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ABSTRACT

Dense three-dimensional reconstruction of a scene from im-
ages is a challenging task. Usually, it is achieved by find-
ing correspondences in successive images and computing the
distance by means of epipolar geometry. In this paper, we
propose a variational framework to solve the depth from mo-
tion problem for planar image sequences. We derive camera
ego-motion estimation equations and we show how to com-
bine the depth map and ego-motion estimation in a single
algorithm. We successfully test our method on synthetic im-
age sequences for general camera translation. Our method
is highly parallelizable and thus well adapted for real-time
implementation on the GPU.

1. INTRODUCTION

The efficient three-dimensional recovery of a scene structure
from images has been a long-term aim in computer vision.
Successful methods would have a big impact on a broad
range of fields such as autonomous navigation, biomedical
imaging or architecture. The geometry that links the 3D
structure of a scene and its projection on images has been
studied thoroughly, e.g. in [5] or [4]. Traditionnally, there is
one main approach: from a pair of stereo images of the scene
the 3D recovery is based on epipolar geometry. Such an ap-
proach has been extended to methods that handle multiple
camera inputs which are now generally known as multi-view
stereo methods (see [7] for a good overview and compari-
son). Structure from motion means the 3D scene reconstruc-
tion from images captured by a moving camera. Usually,
similar methods are used in structure from motion recovery.
They rely on finding pairs of corresponding points in succes-
sive images. This has the following consequences:

e The final result depends on the quality of the found cor-
respondence. If the match is not exact the reconstruction
will not be accurate.

e Finding correspondences is a computationnally expen-
sive task: dense reconstruction cannot be performed in
real-time.

e For real-time reconstruction, the recovery has to be lim-
ited to some few feature points. Often, tracking of the
found feature points is employed to reduce additionnal
computation cost. Tracking introduces a second source
of error for 3D reconstruction.

Another class of recent methods to obtain dense depth
maps is based on the fusion of sparse depth maps by im-
age registration techniques, e.g. [8]. Those have the advan-
tage that traditional structure from motion systems can be
employed. However, in order to provide accurate results, a
large number of depth maps has to be input for such meth-
ods. Finally, in [10] it is shown how robust depth map re-
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construction can be achieved from video sequence by belief
propagation and bundle optimization. Even if the results are
promising and the method does not need hundreds of frames
to be input, it is computationally expensive and only destined
for off-line processing.

Bagnato et al. [2, 1] has shown how to recover dense
depth maps from omnidirectional image sequences by em-
ploying a variational framework. The approach does not have
the usual drawbacks found for the methods above:

e Dense depth maps can be obtained without finding corre-
spondences and combining sparse depth maps.

e One depth map can be recovered by using only two suc-
cessive input images.

e The framework can be implemented for a dense frame-
by-frame recovery in real-time.

In this paper, we will show how to modify this approach
in order to handle regular images obtained by a planar image
sensor. In Section 2, we derive a general projection model
that relates depth and camera motion. The model is nonlin-
ear due to the central projection on the image plane and we
show how it can be linearized. In Section 3, the linearized
projection can be used in a TV-L; optimization framework
for depth from motion reconstruction. In Section 4, we solve
the camera ego-motion estimation problem. As a last step,
in Section 5 we combine both, the ego-motion and the depth
from motion estimation, into a complete structure from mo-
tion framework for planar image sequences. In section 6,
we separately evaluate the ego-motion and depth from mo-
tion estimation on synthetic images, and then we evaluate
the complete algorithm with quite remarkable results.

2. MOTION IN PLANAR IMAGES

We model the camera movement during acquisition of two
successive frames by the rigid 3D translation vector t =
(ty,ty,1;)T. Consequently, during camera motion, a point
p = (X,Y,Z)" becomes p'’=p— Ap=p—t where Ap
denotes the relative camera motion. We parametrize p by
p =d(r)e, where r = (x,y, f) is a point on the planar sensor,
f the focal distance and d(r) the distance or depth of the op-
tical center to a point in the scene. The pinhole camera model
and motion is shown in Figure 1. We denote Z(r) = 1/d(r)
the inverse depth or depth map. A point on the sensor plane
can be obtained by central projection:

o Ixlp
d(r)

In Figure 2 we have a side view of the camera model and
motion, as well as projections on the sensor plane and on the
parellel object plane. Based on Eq. 1, we can derive a projec-
tion model that links camera movement, depth of the scene

=[xl Z(r)p. (D

1014



p=d(r) e,

r=(xy,f)

Figure 1: pinhole camera model and rigid camera motion

and optical flow. The optical flow u is defined as the appar-
ent motion of brightness pattern between two images. The
central projection on the object plane parallel to the sensor
plane is given by:

N S r+(r|Zrt
P llZ(e) et lIellZ()z ez

(@)

Let us define Eq. 2 as the parallel projection. The optical
flow can be approximated by the following projection on the
sensor plane:

ez
otz

Eq.3 shows the nonlinear dependency of the estimated opti-
cal flow on the depth map Z(r) as well as on the translation 7,
perpendicular to the sensor plane. In this nonlinear form, it is
difficult to include the projection in a variational framework.
Nevertheless, combining Eqs. 2 and 3 we find a linearized
relationship between the parallel projection and the optical
flow:

—r. 3)

u = [rf|Z(r)tp. )

3. TV-L; DEPTH FROM MOTION

We assume for the moment that we know the camera trans-
lation parameters t for two successive frames Iy and ;. Fur-
thermore, we assume that the brightness does not change be-
tween those images. Using the definition of optical flow and
the projection in Eq. 4, we can express the image residual
p(Z) as in [6]:

p(Z) = h(x+uo)+ VI (||[r]|Ztp —uo)—o. (5

A depth map Z = Z(r) can be obtained by solving the fol-
lowing optimization problem [2]:

Z' =argmin Y IVZI+4 Y p(Z.1,1), (6)

xeD xeD

where D is the discrete domain of pixels and x their position
on the image. The left term in Eq. 6 represents the regular-
ization term. Here we set it to the TV norm of Z which im-
poses a sparseness constraint on Z and acts edge-preserving.
The right term is the data term which we set to the image
residual as defined in Eq. 5. We have chosen the robust L;
norm as it has some advantages when compared to the usu-
ally employed L, norm [9]. Eq. 6 is not a strictly convex
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Figure 2: side view with the projections of camera motion

optimization problem and thus hard to solve. From [2] and
[9] we know that a convex relaxation can be formulated:

* . 1
V4 = argmin Y |VZ|+% Y (V—-2)>+A Y (v,
xeD xeD xeD
(N

where V is a close approximation of Z and for 6 — 0 we
have V — Z. We solve Eq. 7 using an alternative two-step
iteration scheme:

1. For fixed Z, solve for V:

. 1
Vv = argmin Y %(V—Z)z—kl Y lpV)l.  ®

xeD xeD
2. For fixed V, solve for Z:

. . 1 2
Z —argmzlnz \VZ|+29 Ywv-z2 ©

xeD xeD

Eq. 8 can be solved by the following soft-thresholding:

AOIE|VIT, i p(Z) < —A6(|x|VI] ty)
vezid “ABEIVI by itp(Z) > A6(IKVI]ty)
R if |p(2)] < 20(|r|[VI] t,)?

(10)
In order to solve Eq. 9, the dual formulation of the TV norm
can be exploited. It is given by: TV(Z) = max{p-VZ:
[lpl] < 1}. With the introduced dual variable p, Eq. 9 can
be solved iteratively by the Chambolle algorithm [3, 2]:

w1 _ P"HTV(V-p"—V/0)
T 1+tV(V-pr—V/0) "

In the discrete domain the stability and properties of the so-
lution depends on the implementation of the differential op-
erators. In Eq. 11, V represents the discrete gradient operator
and the scalar product with V represents the discrete diver-
gence operator as defined in [3]. From Eq. 11, the depth
map can be recovered by Z =V — 0V - p. Furthermore, the
depth positivity constraint has to be imposed on the recov-
ered depth map, i.e. if Z(r) < 0 we set Z(r) < 0. In order
to provide global convergence and to handle different levels
of detail in the depth map Z we propose solving Eq. 7 us-
ing a multi-scale resolution approach. This means that we
use downsampled images “Iy and *I; of L different sizes (the

an
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Figure 3: Some of the used input images. Left: two successive frames for movement in x direction with a translation vector

t = (—0.1,0,0)7

prefix k denotes the scale level). We start at the coarsest res-
olution, where we solve for “Z. Then we upsample ~Z to the
next level L — 1 and use it as input for the projection in the
image residual. This can be repeated until level 0 is reached
where we obtain the final depth map °Z.

4. EGO-MOTION ESTIMATION

Let us assume now that we have an estimate of the depth map
Z. Given two successive images Ip and /; we can recover the
camera translation parameters by optimizing the L, norm of
the image residual with respect to t:

Y (h—I+|r|zt,"VE) e|zVE =0, (12)

xeD

In the special case of camera movement parallel to the
sensor plane solving Eq. 12 results in the linear system
A (x)b = ¢(x) with

2
al L
A = erDHrHZZZ(Tl) erDHerZZTlTy
al 81
Yoo P22y ez (%)
and

ety = [ ~ExenlitlZg(ti—h)
~Txen 25 (h~1) )

For general camera motion, we can solve Eq. 12 by itera-
tive methods, e.g. Levenberg-Marquardt or gradient descent:
X" = x" + yVE(x") where x contains the three translation
parameters and E is the energy of the image residual,

=) (0

xeD

JE
8x,~

Tau

—I+VI{u) VI £

The partial derivatives of u with respect to the motion
parameters are given by the Jacobian matrix

re|r|Z 0
r.+||r||Zt;
3T _ 0 AN
u r.+||r||Zt;

—I’ZHI‘HZ ret|r]| Ztx

+ Zty
Gz relvlZe: I

(re+r]ze)?

. Right: two successive frames for movement in z direction with a translation vector t = (0,0,0.1)7.

5. JOINT DEPTH AND EGO-MOTION
ESTIMATION

For a complete depth map reconstruction from input images,
we must show how to combine the depth from motion esti-
mation described in Section 3 and the ego-motion estimation
described in Section 4. Since both parts rely on each other,
it is very likely that we can combine them by performing al-
ternating depth and ego-motion estimation. We find that it
is best to include the alternation scheme in the multi-scale
approach:

1. At the coarsest resolution level L, we initialize £t by zero
and £Z by some small constant. We can first solve for £Z
as explained in Section 3. Since the ego-motion parame-
ters are zero the estimated depth map will be very flat.

2. With the flat depth map as input we estimate the motion
parameters according to Section 4.

3. Given the estimated motion parameters "'t and the
depth map ¥*!Z, we first estimate the optical flow ug =
|r||Z(r)tp, then we compute the depth map at level ¥Z.

4. From the refined depth map Z, we compute the motion
parameters kg,

5. Steps 3 and 4 are repeated unt11 the finest resolution is
reached and the final depth map °Z is obtained.

6. RESULTS

In order to verify our approach, we use synthetic images of
size 512 x 512 and ground truth depth maps generated by
ray-tracing of a 3D model of a living room. We have gen-
erated multiple sequences for various types of camera trans-
lation, i.e. for movement parallel and perpendicular to the
image plane as well as for linear combinations of both. The
purpose is to evaluate first ego-motion estimation and depth
from motion seperately.

We run the ego-motion estimation with ground truth
depth maps on the different sequences and we obtain the
translation vector estimates as listed in Table 1. For sim-
plicity we only show the mean and standard deviation of the
normalized vectors.

We evaluate the depth from motion part by using the
ground truth translation vectors as inputs. We normalize the
input images which is convenient for comparing the used pa-
rameters. In our experiments, we use 5 levels of resolution
with a constant scale factor of 2 from level to level. The
functional splitting parameter 0 is set to 0.05. 8 — 0 means
approaching the true TV-L; model and thus better accounting
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Figure 4: Depth maps. Top row: ground truth depth maps. Bottom row: recovered depth maps with the depth from motion
algorithm using ground truth ego-motion. Columns from left to right: movement in x, y, z and x+y+z direction respectively.
MSEs of estimated depth d(r) are: e) 3.3, f) 2.8, g) 4.2 and h) 6.4. MSEs of the estimated depth map Z(r) are: e) 4.5- 1074,

£)2.7-107%,2)3.1-10"*and h) 3-10~*.

for discontinuities in the image which in general is very wel-
come for depth map reconstruction. However, the smaller 8
is set, the more iterations are needed for satisfying conver-
gence. Setting 8 = 0.05 proofs to be a good choice that does
not require too much iterations while providing an accept-
able recovery of edges in most cases. We find empirically
that the regularization parameter A should be set such that
the product A6 lies between 1 and 10 percent of the gray-
level range of the input images. We use A = 0.5. Increas-
ing or decreasing A too much results respectively in over or
under-regularization and thus in very inaccurate depth maps.

Two successive images of an input sequence for move-
ment in distinct x and z direction are shown in Figure 3.
Ground truth as well as the recovered depth maps are shown
in Figure 4.

The complete joint ego-motion and depth from motion
estimation algorithm is evaluated on the same synthetic se-

Transl. | truet mean(t) std(t)
X (1,0,0) | (0.97,-0.02, 0.16) | (0.03, 0.03,0.18)
y (0,1,0) | (-0.02, 0.84,0.43) | (0.02,0.08,0.35)
z (0,0,1) | (-0.03, 0.06,0.99) | (0.01, 0.01, 0.00)
X+z (1,0,1) | (0.88,0.13,1.09) | (0.09, 0.02, 0.08)
y+z 0,1,1) | (-0.19, 1.26,0.38) | (0.15,0.09, 0.47)
x+y+z | (1,1,1) | (0.39,1.38,0.84) | (0.13,0.16,0.45)
Table 1: Ego-motion estimation using nonlinear-least

squares. We use a Levenberg-Marquardt solver with initial
search point t° = (0,0,0).

quences as above. In Figure 5 ground truth and recovered
depth maps are shown for the complete joint algorithm.

Errors in the ego-motion estimation might be high. This
is primarily due to using a zero-translation vector as start-
ing point which results in a flat depth map at coarse reso-
lution. The motion parameters estimation at coarse resolu-
tion is therefore almost fully constrained by the input images
only. As long as the coarse input images carry enough trans-
lational information, this will result in a reasonable motion
estimation. But it will result in quite large errors if this is not
the case.

Our framework only uses simple, spatially well localized
operations. Consequently, it is well adapted to implementa-
tion on a parallel architecture such as the graphics processing
unit. Our algorithm only needs to process two input frames
in order to compute a depth map. Thus, it is well adapted for
real-time performance. Our current prototype GPGPU im-
plementation runs on a ATI Mobility Radeon HD 3650 GPU.
It reaches a performance of 5 frames per second.

7. CONCLUSION AND FUTURE WORK

This paper presented a variational framework for dense depth
map recovery given two successive frames obtained by a
moving camera with a planar image sensor. We showed re-
sults obtained for different kinds of camera movement which
are very promising given the difficulty of the subject. Since
our framework is highly parallelizable and only needs two
successive images as input to compute a depth map, our
GPGPU implementation reaches a performance of 5 frames
per second.
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Figure 5: Depth maps. Top row: ground truth depth maps. Bottom row: recovered depth maps with the joint ego-motion and
depth estimation algorithm. 1st and 2nd column: movement in x direction. 3rd and 4th column: movement in z direction.
MSEs of the estimated depth d(r): €) 3.9, ) 7.4, g) 6.6 and h) 6.1. MSEs of the estimated depth map Z(r): e) 6.2- 1074, f)

10.1-1074,g)4.1-10~* and h) 3.9-107*.

Our framework works well for camera translation while
we find that it is not simple to include camera rotation. This
is mainly due to the limits of planar imaging, i.e. that the op-
tical flow pattern for a small rotation is hardly distinguishable
from the one issued by sensor-parallel translation. However,
the camera rotation can be accurately recovered by external
sensors like accelerometers which are more and more present
in mobile devices.

The theoretical limits of scene depth recovery with our
projection model tell us that we cannot equally well recover
depth for close and far objects. However, there exist different
approaches to bypass this limit, e.g. depth map fusion, voting
or surface models. As future work, we will include such a
method in our framework for a refined depth maps recovery
and for a consistent 3D reconstruction of the scene.
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