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ABSTRACT
Room reverberation leads to reduced intelligibility of audio sig-
nals. Enhancement is thus crucial for high-quality audio and scene
analysis applications. This paper proposes to directly and opti-
mally estimate the source signal and acoustic channel from the dis-
torted observations. The remaining model parameters are sampled
from a particle filter, facilitating real-time dereverberation. The ap-
proach was previously successfully applied to single- and multi-
sensor blind dereverberation. Enhancement can be improved upon
by accurately modelling the speech production system. This paper
therefore extends the blind dereverberation approach to incorporate
a novel source model based on parallel formant synthesis and com-
pares the approach to one using a time-varying AR model, with
parameters varying according to a random walk. Experimental data
shows that dereverberation using the proposed model is improved
for vowels, stop consonants, and fricatives.

1. INTRODUCTION

Room reverberation leads to reduced intelligibility of audio signals
and spectral coloration of audio signals. Thus, for high quality of
digitally recorded speech, blind dereverberation of the observed sig-
nal is crucial in order to obtain an anechoic speech estimate [1–3].

The problem of source signal estimation could be considered
from a maximum-likelihood (ML) perspective. However, if the pro-
duction mechanism and distorting environment are unknown, the
ML approach of source signal estimation requires the maximisation
of the likelihood over any parameters specifying the source produc-
tion mechanism, the distorting channel, and, above all, the source
signal with respect to the known observations. Therefore, without
any available prior knowledge of the underlying production mecha-
nism, an infinite parameter space is to be searched.

It can therefore prove highly advantageous to incorporate prior
information about the source production mechanism and distorting
channel in the estimation process. As exact knowledge of the vocal
tract and room transfer function are generally unavailable, models
of the vocal tract and room acoustics are utilised instead. Estimates
can therefore be improved upon by accurate source modelling.

This paper proposes a novel speech model based on a parallel
formant synthesiser (PFS). PFSs model the formants of speech by
a parallel concatenation of several resonant circuits. Each circuit
is represented by a second-order autoregressive (AR) process and
is driven by an amplitude control, setting the resonant frequency
and bandwidth, i.e., the height and width of the formants’ spec-
tral peaks. In practice, the resonant frequencies and bandwidths are
unknown and therefore need to be modelled as well. In order to ac-
count for the time-varying properties of speech, the frequency and
bandwidth of each resonator could be allowed to vary according to a
random walk. However, unbounded sampling does not necessarily
enforce frequencies between 0 and π . Therefore, this paper inves-
tigates alternative parameterisation of the AR process in order to
facilitate valid frequencies and bandwidths, whilst ensuring stable
AR parameters. It is proposed to parameterise the PFS in terms of
partial correlation (PARCOR) coefficients whose values correspond
to valid bounded resonant frequencies and bandwidths.

The proposed model is compared to a time-varying AR (TVAR)
source model, where the TVAR parameters are assumed to vary ac-
cording to a random walk. Both models are implemented within
a blind dereverberation approach efficiently applied previously in,
e.g., [4, 5]. In this framework, the source signal and reverberant
channel are obtained using their optimal estimator, the Kalman fil-
ter, whereas the remaining model parameters are estimated by se-
quential importance resampling.

This paper is structured as follows: Sect. §2 introduces the gen-
eral system model, sect. §3 discusses the TVAR source model and
derives the proposed PFS model, sect. §4 derives the blind speech
dereverberation algorithm, and sect. §5 compares the performance
of the blind dereverberation approach for both source models based
on speech data.

2. GENERAL SYSTEM MODEL

The speech production mechanism can be modelled as a concate-
nation of lossless acoustic tubes of equal lengths, whose transfer
function can be approximated by an all-pole filter [6]. Furthermore,
the solution of the acoustic wave function suggests that the transfer
function of geometric reverberant rooms can be modelled as an all-
pole filter. The source and observed signal can therefore be easily
expressed in state-space form as

xt = Atxt−1 +Σvtvt , vt ∼N
(
0Q×1, IQ

)
, (1a)

yt = Yt−1b+CT xt +Σwt wt , wt ∼N (0M×1, IM) , (1b)

where xt = [xt . . . xt−Q+1]
T are the most recent Q source sig-

nal samples, at = [a1,t . . . aQ,t ]
T are the source parameters,

At is the source transition matrix governed by the source model
parameters and Σvt is the covariance matrix of the source excita-
tion, vt . yt = [y1,t . . . yM,t ]

T are the M sensor observations,
b =

[
bT

1 . . . bT
M

]T where bm = [b1,m . . . bP,m]T are the P
channel parameters between the source and the mth sensor, and
Yt−1 = diag

[
ŷT

1,t−1 . . . ŷT
M,t−1

]
contains the P past samples

at each sensor, where ŷm,t−1 , [ym,t−1 . . . ym,t−P]T . Further-
more, CT = 1M×1c

T , where cT is a 1×Q source-model dependent
combination of ones and zeros retaining only the samples of xt re-
quired for the generation of yt . Note that a distinct white Gaussian
noise (WGN) noise source, wt , with M×M covariance matrix Σwt ,
and close to the target source is incorporated by a simplification
of the common-acoustical pole and zero (CAPZ) model [7] as dis-
cussed in, e.g., [8].

3. SPEECH MODELS

3.1 Markov chain based TVAR model
The TVAR parameters vary slowly and relatively smoothly. The
smooth and slowly varying behaviour can be represented by a first-
order Markov chain with low variance on the parameters, i.e.,

at = at−1 +Σa rat rat ∼N
(
0Q×1, IQ

)
(2)
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where Σa = diag
[
σ2

a1,t
. . . σ2

aQ,t

]
is assumed known.

An issue encountered with the Markov chain model is the ne-
cessity to constrain the parameters in eqn. (2) to take on stable val-
ues only, i.e., to have poles within the unit circle. Stability can be
enforced by reflecting unstable poles back into the unit circle [9]

by letting pq,t = 1
/

p̂q,t , where
{

pq,t
}

q∈Q are the Q poles corre-

sponding to the roots of at and p̂q,t denotes a pole outside the unit
circle. As poles appear in complex-conjugate pairs, the reflection
changes the radius but leaves the phase unchanged.

The Markov chain based speech model can be improved upon
by exploiting physical descriptions of the human vocal tract.

3.2 Novel parallel formant synthesis TVAR model
PFSs model the formants (or spectral peaks) generated in the vo-
cal tract as a parallel concatenation of K resonators, each of which
models one formant and is preceded by an amplitude control of the
spectral peak. Each resonator signal can be modelled by a second-
order TVAR process with a complex-conjugate pair located inside
and close to the unit circle, where, for each resonator k ∈K ,

xk,t = a1,t,k xk,t−1 +a2,t,k xk,t−2 +√
gk,t vt , vt ∼N (0, 1) . (3)

where
{

xk,t : t ≥ Q, k ∈K
}

is the resonator output,{
aq,t,k : q ∈Q, k ∈K

}
are the source parameters, and gk,t

is the resonator gain. The K resonator signals are combined to form
the synthetic speech signal as xt = ∑k∈K xk,t .

The main concern for designing the resonators is to ensure poles
located near the unit circle to generate large magnitude responses at
the desired positions in the spectrum. The TVAR parameters are
therefore specified by design criteria characterising constraints on
the frequency response, Hk,t(ω),

Hk,t(ω) =
gk,t(

1− rk,t e jφk,t e− j ω
)(

1− rk,t e− jφk,t e− j ω
) (4)

where p1,t,k = rk,te jφk,t and p2,t,k = p?
1,t,k = rk,te− jφk,t are the two

poles of the filter, where ·? denotes the complex conjugate, rk,t is
the pole radius, φk,t is the pole phase, ω = 2π f/fs denotes the radial
frequency, and fs is the sampling frequency. The pole radius and
phase can be related to the TVAR parameters for Q = 2 via [10]

a1,t,k =−2rk,t cosφk,t a2,t,k = r2
k,t . (5)

The most crucial design criteria for PFSs are the specification
of the resonant frequency and 3dB bandwidth of the resonator, i.e.,

∂

∂ω
|Hk,t(ω)|

∣∣∣∣
ω=ωk,t

= 0 and |Hk,t(ω)|
∣∣∣∣
ω=ωk,t±Bk,t/2

= GB

where GB is the gain at the 3dB bandwidth, Bk,t is the 3dB band-
width, and ωk,t is the radial frequency at resonance. Inserting
eqn. (4) and solving for ωk,t and Bk,t respectively, fk,t and Bk,t can
be related to rk,t and φk,t [9]. As the resonant frequency and band-
width are related to the poles, and the poles are related to the TVAR
parameters, ak,t can be related to fk,t and Bk,t .

In order to obtain estimates of the TVAR parameters in an
sequential importance resampling (SIR) framework, it seems tempt-
ing to model the formant frequency, bandwidth and gain as a ran-
dom walk similar to eqn. (2) [11]. However, the bandwidth and res-
onant frequency must be limited by 0 ≤ fk,t ≤ π and 0 ≤ Bk,t ≤ π

whilst the TVAR parameters, ak,t must have poles within the unit
circle. These constraints cannot be enforced by unbounded sam-
pling from fk,t and Bk,t . It is therefore of interest to investigate the
region of parameters corresponding to both valid AR parameters
and resonant frequencies / bandwidths.

3.3 Admissible regions of parameters
In order to identify the region of stable and valid AR parameters, a
grid of 200×200 poles is generated within the unit circle, i.e., with
pole radius 0≤ rt ≤ 1 and phase 0≤ φt ≤ π . For each pole, the mag-
nitude response, |Ht( jω)|, is evaluated and it is tested whether the

(a) Poles corresponding to Fig. 1b.
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Figure 1: Areas of stable parameters and valid resonant frequencies
/ bandwidths in parameter and pole space (grey areas) vs. approxi-
mations in parameter space (black lines).

spectral peak is sufficiently high for the extraction of the 3dB band-
width. The region of stable poles corresponding to valid resonant
frequencies and 3dB bandwidths is identical for both experiments
and displayed as a grey shape in the pole space in Fig. 1a and in the
parameter space in Fig. 1b.

3.3.1 Approximation in parameter space

Due to the unusual shape of the valid and stable regions in both the
pole and parameter space, an exact description of the regional shape
is not obvious and approximations are necessary. The valid region
of parameters in Fig. 1a resembles a hybrid shape between a triangle
and an ellipsoid. One would therefore expect to approximate the
boundaries of this shape either by an ellipse or a triangle. However,
ellipses were found to be an unsuitable approximation.

Instead of an ellipse, the shape in Fig. 1b is therefore best
approximated using an isosceles triangle where max

{
a2,t

}
=

1 − 0.17 = 0.83. The gradient of the triangle is therefore
max{a2,t}/max{a1,t}≈ 0.41:

a2,t = 0.17±0.41a1,t . (6)
Fig. 1b verifies these results by comparing the fit of the trian-
gle in eqn. (6) to triangles with increasing gradients between α =
1/4, . . . ,1. The triangle specified in eqn. (6) omits the smallest por-
tion of the valid regions and avoids the inclusion of invalid areas.
However, the transforming the shape to pole space, indicated as a
black line in Fig. 1a, a relatively large proportion of valid resonant
poles close to the unit circle are excluded.

3.3.2 Approximation in pole space

In order to reduce the number of resonant and valid poles ex-
cluded from the approximated region of support, the valid and sta-
ble region can be approximated directly in the z-domain rather than
the parameter space. Again, due to the shape of the region of
support in Fig. 1a, an exact description of the boundaries seems
non-obvious. Therefore, an ellipse is used for approximation, i.e.,

φt = max{φt}
√

1− r2
t . where the imaginary part is normalised be-

tween 0 ≤ φt ≤ 1. The most accurate approximation is achieved
for max{φt} = 0.5875 (see Fig. 2). Although the ellipse fails to
model the lobe between 120≤ φt ≤ 60 and 0.4≤ rt ≤ 0.6, the mag-
nitude responses are comparatively flat in this region due to its dis-
tance from the unit circle and proximity to the origin. Therefore,

2132



Figure 2: Grey areas correspond to regions of stable parameters
generating valid 3dB bandwidths for max{0.5875}.

the poles in the lobe only add a minor contribution to the frequency
response. However, the approximated region of support in Fig. 2
still excludes a small portion of resonant poles between 0≤ φt ≤ 40
and 180 ≤ φt ≤ 140. An approximation of the region of support
is thus desirable excluding the central lobe of the hour-glass shape,
whilst including any valid areas near the unit circle.

Instead of parameterising eqn. (3) in terms of AR coefficients
or poles using a direct-form infinite impulse response (IIR) struc-
ture, the model can be represented by a lattice IIR structure and
be parameterised in terms of the lattice reflection coefficients [9].
The reflection coefficients of an IIR lattice structure correspond to
so-called PARCOR coefficients, describing the relation between the
forward and backward lattice structure [9]. This description is di-
rectly related to the relation between the propagated and reflected
sound waves at junctions in the acoustic tube, such that the reflec-
tion, or PARCOR, coefficients of the lattice structure are equivalent
to the reflection coefficients of the vocal tract transfer function. The
PARCOR interpretation of TVAR models is thus a popular alterna-
tive to the AR parameters [6, 9] and offers an interesting alternative
for investigating the region of valid parameters and resonant fre-
quencies / bandwidths.

3.4 Approximation in PARCOR space
The TVAR parameters are related to the PARCOR coefficients,{

ψq,t
}

q∈Q , for a second-order model via [9]

a1,t = ψ1,t
(
1+ψ2,t

)
and a2,t = ψ2,t . (7)

Similar to the approximation in pole space, the area of stable AR
parameters corresponding to valid resonant frequencies and 3dB
bandwidths can therefore be reflected into the PARCOR coefficient
domain using eqn. (7). The resulting region is shown as a grey shape
in Fig. 3a. The shape resembles a full-bodied ellipse with a triangu-
lar peak. An ellipse using max

{
ψ1,t

}
= 1 is therefore fitted to the

region of support in PARCOR parameter space, where

ψ2,t = 1−max
{

ψ2,t
}√

1−ψ2
1,t . (8)

Fig. 3a shows the ellipses for max
{

ψ2,t
}

= 0, . . . ,2/3 as black lines
where max

{
ψ2,t

}
= 2/3 is the most accurate approximation.

The elliptical PARCOR approximation in pole space omits the
central lobe between 60 ≤ φt ≤ 120 and 0.4 ≤ rt ≤ 0.6 similar to
Fig. 2. Nonetheless, the PARCOR approximation does not exclude
any resonant poles close to the unit circle. Therefore, the approx-
imation in PARCOR parameter space provides the most accurate
approximation of the valid regions as compared to the approxima-
tion in pole space or parameter space in Figures 3.3 and 2.

Rather than modelling the resonant frequency and 3dB band-
width as a random walk, valid frequencies and bandwidths can be
ensured by modelling the PARCOR coefficients as a random walk
and reflecting the samples into the area in Fig. 3.

3.5 Reflection of PARCOR coefficients into valid region
The PARCOR coefficients are therefore assumed to vary via

ψ̂t,k = ψt−1,k +Σψ t,k
rψ t,k

(9)

Instead of rejecting unstable or invalid samples, it is proposed to
utilise bounded functions to transform all samples into the ellipsoid
area in Fig. 3. Any bounded function, e.g., inverse trigonometric
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Figure 3: Grey areas correspond to regions of stable parameters
generating valid 3dB bandwidths.

functions such as the arctan or arcsin, can be used. In this paper, the
inverse logit function is employed, where

υ = logit−1(χ) =
1

1+ e−χ
(10)

where 0≤ υ ≤ 1 for any −∞≤ χ ≤∞. The stable and valid area of
PARCOR coefficients in Fig. 3a is bounded between −1≤ ψ1,t ≤ 1

and 1≤ψ2,t ≤ 1− 2
3

√
1−ψ2

1,t , whereas the inverse logit is defined
between 0 and 1. Eqn. (10) is thus shifted scaled, such that

ψ1,t,k =−1+
2

1+ exp
{
−ψ̂1,t,k

} (11a)

ψ2,t,k = α +
1−α

1+ exp
{
−ψ̂2,t,k

} (11b)

Therefore, as ψ0:t is enforced to lie in the stable and valid region
of support shown in Fig. 3, valid resonant frequencies are ensured
with resonant peaks of valid 3dB bandwidths. Furthermore, only
one transformation from the PARCOR to the AR parameter space is
necessary, rather than several transformations between the resonant
frequencies and bandwidths, the AR parameter and pole space. The
proposed sampling scheme therefore facilitates a simplified sam-
pling scheme avoiding multiple transformations between parameter
spaces and ensuring stability and valid frequencies / bandwidths.

4. METHODOLOGY

Given the stochastic model in eqn. (1), a sequential optimal esti-
mator is sought of the unknown source signal at time t, xt . As the
source signal is to be estimated blindly, it is necessary to estimate
all variables, ϕt ,

[
xT

t bT θ
T
t
]T in order to obtain an estimate

of xt , where θ t ,
{
at ,φvt ,φwt

}
. If the unknown variables are con-

sidered as stochastic quantities, their estimate, ϕ̂t , can be obtained
by their minimum mean-square error (MMSE) estimator, i.e.,

ϕ̂t =
∫

ϕ0:t p(ϕt | y1:t)dϕt

=
∫∫ [

zt
θ t

]
p(zt | y1:t ,θ t) p(θ t | y1:t)dzt dθ t

=

[∫
ẑt p(θ t | y1:t)dθ t

θ̂ t

] (12)

2133



where ẑt is the MMSE estimate of zt =
[
xT

t bT
]T , and θ̂ 0:t is the

MMSE estimate of θ t , and where, similar to eqn. (12),

ẑt =


∫

xt p(xt | y1:t ,θ 0:t)dxt∫
b p(b | y1:t ,θ 0:t)db

 =
[
x̂t
b̂

]
(13)

where p(xt | y1:t ,θ t) =
∫

p(xt | y1:t ,θ t ,b) p(b | y1:t ,θ t)db
marginalises the channel parameters from the source signal
posterior probability density function (pdf).

Therefore, estimates of xt , θ t , and b can be obtained using
three separate estimators. Having obtained θ̂ t , the results are used
to estimate b. Using b̂ and θ̂ 0:t , the source signal is estimated.
Sect. §4.1 to sect. §4.4 therefore derive the three estimators.

4.1 Parameter estimation using particle filtering
For most speech parameter models, the posterior pdf of θ t , required
to solve eqn. (12) cannot derived in closed form. Therefore, θ t
cannot be estimated analytically. Instead, as an exercise in stochas-
tic integration, Monte Carlo sampling can be used to approximate
θ̂ t by drawing N independent and identically distributed samples,
θ

(i)
t , i ∈ N from a hypothesis distribution that approximates and

has the same support as the posterior pdf, p(θ t | y1:t). Each sam-
ples (or ‘particle’), θ

(i)
t is associated with a weight proportional to

its likelihood. The MMSE estimate can therefore be expressed as
the point-mass distribution:

θ̂ t =
1
N ∑

i∈N

θ
(i)
t w̃(i)

t

/
∑

j∈N

w̃( j)
t ,

where the importance weights are given as

w(i)
t = w(i)

t−1 p
(
y1:t | θ

(i)
t

)
p
(

θ t | θ
(i)
t−1

)/
π

(
θ

(i)
t |y1:t

)
(14)

and are normalised via

w̃(i)
t , w(i)

t

/
∑

j∈N

w( j)
t . (15)

The performance of particle filters is highly dependent on the choice
of the hypothesis distribution, π (θ t |y1:t). The optimal importance
function minimises the variance upon θ

(i)
t and the observations.

However, generally θ
(i)
t are non-linear in the likelihood and w(i)

t
cannot be evaluated. Sampling from the prior, p(θ t | θ t−1), is used
in this paper, such that eqn. (14) reduces to

w(i)
t = w(i)

t−1 p
(
yt | y1:t−1,θ

(i)
t

)
. (16)

Furthermore, as π (θ t |y1:t) only approximates p(θ t | y1:t) and the
discrepancy increases with time, after few iterations all but one im-
portance weight are close to zero and computational effort is dis-
sipated to tracking particle trajectories not contributing to the final
estimate. Resampling ensures that only statistically relevant sam-
ples are retained.

For each of the sampled parameters, the channel and source
signal are to be estimated according to eqn. (12). Therefore, for
each choice of θ

(i)
t , an estimate of b(i) and x

(i)
t is obtained using

the estimators described in the following. Note that the superscript
(i) is dropped for brevity.

4.2 Source signal estimation using the Kalman filter (KF)
The Kalman filter is the optimal estimator of the source signal
for known model parameters, θ 0:t , in conditionally Gaussian state-
space (CGSS) systems such as eqn. (1). KFs sequentially pre-
dict x0:t based on the model parameters and correct the predic-
tion using the most recent measurement. The KF equations are
found by 1) predicting the states based on previous data only, i.e.,
p(xt | y1:t−1,θ t ,b) and 2) updating the estimate using yt by apply-
ing Bayes’s theorem, i.e., p(xt | y1:t ,θ t ,b) . Similar to [12] the

Kalman equations for the reverberant state space are given as

µt|t−1 = At µt−1|t−1, (17a)

Σt|t−1 = Σvt Σ
T
vt

+AtΣt−1|t−1AT
t (17b)

µt|t =
(

IQ−KtCT
)

µt|t−1−Kt (Yt−1b−yt) (17c)

Σt|t =
(

IQ−KtCT
)

Σt|t−1., (17d)

with residual variance is Σzt = Σwt Σ
T
wt

+ CT
Σt|t−1C, and Kalman

gain is Kt = Σt|t−1CΣ
−1
zt

. The likelihood of the observations is

p(yt | y1:t−1,θ t ,b) = N
(
yt

∣∣Yt−1b+CT
µt|t−1, Σzt

)
. (18)

The source signal can be estimated using its optimal estimator.
However, both p(xt | y1:t ,θ t ,b) and p(yt | y1:t−1,θ t ,b) are still
dependent on b, which is unknown in practice.

4.3 Channel estimation using the KF
The static IIR component, b, does not exhibit a dynamic over time.
Predicting future values would thus be futile. Nonetheless, belief in
the static parameters can be updated as new data becomes available.
Using Bayes’s theorem, this belief can be sequentially updated via

p(b | y1:t ,θ 0:t)=
p(yt | y1:t−1,θ 0:t ,b)p(b | y1:t−1,θ 0:t−1)

p(yt | y1:t−1,θ 0:t)
,

where the posterior pdf at time t−1, p(b | y1:t−1,θ 0:t−1), acts as
the prior pdf at t to recursively update p(b | y1:t ,θ 0:t). Assuming
that the posterior at t−1 is Gaussian with mean µb,t−1 and covari-
ance Σb,t−1,

p(b | y1:t ,θ 0:t) = N
(
b

∣∣µb,t , Σb,t
)
, (19)

where the covariance, Σb,t , and mean, µb,t , are given by

µb,t =
(

IMP−Kb,t Ỹ
T
t−1

)
µb,t−1 +Kb,t ỹt (20a)

Σb,t =
(

IMP−Kb,t Ỹ
T
t−1

)
Σb,t−1, (20b)

where ỸT
t−1 , Yt−1 + CT

Γt|t−1 and Kb,t = Σb,t−1Ỹt−1Σ
−1
zt,b

and

Σzt,b = Σzt + ỸT
t−1Σb,t−1Ỹt−1. Comparing eqn. (20) to eqn. (17),

the channel estimation is of the form of the update Kalman equa-
tions. As more knowledge about the observations becomes avail-
able, the belief in the static IIR component is updated (as opposed
to predicting a dynamic into the future and correcting using mea-
surements as in sect. §4.2).

4.4 Marginalization of channel parameters
The Kalman equations for x0:t are dependent on the channel param-
eters through µt|t (eqn. (17c)). In fact, as can be shown by induc-
tion, µt|t is linearly dependent in b, such that eqn. (17c) at t−1 is
equivalent to,

µt−1|t−1 = µt−1|t−2 +Kt−1

(
yt−1−CT

µt−1|t−2

)
︸ ︷︷ ︸

α t−1|t−1

−Kt−1Yt−2︸ ︷︷ ︸
Γt−1|t−1

b

Inserting into the prediction in eqn. (17a) at t,

µt|t−1 = At µt−1|t−1 = Atαt−1|t−1︸ ︷︷ ︸
α t|t−1

+AtΓt−1|t−1︸ ︷︷ ︸
Γt|t−1

b. (21)

Thus, µt|t−1 is implicitly linear in b via µt−1|t−1. Inserting
eqn. (21) in eqn. (17c) and defining Bt , IQ −KtCT , the update
equation is thus linear in b through the relation

µt|t = Btαt|t−1 +Ktyt︸ ︷︷ ︸
α t|t

+
[
BtΓt|t−1−KtYt−1

]
︸ ︷︷ ︸

Γt|t

b

This linear dependency of µt|t in b facilitates marginalization of b

from p(xt | y1:t ,θ t ,b) as shown in eqn. (13).
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Vowels Stops Fricatives Semivowels
Observed -3.46 -1.90 -2.99 -4.47

PFS +3.32 +7.86 +7.02 -1.52
Markov chain -1.23 +4.53 +2.97 +0.45

Table 1: Comparison of SNR in dB for PFS and Markov chain based
models for different phoneme types.

4.4.1 Marginalization of channel from state posterior

Recalling p(xt | y1:t ,θ t) =
∫

p(xt | y1:t ,θ t ,b) p(b | y1:t ,θ t)db
and inserting eqn. (19), the integral can be solved and is found to be
Gaussian with mean, µ̂t|t , and covariance, Σ̂t|t , where

µ̂t|t = αt|t +Γt|t µb,t and Σ̂t|t = Σt|t +Γt|tΣb,tΓ
T
t|t . (22)

Recalling eqn. (19), the marginalised mean is thus equivalent to in-
serting the maximum a posteriori (MAP) estimate of the channel in
the KF update in eqn. (17). The likelihood, p(yt | y1:t−1,θ 0:t ,b),
is obtained by marginalising the channel from eqn. (18), i.e.,

p(yt | y1:t−1,θ 0:t) = N
(
yt

∣∣µyt , Σzt,b

)
. (23)

where µyt , Yt−1 µb,t−1 +CT
(

αt|t−1 +Γt|t−1µb,t−1

)
.

Therefore, N samples of θ
(i)
t are drawn from the prior impor-

tance distribution, p
(

θ
(i)
t

∣∣∣ θ
(i)
t−1

)
. For each particle, the channel

is estimated using eqn. (20) and the linearity parameters, αt|t−1
and Γt|t−1 are evaluated. The source signal is estimated using
eqn. (22). The particles are then resampled based on the likelihood
in eqn. (23). The final estimate of the unknown variables at t is
given by the particle average (see, e.g. [4, 5]).

5. RESULTS

This section compares the performance of the Marginalized Rao-
Blackwellized (MARBLE) particle filter using the Markov chain
based and the proposed PFS speech model. To test the performance
for different phoneme types, a database of ten sentences uttered by
a female American speaker from the TIMIT database and recorded
at fs = 16kHz is segmented into the four speech sequences, con-
taining only 1. vowels (e.g., /iy/, /ae/), 2. stop consonants (e.g.,
/b/, /d/), 3. fricatives (e.g., /sh/, /z/), and 4. semivowels (e.g., /r/,
/l/) . The sequences are downsampled to fs = 4kHz, distorted by
WGN of signal-to-noise ratio (SNR) 35dB and filtered by an acous-
tic gramophone horn response investigated in [13]. The MARBLE
particle filter is executed for 1000 particles assuming 15 TVAR pa-
rameters for the Markov chain based model and three resonators for
the PFS model. The horn response can be modelled by an all-pole
filter of order 8 according to [13].

The segmental SNR is evaluated for the estimated and observed
signals and summarised in Table 1. For both models, the MARBLE
particle filter achieves significant enhancement of the distorted sig-
nals of up to 9.75dB. The PFS model outperforms the Markov chain
based model for vowels, stops, and fricatives, whereas the Markov
chain based model is more appropriate for semivowels.

The experiment is repeated for the speech utterance ‘she’ at
4kHz, again reverberated by the gramophone horn and WGN. The
segmental SNR of the observed signal is −4.78dB. The MARBLE
particle filter achieves an improvement of 10.76dB for the Markov
chain based model with an estimated SNR of 5.98dB. An improve-
ment of 12.07dB is achieved for the PFS model with an estimated
SNR of 7.29dB. The source signal for the segment ‘e’ in ‘she’ is
compared to the reverberant observed signal and the estimated sig-
nal for both models in Fig. 4. Whilst the estimated signal for the
Markov chain based model is slightly attenuated in amplitude as
compared to the source signal, the PFS model achieves a good ap-
proximation of the variation of the speech segment.

6. CONCLUSION

This paper extended the Markov chain based source model used in
the MARBLE particle filter to a novel PFS model parameterised in
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(a) Markov chain based source model.
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(b) PFS model.

Figure 4: Comparison anechoic source signal (red) with observed
signal (black) and estimated signal (blue) for the PFS and Markov
chain based model of the segment ‘e’ in ‘she’.

terms of the PARCOR coefficients. Experimental results showed
that the proposed model facilitates improved speech modelling par-
ticularly for vowels, fricatives, and stop consonants, with SNR im-
provements of up to 9.75dB.
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