysis, Con-
trol, Optimization and Applications: A Volume in Honor of
W.H. Fleming; W.M. McEneaney, G. Yin, and Q. Zhang (Eds.),
Birkhauser, Boston.

193


