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ABSTRACT

Word-length optimization of signal processing algorithmsis
a necessary and crucial step for implementation. System
level performance evaluation happens to be the most time
consuming step during word-length optimization. Analytical
techniques have been proposed as an alternative to simulation
based approach to accelerate this step. The inability to handle
all types of operators analytically and the increasing diver-
sity and complexity of signal processing algorithms demand
a mixed evaluation approach where both simulation and an-
alytical techniques are used for performance evaluation of
the whole system. The interoperability between simulation
and analytical techniques requires study of noise sources and
noise propagation characteristics. While the noise power and
noise PDF have been studied, the output noise power distri-
bution has not been studied. This paper addresses the prob-
lem of power spectral density estimation of the noise analyt-
ically. This paper also proposes to use the spectral density
estimate for noise power calculation by having an approxi-
mate filter thereby accelerating the process of performance
evaluation.

1. INTRODUCTION

Signal processing algorithms are increasingly finding their
way into modern electronic gadgets. While developing the
algorithm to fulfil objectives is quite a challenge, optimalim-
plementation of these algorithms such that the implementa-
tion cost is kept minimal consists of many tough challenges.
One such challenge is to choose optimal computational ker-
nels having the right word-lengths to perform the signal pro-
cessing computations. It is an obvious choice to use fixed
point kernels over their floating point counter parts to save
area, power and time.

Finite precision word-lengths introduce quantization er-
rors into the system. These errors have been studied with
the help of Widrow quantization [1] model which treats such
noise as small signal perturbations more popularly referred
to as quantization noise. The amount of quantization noise
introduced into the system brings to the forefront an opti-
mization problem which makes a choice between the cost
and accuracy of the system.

The process of optimizing word-lengths is typically an
iterative process where an optimization heuristic is used to
determine optimality by comparing the system cost and the
corresponding system performance. While good optimiza-
tion heuristics can reduce the number of iterations, efficient
techniques for cost and performance evaluation reduce the
time taken for each optimization iteration. The cost of the
system is generally defined as a function of area occupied,

total power consumed and the delay in execution by the sys-
tem. Cost evaluation is typically the sum of individual com-
ponent costs in the system. The performance of any signal
processing system is evaluated in terms of a system specific.
Typically, parameters such as output noise power, signal to
noise ratio (SNR), bit error rate (BER) are used for this pur-
pose. Evaluating performance requires the knowledge of the
system functionality and is hence not trivial.

A hierarchical methodology has been developed [2] for
efficient optimization and performance evaluation of large
systems. At the heart of this methodology is the single-noise
source model, which is used to sub-divide the optimization
problem into smaller optimization problems. In this paper,
we further develop the single-noise source model to incorpo-
rate the noise frequency response estimation.

The paper is organised as follows, the next section pro-
vides motivation and previous related work. Section 3 de-
scribes the hierarchical framework, the role of single-noise
source model and the importance of estimation of the fre-
quency response. Section 4 develops the necessary mathe-
matical framework to deal with non-linear time-variant but
stationary sub-systems. Section 5 applies the proposed
framework for output noise spectrum analysis of a non-linear
second order Volterra filter and presents the results obtained
thereof. In Section 6, the paper concludes with a summary of
contributions and discuss future work.

2. MOTIVATION

Simulation based techniques and analytical models have
been proposed to measure performance of fixed-point sys-
tems. While the simulation based techniques [3, 4] are appli-
cable universally, long execution times is a deterrent to use
them always. On the other hand, the analytical models pro-
vide closed form expressions for evaluating noise power for
different choice of word-lengths. The noise power can then
be used to evaluate the performance metric of the system.
However, analytical models have not been developed thus
far for all types of systems (e.g. un-smooth operators such
as decision operators) and are applicable only on a subset of
systems.

Complex signal processing systems are often described
with well known signal processing sub-systems. The exist-
ing techniques for performance evaluation such as [5] require
the system to be flattened all the way to the operator level
in order to consolidate the noise contributions to the output.
This is not only cumbersome but it is also sometimes impos-
sible as there can be sub-systems made of operators which
do not have an analytical model. Hence a hybrid approach to
measure performance that can exploit the good of both sim-
ulation and analytical approaches is formulated. Also, the
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existing optimization techniques concentrate mostly on opti-
mizing word-lengths at the operator level and treat the word-
length of each operator as an optimization variable. The hier-
archical methodology proposed in [2] uses a divide and con-
quer approach which makes it easier to scale the optimization
algorithm on bigger systems. The single-noise source model
which is at the heart of this approach captures the effect of
quantization noise at the sub-system level for use in the sys-
tem level optimization.

In a hierarchical approach, it is important that the noise
generated in the sub-systems is propagated across hierar-
chies and eventually to the system output. The sub-systems
through which the noise is propagated could be sensitive to
noise distribution and frequency spectrum. Hence, insteadof
a simplistic metric like noise power, the quantization noise
spectral density and distribution needs to be studied at the
output of every sub-system. In the case of sub-systems made
of arithmetic operators, it has already been shown experi-
mentally that the noise distribution is a parametric summa-
tion of uniform and Gaussian distributions [6]. In this paper,
we focus on characterizing the spectral characteristics ofthe
sub-system generated quantization noise.

A technique to shape the noise spectral characteristics for
LTI systems has been proposed in [7]. In this approach, the
fixed point design optimization constraints are specified by
means of spectral characteristics of noise. The proposed al-
gorithm determines the word-lengths such that the spectral
constraints are met while minimizing area. The proposed
technique is interesting as it relates word-length choice to the
spectral density function. However, the problem considera-
tion in this approach is converse of the problem considered in
this paper. Also, the proposed technique has not been applied
on non-linear or time-variant systems. Thus, the problem of
spectral estimation of the quantization noise spectral density
remains largely unexplored.

This paper demonstrates a simple technique to estimate
the power spectral density of the output quantization noiseof
the sub-system and proposes a linear filter model to model
the effect of quantization at various sub-system hierarchical
levels. The proposed model is shown to be applicable to non-
linear, time variant systems.

3. THE HIERARCHICAL APPROACH

The hierarchical approach in [2], a divide-and-conquer strat-
egy is used to solve the multi-variable optimization problem.
The system is hierarchically divided at the boundaries of pre-
defined sub-systems recursively. The problem of system op-
timization in this hierarchical approach is formulated as

min(C (P)) such as λ (P) ≥ λob j (1)

where,P = [P0,P1, . . . ,PNb−1] is a vector of sub-system noise
powers at any given hierarchy. Each ofPi represents the total
noise power at the output of theith sub-system. This tech-
nique uses the sub-system noise power as the optimization
variable.

Each sub-system is optimized by solving the original op-
timization problem which is defined at the word-length level
stated as

min(Ci(WDi
)) such as fPi(WDi

) < Pi (2)

whereWDi is the vector of word-lengths andCi, fPi are re-
spectively the cost and performance functions of theith sub-

system. It is easy to see from comparison between Equa-
tions 1 and 2 that the sub-system noise power replaces the
noise due to word-length quantization in the global optimiza-
tion problem.

To evaluate the performance at the system level, the entire
system is simulated at the system level with double precision
floating point accuracy only once to collect the data required
for use with the noise model. The fixed-point system is then
replaced by the single-noise source and the double precision
floating point system. Any greedy optimization technique is
used to optimize the sub-system optimization problem stated
in Equation 2. The same could be applied recursively up to
the top-level design abstraction to solve the problem defined
by Equation 1.

While the proposed divide-and-conquer approach re-
duces the complexity of the problem by using just the noise
power, performance evaluation at the system level is not a
simple function of the noise power. It is clear from first prin-
ciples of signal processing that the performance of the total
system performance would depend on the sub-system noise
spectral and distribution characteristics. Hence, from the per-
spective of performance evaluation, study of noise spectral
density and distribution is important. While the word-length
quantization effects have been extensively studied in terms
of quantization noise power, little has been done to under-
stand and analyse other properties of quantization noise at
the sub-system level.

3.1 Single Noise Source Model

The single-noise source model allows the use of output noise
power as given by Equation 1. To explain this central theme,
consider a sub-systemB in a hierarchically defined systemB
with inputx and outputs as shown in Figure 1. The noisesbx
andbs are associated with signalsx ands respectively. The
powerPi in Equation 1 corresponds to the noise power of the
signals. The total quantization noisebs at the output of the
system consists of two componentsbsg andbst for the noise
generated within the system and noise transmitted through
the system respectively.

bst

Sub-System

bx

+

bsg

bg

x s + bss

B

T̃

G̃

Figure 1: Single Noise Source Model

The noisebx(n) associated with the input signalx(n) is
independent of the signal. The effect of this noise at the out-
put bst is calculated by passing it through the noise propaga-
tion filter T̃ which modifies the power spectrum ofbx like the
sub-systemB. The noisebsg, generated in the sub-systemB
is modeled by passing the single-noise sourcebg through the
noise generation filter̃G. The noise generation filter shapes
the spectral characteristics of the noise to represent the effect
of quantization noise generated within the sub-systemB. It
has been shown in [6] that the output PDF is not uniform and
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is in fact closer to being a Gaussian (due to central limit the-
orem). Hence, noise sourcebg is modeled as white Gaussian.

The noise model used for propagation of quantiza-
tion noise through arithmetic operators [5] essentially lin-
earizes the noise propagation for all types of arithmetic non-
linearities under the conditions described by the Widrow
model [1]. Following the Widrow model for quantization
noise, all the operator noise sources are known to be uniform
and white. The noise propagation models however tend to be
time varying in nature.

Taking both noise propagated and generated into consid-
eration and given that the noise models are linear, the total
noise at the output of sub-systemBi is given by

bs(n) = g̃(n)�bg(n)+ t̃(n)�bx(n). (3)

Where ˜g(n) andt̃(n) are the impulse response of the filtersG̃
andT̃ from Figure 1 respectively. As long as the output noise
is stationary, it is possible to compute its noise power density
spectrumSbsbs(e

jω). Deriving an expression for analytical
evaluation of the noise power spectrum at the output is the
primary issue addressed in this paper.

3.2 Accelerating Performance Evaluation

While evaluating the sub-system noise, the noise power, its
spectral density and distribution are estimated. The noise
spectrum is represented by an equivalent linear filter whose
magnitude response is a close approximation of the estimated
spectrum. The linear filters replace the original sub-system
while preserving the topology of the signal network. The
idea here is to provide a framework which can be used for
CAD-based automation for mixed performance evaluation
technique.

The noise-equivalent is used in order to eliminate the
necessity of a full simulation to estimate the performance
degradation with every combination of word-lengths. How-
ever, the original signal is required for evaluating systems
which cannot be handled analytically (such as decision op-
erators). For handling such cases, the signal at the output of
the sub-system which is the sub-system response to the in-
put signal is obtained by means of a floating point simulation
and stored in memory. The stored signal along with the filters
successfully mimic the behavior of the original sub-system,
thus providing an analytical means to perform the perfor-
mance estimation of the fixed point system without having
to simulate the sub-system. This method provides a seamless
framework for interoperability between usage of simulation
and analytical modeling for performance evaluation of the
entire system. This technique also enables traversing hierar-
chies and utilizes the sub-system filter model to construct its
equivalent counterparts at any higher hierarchical level.

4. ESTIMATING FREQUENCY RESPONSE

Consider a sub-systemB which is a non-linear time variant
system as shown in Figure 1 with noise generation and noise
propagation system functions̃T andG̃ respectively. Both of
these filters are similar for analysis in the context of this pa-
per except that, the noise power spectrum of the input to the
generation filterbg(n) is always known to be white while the
input noisebx(n) does not need to be white. Thus the results
obtained in the following Equations are equally applicableto
both system functions.

The noise propagation model for all arithmetic operator-
based functions (including non-linear) can be linearized [5].
Hence without any loss of generality, the propagation and
generation equivalent system functions is considered to be
linear and time-varying system.

4.1 Windowing for Stationarity

Frequency spectrum of the noise is meaningful only when
the noise is stationary. However, not all signals are station-
ary. One way of handling this problem is by windowing the
signals such that they are locally stationary [8]. A patholog-
ical scenario is where there are too many such windows and
the windowing overhead out weighs the benefits. In such
extreme cases, one has to revert back to simulation based
techniques.

The windowing is performed such that all relevant sig-
nals in the given window may be considered stationary. This
sense of pseudo-stationarity or temporally stationarity en-
ables estimation of the noise power spectrum. It is not always
easy to find windows where the so called pseudo-stationarity
would exist. In such cases, the definition of pseudo needs
to be approximated such that the performance degradation is
still conservative.

4.2 Noise Power Spectrum

The noise power spectral distribution at the sub-system out-
put is the magnitude response obtained by calculating the
Fourier transform of the autocorrelation function.

The output of any time varying systemH is obtained by
the convolution operation of the system function with the in-
put signal. Consider a time windowW wherein all the coef-
ficients of the varying systemH are stationary. The output
noiseby(n) contributed by a noisebx(n) at the input given by

by(n) =
∞

∑
k=−∞

h(k,n)bx(n− k) (4)

Here, h(k,n) can be thought of as thepseudo impulse re-
sponse of the time varying systemH at any discrete point in
timen at thekth tap. The autocorrelation functionRbyby of the
noiseby(n) at the output of such a system can be expanded
and simplified as

Rbyby(m) = E{by(n)by(n + m)}

=
∞

∑
k=−∞

∞

∑
r=−∞

E{h(k,n)h(r,n + m) . . .

bx(n− k)bx(n + m− r)} (5)

Applying Fourier transform on both sides of Equation 5, the
power spectral density of the noise at output can be written
and expanded as

Sbyby(e
jw) =

∞

∑
m=−∞

E{
∞

∑
k=−∞

∞

∑
r=−∞

h(k,n)h(r,n + m) . . .

bx(n− k)bx(n + m− r)}e− jωm (6)

So,

Sbyby(e
jw) = E{

∞

∑
m=−∞

∞

∑
k=−∞

∞

∑
r=−∞

h(k,n)h(r,n + m) . . .

bx(n− k)bx(n + m− r)e− jωm} (7)

554



By taking m = p + r − k in Equation 6, the expression
power spectral density can be written as

Sbyby(e
jw) = E{

∞

∑
p=−∞

∞

∑
k=−∞

∞

∑
r=−∞

h(k,n)e jωk
. . .

bx(n− k)bx(n + p− k)e− jω p
. . .

h(r,n + p− k)e− jωr} (8)

Sbyby(e
jw) = E{

∞

∑
k=−∞

h(k,n)e jωk
. . .

∞

∑
r=−∞

h(r,n + p− k)e− jωr} . . .

E{
∞

∑
p=−∞

bx(n− k)bx(n + p− k)e− jω p}

︸ ︷︷ ︸

Sbxbx (e jω )

(9)

Thus the noise spectrum at the output can be written as

Sbyby(e
jw) = H̃k,r(e

jω)Sbxbx(e
jω ) (10)

whereH̃k,r(e jω ) is defined as

H̃k,r(e
jω ) = E{

∞

∑
k=−∞

h(k,n)e jωk

︸ ︷︷ ︸

H̃k(e− jω )

∞

∑
r=−∞

h(r,n + p− k)e− jωr

︸ ︷︷ ︸

H̃r(e jω )

}

(11)
Theh(k,n) andh(r,n) terms in Equation 11 are the time-

varying coefficients of the system under consideration. By
expanding the Equation 11 with(k,r) ∈ (−∞,∞), and uti-
lizing the available symmetry, the expression for the power
spectrum of the transfer function can be written as follows

H̃(e jω) =
∞

∑
k=−∞

∞

∑
∆=0

(E{hkhk+∆}+ E{hk+∆hk})cos(∆ω)

(12)
Clearly, the computation of̃H requires the correlation

evaluated at 0∀(k,∆) in Equation 12. This is calculated only
once from one single floating point simulation of the system
and is independent of the fixed point format. Hence, it is
used in every iteration of the optimization process thereby
delivering the acceleration during optimization over simula-
tion based approaches.

In case of LTI systems, the filter coefficients are constant.
Hence it is possible to write the spectrum of the filter as

H̃(e jω) =
∞

∑
i=−∞

∞

∑
∆=0

(hihi+∆ + hi+∆hi)cos(∆ω) (13)

From Equation 13, it can be seen that the expression for
H̃(e jω ) degenerates to|H̃i(e jω)|2 which is a classical result
obtained in the case of LTI systems, thus also verifying the
expression for the spectrum in the LTI case.

4.3 Complexity Analysis

The proposed technique attempts to provide a closed form
expression as given in Equation 13 to represent the noise
coloring filter. The effort for computation of the frequency

response depends on the number of coefficients whose auto
correlation and cross correlations are to be found. When
there areNd number of delays in the noise expression, the
total number of correlation termsNc that need to be calcu-
lated isNd

2.
Each of the delay terms in the noise expression is associ-

ated with a coefficient. These coefficient terms are typically
dependent on the input signal and hence need to be calculated
for every input sampleNs. The effort involved in computing
each correlation at 0 isO(Ns). Hence the total time for eval-
uating the filter expressionTExpr is given by

TExpr = Nd
2
.tCorr + Nd.tCoe f f . (14)

Where tCorr is the time for computing one correlation
term andTCoe f f is the average time to evaluate each coeffi-
cient expression. The multiplication and addition operations
required during correlation and the time for coefficient ex-
pression are proportional to the number of samples. Hence,
it is possible to estimate the time required for computing cor-
relation terms and coefficient terms can be written as

tCorr = αCorr.Ns (15)
tCoe f f = αCoe f f .Ns (16)

Where αCorr and αCoe f f are proportional constants.
Though there is a contribution of theNd term in the com-
plexity estimation, it is of the order of few tens of elements.
Whereas the order ofNs is in millions of samples. Thus, it
can be concluded that the computational complexity to deter-
mine the analytical expression for the system isO(Ns).

In a simulation based approach the performance evalu-
ation takesO(Ns) time and it has to be repeated for every
iteration. In the proposed analytical method, though the time
to arrive at the analytical expression isO(Ns), it is performed
only once which can be regarded as a pre-processing step and
hence better than any simulation based approach.

5. EXPERIMENT AND RESULTS

5.1 Volterra Filter

While it is trivial to obtain the transfer function of an LTI sys-
tem, an equivalent propagation and generation filter is con-
sidered for a non-linear second-order Volterra filter. Given
inputx(n), the outputy(n) for the Volterra filter is given by

y(n) = a11x2(n)+ a22x
2(n−1)+ . . .

a21x(n)x(n−1)+ a1x(n)+ a2x(n−1). (17)

By replacing the operators with their equivalent noise model,
the noise output expression for the Volterra filter is

by = {2a11x(n)+ a1+ a12x(n−1)}
︸ ︷︷ ︸

α1

bx(n)+

{2a22x(n−1)+ a2+ a12x(n)}
︸ ︷︷ ︸

α2

bx(n−1)+ bg(n) (18)

wherebg groups together all the noise generated inside the
system. In this example, all the noise generated within the
system happens to be white and is not very interesting to
study. Also, in the course of study, no quantization effects
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are introduced within the filter. Therefore, only the propaga-
tion filter is presented. The propagation filter is given as

h̃i(n) = α1(n)bx(n)+ α2(n)bx(n−1) (19)

The termsα1(n) andα2(n) are time varying. Thus, by ex-
panding the transfer function Equation 12, the spectrum of
the filter becomes

|H(e jω)|2 = (Rα1,α1(0)+ Rα2,α2(0))+

(Rα1,α2(0)+ Rα2,α1(0))cos(ω) (20)

whereRαi,α j(0) are the cross correlation and auto corre-
lation functions.
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Figure 2: Output noise power spectrum estimation for
Volterra

As input to the Volterra filter, a sine wave perturbed by
Gaussian noise is used as the input to the system. The corre-
lation coefficients and the impulse response of the equivalent
filter is calculated. The magnitude response of the filter com-
puted analytically is compared with the noise spectrum at the
output of Volterra filter which is obtained by fixed-point sim-
ulation.

When the perturbation noise input into the Volterra filter
is white, the output noise spectrum traces the frequency re-
sponse. In the Figure 2, the output noise spectrum calculated
analytically and the spectrum obtained by simulation match
very closely. In the Volterra filter example considered, the
presence ofcos(ω) term in the magnitude response as shown
in Equation 20 is clearly seen as the spectrum tapers towards
the x-axis at higher frequencies. In the case of a colored
noise, the noise used to perturb the sinusoid is a coloured
band-pass noise. The output noise spectrum obtained analyt-
ically matches the spectrum obtained by simulation. It has to
be noted that the effect of thecos(ω) term is visible even in
the coloured noise case.

The outcome of the experiments suggests that, the fre-
quency response of the filter derived analytically by adopting
the procedure described in this paper can faithfully represents
the frequency characteristics of the system.

6. CONCLUSION

A technique to estimate the noise power spectrum of arith-
metic operator based systems and thereby accelerating the
performance evaluation of fixed point systems is presented.
Computation of the power spectrum in this technique re-
quires the auto-correlation functions of the filter coefficients
evaluated at 0 and is hence not computation intensive. The

original sub-system is replaced by the double precision float-
ing point system and linear time-invariant filters whose mag-
nitude spectrum is a close approximation of the noise power
spectrum. The floating point data and the filters are used
for all noise power calculation during every iteration during
optimization. The idea is to be able to seamlessly use this
technique in a complex and hierarchically defined signal pro-
cessing system to find equivalent approximations at all hier-
archical levels. Using this technique accelerates the perfor-
mance evaluation process in situations where both simulation
and analytical techniques are used. This technique also helps
in noise power budgeting in situations where a divide-and-
conquer algorithm is used to for optimization.

This paper contributes by providing the necessary frame-
work and a generic filter coefficient formula for computing
the spectrum of any arithmetic based signal processing sys-
tem. The acceleration obtained is due to the fact that, a fixed
point evaluation of the system is not required during every it-
eration of the optimization algorithm. Though the proposed
method requires windowing in case of non-stationary signals,
it provides an alternative to complete simulation. As long as
it is possible to define pseudo-stationary windows over the
signal, this alternative stands to gains over a pure simulation
approach.
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