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ABSTRACT
We propose a Bayesian method for separation and recon-
struction of multiple source images from multi-channel ob-
servations with different resolutions and sizes. We recon-
struct the sources by exploiting each observation channel
at its exact resolution and size. The source maps are es-
timated by sampling the posteriors through a Monte Carlo
scheme driven by an adaptive Langevin sampler. We use the
t-distribution as prior image model. All the parameters of
the posterior distribution are estimated iteratively along the
algorithm. We experimented the proposed technique with
the simulated astrophysical observations. These data are nor-
mally characterized by their channel-variant spatial resolu-
tion. Unlike most of the spatial-domain separation methods
proposed so far, our strategy allows us to exploit each chan-
nel map at its exact resolution and size.

1. INTRODUCTION

In this study, we focus on the separation of source im-
ages from multi-channel blurred and noisy observations with
channel-variant spatial resolutions. We face this kind of
problem in astrophysical component inference from multi-
channel observations. The resolutions of the observed chan-
nel maps are generally different, since the aperture of the
telescope beam depends on frequency. Because of this phys-
ical restriction, for low resolution channel maps, less num-
ber of pixels than the the high resolution channel maps is
needed. If the image sizes are different in observations, the
most simple and intuitive procedure that can be applied is
to interpolate the low resolution channels maps or decimate
the high resolution channels maps to equal the size of all
maps. However, data interpolation and decimation correlate
the white noise and convert it to colored noise. The source
separation for channel-variant spatial resolution and convo-
lutional mixture case with equal sized observations has been
taken into account in [1] to estimate the parametric mixing
matrix and the power spectrums of the sources in the spa-
tial frequency domain. In order to deal with different sized
observation images, we propose a Bayesian formulation of
the problem in the pixel domain and find the source maps by
a recently developed Monte Carlo technique for image pro-
cessing, namely the Langevin Sampler [2].
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Image reconstruction from multi-channel low-resolution
observations without mixing is a high-resolution and super-
resolution image reconstruction problem. The pioneer works
on super-resolution can be found in [3] and [4]. Super-
resolution has been then used in video processing to im-
prove the resolution of a video by using multiple low-
resolution frames [5], [6]. Schultz and Stevenson have pro-
posed a Bayesian approach to super-resolution [7], using the
Maximum-a-Posteriori (MAP) estimation with Markov Ran-
dom Field (MRF) prior. A study on improving the resolution
of the hyper-spectral and astronomical images are found in
[8] and [9] respectively. The studies in [10] and [11] sum-
marize the super-resolution problem. We define our low-
resolution observation model according to the one used in
super-resolution [7].

In Blind Source Separation (BSS), the aim is to separate
multiple sources from mixed observations when the mixture
coefficients are not known. To solve the Bayesian source
separation problem without incurring in smoothing artifacts,
Monte Carlo methods based on drawing random samples
from posterior densities seem a viable approach [12]. In this
study, we propose to improve the efficiency of the standard
Metropolis random-walk sampling scheme by producing the
proposal samples in parallel. To this end, we resort to the
Langevin stochastic equation [13], [14], [2]. The proposed
samples are accepted or rejected by the usual Metropolis-
Hastings scheme.

Bayesian image separation has been investigated in dif-
ferent studies [15], [12], [2]. In [2], the t-distribution is used
as a prior to model the edge images, since it is a good sta-
tistical model for data ranging from broad-tailed to normally
distributed. The t-distribution is a member of the Scale Mix-
tures of Gaussians (SMGs) family. The Bayesian framework
is also capable of full optimization of all the parameters. In
the parameter estimation side of the study, we prefer to use
SMG mixture definition of the t-distribution over an integral.
Since we use the integral form of the t-distribution, we ex-
ploit the Expectation-Maximization (EM) method for esti-
mation of its parameters. We also optimize the discrete time
step of the Langevin equation adaptively along the iterations.
The algorithms have been tested on simulated astrophysical
images, relevant to the PLANCK project [18].

In Section 2, the problem definition is given in a Bayesian
framework. The simulation results are presented in Section
3 and interpreted in Section 4.
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2. BAYESIAN SOURCE SEPARATION AND HIGH
RESOLUTION RECONSTRUCTION

We assume that K observed images, yk,k ∈ {1, . . . ,K}, are
linear combinations of L source images, sl , l ∈ {1, . . . ,L}.
Let the k-th observed image be denoted by yk,i, where i ∈
{1,2, . . . ,M} is the lexicographically ordered pixel index.
Similarly, sl,i, with i ∈ {1,2, . . . ,N} and N ≥M, denotes the
N-pixel representation of the l-th source image. If the ef-
fect of the telescope is taken into account and by denoting sl
and yk as the vector representations of source and observa-
tion images, respectively, then the observation model can be
written as

yk = BkHk

L

∑
l=1

ak,lsl +nk (1)

where Hk is the Toeplitz matrix representation of the point
spread function (psf) in the k-th observation channel, matrix
Bk is an M×N down-sampling matrix, which becomes the
N×N identity IN when one of the highest-resolution maps
is available at the k-th channel (i.e., when M = N) and ak,l is
the mixing coefficient. For example, to convert a 3×3 image
to 2×2 one, we construct the down-sampling matrix such as

B =







1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1






(2)

We do not specify the structure of Bk, but interested read-
ers can find it in [10] and [11]. We use this model to con-
nect the high-resolution sources to the low resolution obser-
vations. It has also the useful property that while BkHk is
the smoothing and the down-sampling operation, its trans-
pose HT

k BT
k is the expansion and the interpolation operation.

The image is first expanded by zero-padding matrix BT
k and

then interpolated by the filter HT
k . The vector nk represents

an iid zero-mean Gaussian noise with Σ = σ 2
k IM covariance

matrix. Although the noise is not homogeneous in the real
astrophysical maps, noise variance is homogeneous within
each considered sky patch.

2.1 Likelihood
Since the observation noise is assumed to be independent and
identically distributed zero-mean Gaussian at each pixel, the
likelihood is expressed as

p(y1:K |s1:L,A) ∝
K

∏
k=1

exp
{

−W (s1:L|yk,A,σ 2
k )
}

(3)

W (s1:L|yk,A,σ 2
k ) =

||(yk−BkHk ∑L
l=1 ak,lsl)||

2

2σ 2
k

(4)

where the mixing matrix A contains all the mixing coeffi-
cients ak,l introduced in (1). We assume uniform prior for
ak,l .

2.2 Source Model
In this paper, we use the image model previously proposed
in [2]. For this purpose, we write an auto-regressive source
model using the first order neighbors of the pixel in the di-
rection d:

sl = αl,dGdsl + tl,d (5)

where the maximum number of first order neighbors is 8 but
we use only 4 neighbors, d ∈ {1, . . . ,4}, in the vertical and
horizontal directions. Matrix Gd is a linear one-pixel shift
operator, αd is the regression coefficient and the regression
error tl,d is an iid t-distributed zero-mean vector with degree
of freedom parameter βl,d and scale parameters δl,d . The
multivariate probability density function of an image mod-
elled by a t-distribution can be written as

p(tl,d |αl,d ,βl,d ,δl,d) =
Γ((N +βl,d)/2)

Γ(βl,d/2)(πβl,dδl,d)N/2

×

[

1+
φd(sl ,αl,d)

βl,dδl,d

]−(N+βl,d)/2

(6)

where φd(sl ,αl,d) = ||tl,d ||
2 = ||sl −αl,dGdsl ||

2 and Γ(.) is
the Gamma function. We can write the density of sl by using
the image differentials in different directions, by assuming
the directional independence, as

p(sl |αl,d ,βl,d ,δl,d) =
4

∏
d=1

p(tl,d |αl,d ,βl,d ,δl,d). (7)

We assume uniform priors for αl,d and δl,d and use non-
informative Jeffrey’s prior for βl,d ; βl,d ∼ 1/βl,d .

2.3 Posteriors
To define the BSS problem in the Bayesian framework, the
joint posterior density of all of the unknowns must be written.

p(s1:L,A,Θ|y1:K) ∝ p(y1:K |s1:L,A)p(s1:L,A,Θ) (8)

where Θ = {α1:L,1:4,β1:L,1:4,δ1:L,1:4}, p(y1:K |s1:L, A) is
the likelihood and p(s1:L,A,Θ) is the joint prior den-
sity of unknowns. The joint prior can be factorized as
p(s1:L|α1:L,1:4,β1:L,1:4, δ1:L,1:4) p(A) p(β1:L,1:4 p(δ1:L,1:4)
p(α1:L,1:4). Furthermore, since the sources are assumed to
be independent, the joint probability density of the sources is
also factorized as

p(s1:L|Θ) =
L

∏
l=1

p(sl |Θ) (9)

To estimate all unknowns, we write their conditional pos-
teriors as

p(ak,l |y1:K ,s1:L,A−ak,l ,Θ) ∝ p(y1:K |s1:L,A)

p(αl,d |y1:K ,s1:L,A,Θ−αl,d ) ∝ p(tl,d |Θ)

p(βl,d |y1:K ,s1:L,A,Θ−βl,d
) ∝ p(tl,d |Θ)p(βl,d) (10)

p(δl,d |y1:K ,s1:L,A,Θ−δl,d
) ∝ p(tl,d |Θ)

p(sl |y1:K ,s(1:L)−l ,A,Θ) ∝ p(y1:K |s1:L,A)p(sl |Θ)

where the ”–variable” expressions in the subscripts denote
the removal of that variable from the variable set.

The Maximum Likelihood (ML) estimations of the pa-
rameters αl,d , βl,d and δl,d are obtained using an Expectation-
Maximization (EM) method [2]. To estimate the source im-
ages, we use Langevin sampler, whose details are given in
Section 2.4.
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2.4 Astrophysical Map Estimation
In the classical Markov Chain Monte Carlo (MCMC)
schemes, a random walk process is used to produce the pro-
posal samples. Although random walk is simple, it affects
adversely the convergence time. Instead of random walk, we
use the Langevin stochastic equation, which exploits the gra-
dient information of the energy function to produce a new
proposal. Since the gradient directs the proposed samples to-
wards the mode, the final sample set will mostly come from
around the mode of the posterior. The Langevin equation
used in this study is written as

sk+1
l = sk

l −
1
2
Dlg(sk

l )+D
1
2
l wl (11)

where the diagonal matrix D
1
2
l contains the discrete time

steps τl,n, n = 1 : N, so that, for the ith pixel, the diffusion
coefficient is Dl(n,n) = τ2

l,n. Matrix Dl is referred to here
as diffusion matrix. We determine it by taking the inverse
of the diagonal of the Hessian matrix which is calculated
through the energy function E(sl) = W (s1:L)+U(sl) where
U(sl) =− log p(sl |αl,d ,βl,d ,δl,d) defined in (7). g(sk

l ) is the
gradient of the energy E(sl) with respect to sl and is defined
in Table 1.

Since the random variables for the image pixel intensities
are produced in parallel by (11), this procedure is faster than
the random walk adopted in [12]. The derivation details of
the equation can be found in [2]. A similar form of Langevin
equation is also found in [16] and [17].

The samples are produced by using this first order equa-
tion, and then they are tested in the Metropolis-Hastings
scheme. The samples produced by (11) are applied to
a Metropolis-Hastings scheme pixel-by-pixel. The accep-
tance probability of any proposed sample is defined as
min{ϕ(sk+1

l,n ,sk
l,n),1}, where

ϕ(sk+1
l,n ,sk

l,n) ∝ e−∆E(sk+1
l,n ) q(sk

l,n|s
k+1
l,n )

q(sk+1
l,n |s

k
l,n)

(12)

where ∆E(sk+1
l,n ) is the energy difference between the pro-

posed and current pixel.
The proposal density q(sk+1

l,n |s
k
l,n) is obtained, from (11),

as

N

(

sk+1
l,n |s

k
l,n +

τ2
l
2

g(sk
l,n),τ

2
l

)

(13)

The summary of the Metropolis-Hastings algorithm with
Langevin proposal is given in in Table 1.

3. SIMULATION RESULTS

This section presents some astrophysical image separation
results of the proposed method, compared to the correspond-
ing results from other methods. The proposed method is de-
noted as ALS (Adaptive Langevin Sampler) and compares
to two ad hoc methods. In both of the competitor meth-
ods, we apply an interpolation (IP) to the low resolution and
small sized channels. It corresponds to the operation HT

k BT
k ,

but one can use any interpolation technique to perform in-
terpolation. In the first competitor method, we apply the
pre-estimated separation matrix to find LS solution. As a

Table 1: Metropolis-Hastings algorithm with Langevin pro-
posal. u: uniform positive random number in the unit in-
terval; z: generated sample vector to be tried; ϕ(zn,sk

l,n) :
acceptance ratio of the generated sample.

1. wl ∼N (wl |0,I)

2. H(sk
l )←− diag{H(sl)}

sl←−s
k
l

3. Dl ←− 2[H(sk
l )]
−1

4. g(sk
l )←− [∇sl E(s1:L)]

s1:L=s
k
1:L

5. produce z ←− sk
l −

1
2Dlg(sk

l ) + D
1
2
l wl from

(11).
6. for all pixel n = 1, . . . ,N

(a) calculate ϕ(zn,sk
l,n)

(b) if ϕ(zn,sk
l,n)≥ 1 then sk+1

l,n = zn

else produce u∼U(0,1).
if u < ϕ(zn,sk

l,n) then sk+1
l,n = zn,

else sk+1
l,n = sk

l,n

(c) n+1←− next pixel.

pre-estimation method, one can use Independent Component
Analysis (ICA), Spectral Matching ICA (SMICA) or Fourier
Domain Correlated Component Analysis (FDCCA) [1]. In
the second competitor method, we first apply de-blurring
(DB) and then find LS solution. For de-blurring, we use the
Wiener filter with known psf and noise covariance. We call
the competitor methods IP+LS and DB+IP+LS, respectively.
We use the solution of IP+LS as initial value for our meth-
ods, so we call the proposed method as IP+LS+ALS. We also
compare the results with those obtained from the channel in-
variant single resolution observations by ALS method. We
have tested our algorithm on a sky patch that is located at
(0,60) galactic coordinates. The observation images are gen-
erated by using a 9×3 mixing matrix simulating nine images
at frequencies 30, 44, 70, 100, 143, 217, 353, 545, and 857
GHz. In other words, we have K = 9 observations and L = 3
sources. Fig. 1 shows the observations in the patch consid-
ered. The size of the first three channel maps, 30, 44 and 70
GHz, is 128×128, whereas the others have size 256×256.

Fig. 2 shows the ground truth astrophysical source im-
ages and the estimated ones with IP+LS+ALS, IP+LS, ch.
invar. IP+LS+ALS with channel invariant observations and
ch. var. IP+DB+LS with channel variant observations. The
mixed sources are CMB, synchrotron and dust maps, as sim-
ulated in preparation of the PLANCK mission of the Euro-
pean Space Agency (ESA) [18].

The Peak Signal-to-Inference Ratio (PSIR) is used as a
numerical performance indicator. The PSIR values of the
estimated maps are reported under each result in Fig. 2.

The PSIR values of ALS are over those of other meth-
ods. We can see from Fig. 2 that the IP+LS gives noisy and
IP+DB+LS gives smoothed estimates, but the results of ALS
are better than the others.

4. CONCLUSION

We have introduced a data model accounting for resolution
and map size differences in the astrophysical source sepa-
ration problem. We then solve this problem in a Bayesian
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Figure 1: The blurred and noisy observations located at 0◦ longitude and 60◦ latitude. The first row: Low resolution 128×128
channels. Second and third rows: High resolution 256×256 channels.

framework by a Monte Carlo technique. The results show
that our method outperforms two other strategies that do not
take the proper resolutions and sizes into account. As part
of our future work, we will evaluate the spatial resolutions
that can be obtained in the source maps reconstructed by
this technique, and explore the possibility of further improve-
ments.
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