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ABSTRACT

This paper investigates structure tensor field tegmation
applied to directional textured image analysis. fargre-
vious works on tensor filtering, we demonstrate,tkaow-
ing that the structure tensor is a specific toodiog the
local geometry of the image, the tensor field riittg
process must be driven by a geometric dissimilanigasure
to define the adaptability of the smoothing proc#¥s pro-
pose a new dissimilarity measure combining two sede-
voted respectively to the orientation and to thapshcom-
ponent of the tensor. This intelligible encodingibiting the
geometric structure of the image enables us to covee
major drawbacks of conventional Euclidean and Riema
nian approaches for which the dissimilarity measemegpha-
sizes only the local manifold geometry. Finally, $eismic
imaging application, our method compared to exgstimes
shows that relevant information can be extracteeyanc-
ing the seismic structures identification.

1. INTRODUCTION

Data denoising is a conventional task in signatessing
applications. For scalar images, many filter payai have
been developed such as local regression, variaioap-
proaches, partial derivative methods and robudistts

techniques. Surveys have shown the connection batwe

existing approaches [1]. Considering these piongasiorks,
most of proposed approaches have been extendeldein
framework of tensor filtering for Magnetic Resonanmag-
ing applications (MRI). Diffusion Tensor Magnetiee$on-

ance Imaging (DT-MRI) associates a 3x3 real symimetr

positive-definite (SPD) matrix, called tensor, witach voxel
in a 3D volume. In this specific framework, nonelar filter-
ing taking into account the manifold of the spat¢easors
has been derived [2],[3],[4]. Processing MRI tenfield
leads to use appropriate Riemannian metric suchffae
invariant tensor dissimilarity measure [3],[4], drog-
Euclidean metric [5]. Using specific tools dedicate the
geometry of the space of SPD matrices guarantiestatp
onto the tensor manifold and remedies to shortcgsnuch
as swelling effect [4].

Considering the tensor field regularization tasks paper
focuses on another family of SPD matrices, i.e.sthecture
tensor (ST). In computer vision and image procesajpli-
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cations, the ST is a conventional tool based onptmtial
derivatives characterizing the local geometry and-level
features of the image [6], [7], ranging from locaikentation,
edge and corner or for coherency analysis. Takibg &c-
count the geometric nature of ST, the paper praptmsshow
that for ST field regularization associated witlediional
textured image characterization, the use of dissiityi fo-
cused on geometric features such as shape andatiden
rather than conventional Riemannian approachesitizbte.
The paper is intended as a contribution in this:vigypro-
viding for directional texture, firstly, an enhadcgeometric
scheme to increase the relevance of the ST filjeaind, se-
condly, by proposing novel geometric dissimilagthibiting
tractable components in terms of orientation argheh

The paper is organized as follows: after a briefcdption
of the related works dedicated to the non-lineléering in
section 2 and a survey of structure tensor in@e@j a new
dissimilarity measure called Shape-Orientation rissented
in section 4 when section 5 discusses experimenthe
seismic imaging application field in the framewarklocal
orientation estimation.

2. TENSORFIELD REGULARIZATION

Numerous algorithms such as M-estimators, nonlidéar
fusion or bilateral filters are widely-used in ingadenoising.
Although their formalism seems somewhat differel,
these approaches have been casted into a unidiegefvork

{1] of functional minimization. Smoothness terms tbfs

framework are briefly outlined below.
Let us consideN sampled;, i=1,...,N of a noisy imagé A
M-estimator provides a denoised solutioby minimizing

=3 Sufu-1f)  ©

i=1 j=1
wherey(.) is an error function. As well-known form, the
error functiony(s9)=s’ leads to an estimation of which is
simply the average df

The criterion of equation (1) can be minimized badient
descent algorithm. As a result, each terrns iteratively es-
timated with the following formula

- %w'(uik - fjmfj .
2 (1)

)
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In this paper we focus on the bilateral filter [&se: the

The weight functiorw(.) defines the form of the neighbor-

samplef; of the initial imagef is replaced by the iterative hood integration. Several choices are possible agch uni-
estimationu¥. While the equation (2) involves a global esti-form square, a Gaussian, a unit disk, etc.

mate, it can be more consistent to take into adcauocal
neighborhood. A weighting functiow(.) depending on the
distance between the positionsand x; respectively of the
estimated sample and the reference sample catrbéticed

Sl p
jZN:;l/I'Uuik - ujkmwmxi - xjm

Let us consider now the tensor field framework. &iqun
(3) has been extended [9] to the tensor fieldriilte case.

k+1

3. STRUCTURE TENSOR

The structure tensdr, is defined as the covariance matrix
of the first partial derivatives of

T, =[0G, (11)
where' and * denotes respectively the transposition dpera
and the convolution operatdr]l is the gradient of and G,

stands for a 2-D Gaussian averaging window of stahd
deviations. The choice of is crucial to getting relevant lo-
cal image analysis. The higher standard deviatgnthe
smoother the ST is. On the contrary, a low standaxgation

Using capital letterd); to denote tensors, the iterative solu-qnsires an accurate analysis but with high seitgitto

tion becomes:

Swlbbrui b <[]

-1 =1

Sl P )

where H(.) stands for a transformation function add,.)
denotes a dissimilarity measure between two tensors
A trivial choice for the functioi is the identity
H(A) = A. )
It is also well-suited to perform the Log-Euclidetans-
formation due to the specific geometry of tensonifiodd:
H(A) =log(A), ()
which ensures the symmetric definite positive progpef the
resulting matrix in equation (4), i.g;.
The first dissimilarity measure dealing with matisxthe
Frobenius norm

Ust=H

dF(A’ B) = HA_ B‘

where|M|_ = JiracdM ™ ’

Taking into account the topology of symmetric pusitde-
finite matrices, Pennec et al [4] proposed to usieman-
nian metric known as Log-Euclidean metric to defindis-
tance adapted to the tensor manifold

d.c (A B) =[log(A) - log(B}

(7)

= 1

(8)

E 1

noise.
Let T be a tensor. Its eigen decomposition is written as
T=PDP* (12)
and can be developed as follows:
1 2 1 1
T- {Vx v, }[51 0 }{V Vy} SR
1 2 2 2
Ve Vo0 BV V)
whereV* =[V; V,]"andV?=[v? V/]' are the eigenvec-
tors respectively associated with the eigenvalgeand g3,

in decreasing order.

A 2-D tensor can be considered as an ellipse wiphira
cipal orientation and a shape factor. The orieomafi of the
tensorT is determined by the eigenvector associated with
the highest eigenvalue

Vl
o(T)= tan‘l(vyl] : (14)

when the shape fact&is defined as:
§T)= B-5 (15)

B+ 5,

As mentioned by the authors, the approaches deatlbp
Pennec et al within the DT-MRI data do not yieltisactory
results for the ST [4]. The most likely explanati@s in the
particular geometry of the ST in the case of mangges
such as directional textures: unlike DT-MRI, thejongart
of the tensor field contains very thin tensorst th&o say the

wherelog is the matrix logarithm. Some distances speciicalfirst eigenvalue is much higher than the second bmerder

ly developed for DT-MRI are also detailed by Dryden
al.[10].
Because of its edge preservation properties, ttog fmc-

to make DT-MRI dedicated works useable, we progose
reinforce the shape factor, i.e. to give more weighthe
second eigenvalue, without changing the orientatioough

tion w which is considered in this paper is the PeronéikiMa a nonlinear transformation of the initial ST exgexs by

penalizer

wla?)=» |og(1+ jzz J ©)

where/ is a barrier parameter. The derivati¥eof y used in
equation (4) is given by
1 . (10)

T,= PDPP™ (16)
with p<1. Figure 1 exhibits results of such transformation

gy o o

Figure 1- Example of tensor transformation. From left ghtj
p=1, 1/2, 1/3, 1/5
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4. DISSIMILARITY MEASURESFOR STRUCTURE
TENSOR

As far as we know, no distances have been spdbifibe-
veloped for ST. We propose to build dedicated didarity
measure by considering geometric properties.

The first geometric feature that distinguishes tersorsA
and B is the difference of orientatiop. So a dissimilarity
measure in orientation is obtained by a normalizeuks
product

v
d ( ‘N A 1B (17)
&

\sm

where V** and V*® denotes respectively the eigenvectors

associated with the largest eigenvalueAaindB andA the
cross product of two vectors.

Distance

Figure 2 - Measure response from a tensor A, g(m) =0 and
S(A)=1/3, compared to a tensor B wit(B) 0 [O,rr/2] and

s(B)ood]-

The anglep is considered as the difference of orientation of

eigenvectors/** andV*® taking into account & 71 ambi-
guity in phase angle. Confidence in the orientatiban ei-
genvector is directly linked to the shape factoreqbiation
(15). Higher the shape factor is, the more confides orien-
tation of the tensor is. Therefore we propose t@methe
measured, by the lowest shape factor AfandB so that the

measure decreases as the orientation of one dfvthéen-
sors is uncertain. This new dissimilarity measde is de-

fined as
do (A B) =[sin(g).min(5(A), S(B)).  (18)

A second geometric feature of a tensor is naturstiigpe
factor. Let us define another measufg between tensors

only based on a shape difference by computing atie of

intrinsic shape factors
- maf SIA) S(B))
BB o) )
This measure is an indicator that ranges from é&nfidal
shapes) to infinity.
By combining the measured, andd,, we define the
Shape-Orientation (SO) distance:
dso(AB)=do(AB)'d,(AB)™  (20)
whereq is a parameter that varies from 0 to 1 and camsad;
the weight relative of distances in orientationimrshape.
Because the shape measure is higher than 1, leds that
the SO measure is mainly dependant of the orientatieas-
ure. Moreover, in the case of a shape factor equzgro, i.e.
a circular tensor, the SO dissimilarity measurei®as unde-
termined and must be set to zero.
Behavior of the SO measure is illustrated in FigRreve
set a reference tensér characterized by a null orientation
g(A):o and a shape fact@A)=1/3 when the tensd is

characterized by a variable orientatig(B)0[0,7/2| and a
variable shape factog(B)1[07] .

(19)

5. RESULTS

A comparative study of methods is carried out cal d
rectional textured image in order to show the caipalto
enforce the saliency of the structural componeigfislighted
in the tensor field. We conduct experiments onmsieiglata
which are challenging data due to the fact thansieiimag-
ing exhibits very noisy data with poorly samplimgtérms of
geometric structures.

Acquisition of reflection seismic data aims to yde a
seismic image of acoustic impedance interfacessd heer-
faces or reflectors are assumed to follow lithatdgbunda-
ries and as a consequence a seismic image camsidaed
as an image of subsurface geological units andtstes.
Thus, the goal of seismic interpretation is to ggtee plaus-
ible geological patterns in seismic images. Thatifleation
of structures is critically important to oil andsgaxploration
activities. The structural complexity of seismieldi imposes
to increase continuously the relevance of algoisthused to
process data for structural interpretation. Thesdrtiques
include dip and azimuth estimation for delineatafnfault
patterns, and fault slices to evaluate juxtapasitod fault
seal which can be obtained by regularization of3hdield.

We perform a comparison on real data shown in Ei@ur
The sample image has been divided coarsely in geelg-
ical areas delimited by fault crossing. lllustrgtithe regula-
rization impact is provided by interpreting datatbree Re-
gions Of Interested (ROI) which exhibit horizon srahd
noisy patches.

The initial tensor field of the image is computedhw=1,
i.e. a 7x7 Gaussian window. Moreover, the tensbapaing
parameter p is set to 1/3. In all experiments, fttlewing
bilateral filter parameters are fixed:
= The mapping H() considered
Euclidean.
* The weight functiona(.) is a 3x3 square.

is the Log-
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Figure 3- Up Row Left Original ImageMiddle: Orlglnal ST field.Right: Scheme of areas and ROl in the seismic in
Middle Row, L eft to Right: Filtering results after 10 iterons with SO, Frobenius, Ldguclidean distanc
Bottom Row, L eft to Right: Filtering results after 100 iteratis with SO, Frobenius, LeBuclidean distance.
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= The error function is the Perona-Malik penalizer ofworks will concern extension of other classicalefi$, like

equation (9).

The Shape-Orientation, the Log-Euclidean and thoboé~r
nius distances are compared.
The choice of the penalizer parameters crucial for the
regularization performance. A low value will resutt an
unchanged tensor field whereas a high value withgetely
smooth the data and provide a blurry tensor fikldreover,
according to the used distance, the valué cin be com-
pletely different, which makes the comparison mvial. A
set of values has been chosen according to eaeimakshis-

togram (Figure 4). Indeed, values have been selected for

each method, by observing equivalent discontiraiitie-
sponse values on the barrier images resulting fr@rerror

function v'(.). Thus, a comparative table of filtered tensor

field is shown in Figure 3 where rows 2 and 3 cpond
respectively to 10 and 100 iterations.

In ROI 1 and ROI3, we observe that the fault infation,
i.e. horizon ends, has been completely removedd\bg-
Euclidean and Frobenius distances whereas the Smik
larity measure preserves them. Moreover, with Ben&as-
ure, the ROI 2 after filtering exhibits more homogas con-
tent and have well defined boundaries. Because Sthe
measure does not take into account the tensor \eribeg
resulting tensor field does not exhibit energy dligmues
like in the Frobenius and Log-Euclidean cases, ianidw
energy areas, the SO measure provides more accuigne
tation.

frequency

1 15
distance

frequency
frequency

of

0 o1 02 03 04

distance

05 06 07  O0f 100

K distgnce "
Figure 4 — Distance Histogramdp: Log-Euclidean Distanc®&ot-
tom Left: SO dissimilarity measur8ottom Right: Frobenius
Distance

6. CONCLUSION

Because early works on tensor regularization dodiead
great with structure tensor, we proposed two imenoents:
a shape reinforcement and a geometric based disstyni
measure between tensors called Shape-Orientatssimli
larity measure. Applied in a structure tensor figfdoothing
process within bilateral filter, the obtained reésybroved
their benefits for seismic images structure analyButure

anisotropic diffusion filter, to structure tensase. The in-
terest of our proposition for other applicationsgts as fin-
gerprint recognition, corner detection or optidaif will be

investigated.
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