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ABSTRACT 

In this paper, parallel turbo quadrature amplitude modula-

tion – trellis coded modulation (Turbo QAM-TCM) schemes 

are designed using recursive convolutional encoders over 

Galois field GF(2
N
). These encoders are designed using the 

nonlinear left-circulate (LCIRC) function. The LCIRC func-

tion performs a bit left circulation over the representation 

word. An optimum 1-delay GF(2
N
) recursive convolutional 

encoder scheme using LCIRC (RC-LCIRC) is proposed for 

QAM-TCM schemes. The minimum Euclidian distance is 

estimated for these QAM-TCM schemes and it is shown that 

these structures offer the maximum coding gains. However, 

the RC-LCIRC encoders are less complex than the corre-

sponding binary encoders are. The optimum RC-LCIRC 

encoder is used as component encoder of a parallel turbo 

QAM-TCM transmission scheme, using the iterative multi-

level log-MAP algorithm in the receiver. The bit error rate 

(BER) is estimated by simulation for the proposed Turbo 

QAM-TCM transmissions over an additive white Gaussian 

noise (AWGN) channel, and the results are similar to the 

conventional Turbo-TCM schemes. 

1. INTRODUCTION 

The nonlinear functions were used lately in several blocks of 
communications systems to increase their performances.  
Frey [1] proposed a chaotic digital infinite impulse response 
(IIR) filter for a secure communications system. The Frey 
filter contains a nonlinear function named left-circulate 
function (LCIRC), which provides the chaotic properties of 
the filter. This work considered the Frey encoder as a digital 
filter, operating over Galois field GF(2N).  
Barbulescu and Guidi [2] made one of the first attempts re-
garding the possible use of the Frey encoder in a turbo-
coded communication system, but the paper lacks of proof 
for the stated performance enhancement.  
In [3] it was demonstrated that the Frey encoder with finite 
precision (wordlength of N bits) presented in [1] is a recur-
sive convolutional encoder operating over GF(2N). New 

methods for enhancing the performances of the PAM – trel-
lis-coded modulation (PAM-TCM) and the phase shift key-
ing – trellis-coded modulation (PSK-TCM) transmissions 
over a noisy channel were proposed in [4] and [5], respec-
tively. These encoders follow the rules proposed by Unger-
boeck [6] for defining optimum trellis-coded modulations by 
proper set partitioning. Two-dimensional (2D) TCM 
schemes using a different trellis optimization method for 
Frey encoder were proposed in [7]. 
The turbo coding scheme introduced by Berrou and Gla-
vieux in their seminal paper [8] allow communications sys-
tems performances close to the Shannon limit, by concate-
nating in parallel recursive convolutional encoders in the 
transmitter and using iterative decoding algorithms in the 
receiver. Turbo schemes were developed as well for the 
TCM schemes [9], [10], [12]. 
In the present work, the recursive convolutional LCIRC 
(RC-LCIRC) from [5] is adapted to and introduced in a par-
allel turbo quadrature amplitude modulation QAM-TCM 
transmission scheme, and the performances of this scheme 
are analyzed in case of transmitting over a channel with ad-
ditive white Gaussian noise (AWGN). A similar analysis 
was performed in [11] for the turbo PSK-TCM transmission 
scheme. 
The paper is organized as follows. Section 2 is presenting 
the RC-LCIRC encoder operating over Galois field GF(2N) 
and its use for optimum PSK-TCM schemes. The asymp-
totic gain of rate (N – 1)/N RC-LCIRC encoder is estimated. 
In Section 3, a parallel turbo QAM-TCM transmission 
scheme using RC-LCIRC component encoders is proposed. 
A multilevel log-MAP algorithm is used for the iterative 
detection. The simulated bit error rate (BER) performance in 
an AWGN channel is plotted in Section 4 for the 16 QAM -
TCM transmission as compared to 8PSK, using two types of 
mappings: Gray and set partitioning (SP). The coding gains 
of 16QAM-TCM schemes using these different mappings, 
as compared to the uncoded modulation and the non-
iterative schemes, are derived from simulations. Finally, the 
conclusions are drawn and some perspectives are presented 
in Section 5. 
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Figure 1. –.Rate Nin/N optimum GF(2N) recursive convolutional 
LCIRC encoder for Nin b/s/Hz. 

2. OPTIMUM RECURSIVE CONVOLUTIONAL 

LCIRC ENCODERS FOR PSK-TCM SCHEMES 

In this section, a new family of recursive convolutional en-
coders operating over Galois field GF(2N) and their use for 
optimum QAM-TCM schemes are presented.  
The main component of the chaotic encoder introduced by 
Frey in [1] and the recursive convolutional encoder pre-
sented in [3] is the nonlinear LCIRC function. Let us denote 
by N the wordlength used for binary representation of each 
sample. The LCIRC function is used as a typical basic ac-
cumulator operation in microprocessors and performs a bit 
rotation by placing the most significant bit to the less sig-
nificant bit, and shifting the other N-1 bits one position to a 
higher significance.  
The block scheme for an optimum recursive convolutional 
LCIRC (RC-LCIRC) encoder, using one delay element and 
the LCIRC function is presented in Fig. 1 [5]. For each mo-
ment n, u[n] represents the input data sample, x1[n] denotes 
the delay output or the encoder current state, and e[n] is the 
output sample. The superscript U denotes that all the sam-
ples are represented in unsigned N bits wordlength, i.e., 
u

U[n], eU[n] ∈ [0, 2N-1]. The encoding rate for the encoder 
in Fig. 1 is the ratio between the input wordlength Nin and 
the output wordlength N=Nout, i.e., R=Nin/N [7], [8]. 
LCIRCNin represents the LCIRC function application for Nin 
times consecutively. Both adders and the multiplier are 
modulo-2N operators.  
For a fixed output wordlength N, an optimum recursive con-
volutional encoder can be designed for each input 
wordlength Nin ∈{1, 2, …, N-1}, for which the encoding 
rate is R = {1/N, 2/N, …, (N – 1)/N} [4], [5].  
The trellis complexity of the codes generated with the 
scheme in Fig. 1 increases with the wordlength, because the 
number of trellis states grows exponentially with the output 
wordlength, i.e., 22N, while the number of transitions origi-
nating from and ending in the same state grows exponen-

tially with the input wordlength, i.e., inN22 .  
It can be easily demonstrated that the minimum Euclidian 
distance for the PSK-TCM scheme using encoder in Fig. 1 
has the following expression [5]: 
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Figure 2. – Asymptotic gain as function of the spectral efficiency for 
rate (N-1)/N optimum GF(2N) recursive convolutional LCIRC en-

coders. 
 
where ∆k represents the kth order Euclidian distance be-
tween the M-PSK signal constellation points. We can write 
the following expressions of the M-PSK Euclidian distances 
in the ascending order: 
      ∆k = 2 ·  sin[(k+1) · π / M], k∈{0, 1, …, log2(M)-1} (2) 
For example, let us consider the optimum encoders for the 
8-PSK-TCM scheme, i.e., the output wordlength equal to 3, 
i.e., N=3. The input wordlength may take three values Nin 
∈{1, 2}, and the corresponding encoding rates are R ∈ {1/3, 
2/3}. For the rate 1/3 encoder the scheme in Fig. 1 is set 
with all the values corresponding to Nin=1. From (1) and (2) 
results that the minimum distance of this code is d2

E, R=1/3, opt., 

8-PSK, u
U

∈{0,4} = 14, having a coding gain of 10·log10(d2
E, R=1/3, 

opt., 8-PSK, u
U

∈{0,4} / d
2
E,R=1,N=3, opt., 8-PSK) = 10·log10(14/1.1716) ≈ 

10.77 dB over the optimum 8PSK (N=3) using a rate 1 en-
coder. For the rate 2/3 encoder (Nin=2) the minimum dis-
tance of this code is d

2
E, R=2/3, opt., 8-PSK, u

U
∈{0,2,4,6} = 4 + 4 · 

sin2(π/8) ≈ 4.5858, having a coding gain of  approximately 
5.93 dB over the optimum 8PSK (N=3) using a rate 1 en-
coder. The rate 1 optimum encoder is obtained for Nin = N, 
for any value of N, considering that  

UUNU xxLCIRCxLCIRC == )()(0 assumes no bit circula-

tion. This rate 1 optimum encoder offers a minimum dis-
tance of d2

E, R=1, opt. N=3, opt., 8-PSK = 8 · sin2(π/8) ≈ 1.1716. 
It can be easily demonstrated starting from (1) that all the 
rate (N – 1)/N, for any N value, the optimum recursive con-
volutional LCIRC encoders are offering the same minimum 
distance as the corresponding binary optimum encoders de-
termined by Ungerboeck in [6]. For example, the above-
mentioned rate 2/3 encoder (Nin=2) has the minimum 
Euclidian distance of 4.5858 determining an asymptotic 
coding gain of 3.6 dB. Using the expressions in (1) we can 
easily plot the asymptotic gain of optimum rate (N – 1)/N 
LCIRC as a function of the spectral efficiency N – 1. The 
results are presented in Fig. 2.  

The asymptotic coding gain is estimated using the fol-
lowing expression: 
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Figure 3. – Turbo TCM encoder with RC-LCIRC. 
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where d
2
E, R=(N-1)/N, 2

N
-PSK denotes the minimum Euclidian 

distance of the rate (N – 1)/N LCIRC TCM scheme using a 
PSK modulation with 2N phase levels, and d

2
0, 2

(N-1)
-PSK 

represents the minimum Euclidian distance in the 2(N-1)-PSK 
non-coded signal constellation. Hence, the asymptotic coded 
gain specifies the gain of the coded scheme when doubling 
the signal constellation size over the non-coded signal. As 
shown in Fig. 2 the asymptotic gain decays rapidly to a limit 
value when the number of signal levels increases. Similar 
results can be obtained for QAM-TCM schemes. 
However, the GF(2N) optimum recursive convolutional 
LCIRC encoders are less complex than the corresponding 
binary encoders. The memory size of the binary encoders 
increases logarithmically with the number of states in the 
trellis, while the GF(2N) optimum recursive convolutional 
LCIRC encoders include only one delay element, no matter 
what the trellis complexity is. As another advantage of these 
encoders, we can also mention the Euclidian distance com-
pact expression as a function of Nin and N. 

3. RC-LCIRC ENCODER IN QAM TURBO-TCM 

SCHEME 

Fig. 3 shows the turbo TCM encoder for 2N-QAM modula-
tion. The information sequence and the Nin bits block-wise 
interleaved sequence are fed into component encoders RC-
LCIRC1 and RC-LCIRC2 of rate Nin/N, and mapped into 2N-
QAM symbol sequences (xn). The non-systematic nature of 
RC-LCIRC encoder does not permit the parity bits punctur-
ing as in traditional turbo-TCM schemes. Hence, the overall 
coding rate for the scheme in Fig. 3 is Nin/(2⋅N). The 2N-
QAM symbol sequence is transmitted over a noisy channel. 
The received signal over the n-th symbol interval is given 
by: 
  nnn wxy +=  (4) 

where wn is an additive white gaussian noise (AWGN) se-
quence and xn denotes the 2N-QAM symbol sequence 
mapped from the encoder output sequence {e

U[n], e(i)U[n]}.  
The receiver structure, shown in Fig. 4, has two components 
that use multilevel version of log-MAP algorithm. The odd 
symbols from the received sequence are fed into first com-
ponent decoder that corresponds to the RC-LCIRC1 in order 
to compute the a posteriori log likelihood ratio (LLR) per 
transmitted bit Lap, as following:  

  
)|0(

)|1(
ln)|(

y

y
y

=

=
=

tn

tn
tnap

bP

bP
bL                  (5) 

 
 Log-MAP 

 [ ]y n   [ ]apL n

  Π 

 Π -1 

 Log-MAP 

Slicer 

 ( )[ ]i

apL n

 [ ]aL n  

 ( )[ ]i

aL n

 ( ) [ ]i

extL n   

 [ ]extL n   

 [ ]b n
)

  

      
 

Figure 4. – Iterative turbo-TCM receiver. 

where btn is the t-th bit from n-th encoder input information 

word, {bn}↔u
U  with 1...2 inN

t= , and y is the received sym-
bol vector. 
Using Bayes’ theorem under the assumption of statistically 
independent bits, the joint probabilities can be split into 
products: 
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where  ( )0
t

b  and ( )1
t

b  are the sets of 12 inN −  words of input bits 

with the t-th position bit bt = 0 or bt = 1, respectively. The 
third term in (6) represents the a priori bit knowledge fed by 
the other decoder La(btn). The first two terms in both sums 
from denominator and nominator of (6) represent the sym-
bol probability that depends on a priori bit values and trellis 
encoder constraints, which are used in transition metric 
computation of multilevel log-MAP algorithm [9]. The rela-
tion (6) is evaluated iteratively as:  
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using an eight entries approximation table of the so called 
Jacobian Logarithm, given by [9]: 

  
( ) ( ) ( ) ( )max* , ln max , ln 1 a ba b
a b e e a b e

− −= + = + +
 (8) 

Then, the extrinsic information Lext is calculated by subtract-
ing the a priori LLR La(btn) from Lap(btn). The extrinsic in-
formation shows the increment of the decoded symbol reli-
ability. The extrinsic information sequence from the first 
log-MAP decoder (corresponding to the component encoder 
RC-LCIRC1) is interleaved and fed into the second compo-
nent decoder as a priori value, La

(i). It corresponds to the 
component encoder RC-LCIRC2. At the same time, the even 
order received symbols sequence is also fed into the second 
decoder and then this decoder calculates the extrinsic infor-
mation, Lap

(i). This extrinsic information sequence is deinter-
leaved and fed back into the first component decoder as a 
priori value, La, thus ending each iteration.  
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Figure 5. – BER for 16QAM turbo-TCM with Gray mapping. 
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Figure 7. – BER for 8PSK turbo-TCM with Gray mapping. 

 
The role of deinterleaver is to rearrange the sequence of 
extrinsic information in the order corresponding to the re-
ceived information from the first decoder component input. 
At the last iteration, a final decoded bit is obtained from the 
sign of Lap. 

4. SIMULATION RESULTS 

The turbo-TCM scheme proposed in Section 3 was tested 
for 8-PSK and 16-QAM modulation by simulation over an 
AWGN channel, using an equivalent symbol wise block 
interleaver of length 31x31. Both component encoders in the 
turbo-TCM scheme in Fig. 3 are identical rate-2/3 RC-
LCIRC encoders for 8-PSK and rate-3/4 for 16-QAM, re-
spectively. Hence, the overall coding rate is 1/3 for 8-PSK 
modulation and 3/8 for 16-QAM modulation, respectively.  
The TCM employed the modulations 8-PSK and 16-AQM 
with two mapping rules: Gray, and anti-Gray, where sym-
bols at minimum Euclidean distance differ in one bit or in 
maximum number of bits, respectively [12]. 
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Figure 6. – BER for 16QAM turbo-TCM with anti-Gray mapping. 
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Figure 8. – BER for 8PSK turbo-TCM with anti-Gray mapping. 

 
Each of following simulation results are shown as BER per-
formances versus Eb/N0, where Eb is the signal energy per 
one information bit and N0 is one-sided power spectral den-
sity of the background noise. 
Figure 5 shows the bit error rate (BER) performances of 
turbo-TCM using 16-QAM, Gray labeling. At 5-th iteration, 
we observe a 7 dB gain as compared with non coding 
scheme, for BER=4·10-5. 
This scheme provides a 5.5dB gain over non-iterative 
scheme and 4 dB improvement through five iterations.  
In figure 6 the BER performances of 16-QAM, anti-Gray 
labeling over first five iterations are depicted. Further itera-
tion do not improve decoder/detector performances. This 
scheme offers about 8 dB gain versus encoded 16-QAM 
modulation and 4.25 dB gain as compared with non-iterative 
scheme. 
Figure 7 shows the BER performances using 8-PSK, Gray 
labeling over first three iterations. Further iteration do not 
improve decoder/detector performances. This scheme offers 
about 8 dB gain versus encoded 8-PSK modulation and 2 dB 
as compared with non-iterative scheme.  
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BER performances for 8-PSK, anti-Gray labeling is shown 
in figure 8. This scheme attained the best threshold from all 
three mapping rules. It needs 3dB and 8 iterations to per-
form at BER=3·10-5. It provides 10dB gain versus uncoded 
modulation and 3.7dB as compared with non-iterative 
scheme.  
The increased throughput of 16-QAM modulation has a 
penalty of 1dB and 2 dB for Gray and anti-Gray mapping 
respectively, compared to 8-PSK modulation. 
We can note that the BER floor is about 10-5 for all simula-
tions. This is due to low constraint length of the block inter-
leaver, i.e., 961 symbols, and is relatively independent of the 
modulation type and mapping rule. 

5. CONCLUSIONS 

It was shown that the proposed RC-LCIRC encoder can be 
used as a component encoder in turbo-TCM schemes. The 
BER performances improvement with iterations was dem-
onstrated by means of simulations. For simulations, we con-
sidered the 16-QAM and 8-PSK turbo-TCM scheme, using 
two mappings: Gray and anti-Gray. Similar to the classical 
turbo-TCM scheme, the maximum coding gain is deter-
mined for the anti-Gray mapping. Nevertheless, the nonlin-
ear LCIRC function drives to low complexity encoder, while 
the lack of non-systematic property attains good perform-
ances in iterative schemes. 
In further studies it is necessary to to evaluate the perform-
ances using EXIT chart and investigate the punctured ver-
sion of this turbo-TCM schemes. In addition, the scheme 
performances analysis when transmitting over a channel 
with fading requires further attention. 
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