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ABSTRACT 

This paper investigates structure tensor field regularization 
applied to directional textured image analysis. From pre-
vious works on tensor filtering, we demonstrate that, know-
ing that the structure tensor is a specific tool coding the 
local geometry of the image, the tensor field filtering 
process must be driven by a geometric dissimilarity measure 
to define the adaptability of the smoothing process. We pro-
pose a new dissimilarity measure combining two terms de-
voted respectively to the orientation and to the shape com-
ponent of the tensor. This intelligible encoding exhibiting the 
geometric structure of the image enables us to overcome 
major drawbacks of conventional Euclidean and Rieman-
nian approaches for which the dissimilarity measure empha-
sizes only the local manifold geometry. Finally, for seismic 
imaging application, our method compared to existing ones 
shows that relevant information can be extracted by enhanc-
ing the seismic structures identification.   

 

1. INTRODUCTION 

Data denoising is a conventional task in signal processing 
applications. For scalar images, many filter paradigms have 
been developed such as local regression, variationnal ap-
proaches, partial derivative methods and robust statistics 
techniques. Surveys have shown the connection between 
existing approaches [1]. Considering these pioneering works, 
most of proposed approaches have been extended in the 
framework of tensor filtering for Magnetic Resonance Imag-
ing applications (MRI). Diffusion Tensor Magnetic Reson-
ance Imaging (DT-MRI) associates a 3x3 real symmetric 
positive-definite (SPD) matrix, called tensor, with each voxel 
in a 3D volume. In this specific framework, non-linear filter-
ing taking into account the manifold of the space of tensors 
has been derived [2],[3],[4]. Processing MRI tensor field 
leads to use appropriate Riemannian metric such as affine 
invariant tensor dissimilarity measure [3],[4], or Log-
Euclidean metric [5]. Using specific tools dedicated to the 
geometry of the space of SPD matrices guaranties to stay 
onto the tensor manifold and remedies to shortcomings such 
as swelling effect [4]. 

Considering the tensor field regularization task, this paper 
focuses on another family of SPD matrices, i.e. the structure 
tensor (ST). In computer vision and image processing appli-

cations, the ST is a conventional tool based on the partial 
derivatives characterizing the local geometry and low-level 
features of the image [6], [7], ranging from local orientation, 
edge and corner or for coherency analysis. Taking into ac-
count the geometric nature of ST, the paper proposes to show 
that for ST field regularization associated with directional 
textured image characterization, the use of dissimilarity fo-
cused on geometric features such as shape and orientation 
rather than conventional Riemannian approaches is suitable. 
The paper is intended as a contribution in this way: by pro-
viding for directional texture, firstly, an enhanced geometric 
scheme to increase the relevance of the ST filtering and, se-
condly, by proposing novel geometric dissimilarity exhibiting 
tractable components in terms of orientation and shape. 

The paper is organized as follows: after a brief description 
of the related works dedicated to the non-linear filtering in 
section 2 and a survey of structure tensor in section 3, a new 
dissimilarity measure called Shape-Orientation is presented 
in section 4 when section 5 discusses experiments in the 
seismic imaging application field in the framework of local 
orientation estimation.     

2. TENSOR FIELD REGULARIZATION 

Numerous algorithms such as M-estimators, nonlinear dif-
fusion or bilateral filters are widely-used in image denoising. 
Although their formalism seems somewhat different, all 
these approaches have been casted into a unified framework 
[1] of functional minimization. Smoothness terms of this 
framework are briefly outlined below. 

Let us consider N samples fi , i=1,…,N of a noisy image f. A 
M-estimator provides a denoised solution u by minimizing 
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where ψ(.) is an error function. As well-known form, the l2 
error function ψ(s2)=s2 leads to an estimation of u which is 
simply the average of f.  

The criterion of equation (1) can be minimized by gradient 
descent algorithm. As a result, each term ui is iteratively es-
timated with the following formula 
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In this paper we focus on the bilateral filter [8] case: the 
sample fj of the initial image f is replaced by the iterative 
estimation k

ju . While the equation (2) involves a global esti-

mate, it can be more consistent to take into account a local 
neighborhood. A weighting function w(.) depending on the 
distance between the positions xi and xj respectively of the 
estimated sample and the reference sample can be introduced 
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Let us consider now the tensor field framework. Equation 
(3) has been extended [9] to the tensor field filtering case. 
Using capital letters Ui to denote tensors, the iterative solu-
tion becomes: 
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where H(.) stands for a transformation function and d(.,.) 
denotes a dissimilarity measure between two tensors. 

A trivial choice for the function H is the identity  
  AAH =)( . (5) 

It is also well-suited to perform the Log-Euclidean trans-
formation due to the specific geometry of tensor manifold: 

  ( )AAH log)( = , (6) 

which ensures the symmetric definite positive property of the 
resulting matrix in equation (4), i.e. Ui. 

The first dissimilarity measure dealing with matrix is the 
Frobenius norm 

  ( )
FF BABAd −=, , (7) 

where ( )MMtraceM T

F
= . 

Taking into account the topology of symmetric positive de-
finite matrices, Pennec et al [4] proposed to use a Rieman-
nian metric known as Log-Euclidean metric to define a dis-
tance adapted to the tensor manifold 
  ( ) ( ) ( )

FLE BABAd loglog, −= , (8) 

where log is the matrix logarithm. Some distances specifical-
ly developed for DT-MRI are also detailed by Dryden et 
al.[10]. 

Because of its edge preservation properties, the error func-
tion ψ which is considered in this paper is the Perona-Malik 
penalizer 
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where λ is a barrier parameter. The derivative ψ’  of ψ used in 
equation (4) is given by 
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The weight function w(.) defines the form of the neighbor-
hood integration. Several choices are possible such as a uni-
form square, a Gaussian, a unit disk, etc. 

3. STRUCTURE TENSOR 

The structure tensor Tσ is defined as the covariance matrix 
of the first partial derivatives of I: 
 ( ) σσ GIIT t ∗∇∇= , (11) 

where t and * denotes respectively the transposition operator 
and the convolution operator, I∇ is the gradient of I and σG  

stands for a 2-D Gaussian averaging window of standard 
deviation σ. The choice of σ is crucial to getting relevant lo-
cal image analysis. The higher standard deviation is, the 
smoother the ST is. On the contrary, a low standard deviation 
ensures an accurate analysis but with high sensitivity to 
noise. 

Let T be a tensor. Its eigen decomposition is written as 
  T=PDP-1  (12) 

and can be developed as follows: 
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where T
yx VVV ][ 111 = and T

yx VVV ][ 222 =  are the eigenvec-

tors respectively associated with the eigenvalues 
1β  and 

2β  

in decreasing order. 
A 2-D tensor can be considered as an ellipse with a prin-

cipal orientation and a shape factor. The orientation θ  of the 
tensor T is determined by the eigenvector associated with 
the highest eigenvalue 
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when the shape factor S is defined as:  
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As mentioned by the authors, the approaches developed by 
Pennec et al within the DT-MRI data do not yield satisfactory 
results for the ST [4]. The most likely explanation lies in the 
particular geometry of the ST in the case of many images 
such as directional textures: unlike DT-MRI, the major part 
of the tensor field contains very thin tensors, that is to say the 
first eigenvalue is much higher than the second one. In order 
to make DT-MRI dedicated works useable, we propose to 
reinforce the shape factor, i.e. to give more weight to the 
second eigenvalue, without changing the orientation through 
a nonlinear transformation of the initial ST expressed by 

  

1−= PPDT p
p

 (16) 

with p<1. Figure 1 exhibits results of such transformation 

 
Figure 1 – Example of tensor transformation. From left to right, 

p=1, 1/2, 1/3, 1/5. 
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4. DISSIMILARITY MEASURES FOR STRUCTURE 
TENSOR 

As far as we know, no distances have been specifically de-
veloped for ST. We propose to build dedicated dissimilarity 
measure by considering geometric properties. 

 
The first geometric feature that distinguishes two tensors A 

and B is the difference of orientation φ. So a dissimilarity 
measure in orientation is obtained by a normalized cross 
product 
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where AV ,1  and BV ,1  denotes respectively the eigenvectors 
associated with the largest eigenvalue of A and B and ˄  the 
cross product of two vectors. 

The angle φ is considered as the difference of orientation of 
eigenvectors AV ,1  and BV ,1  taking into account a π±  ambi-
guity in phase angle. Confidence in the orientation of an ei-
genvector is directly linked to the shape factor of equation 
(15). Higher the shape factor is, the more confident the orien-
tation of the tensor is. Therefore we propose to weight the 
measure ϕd  by the lowest shape factor of A and B so that the 

measure decreases as the orientation of one of the two ten-
sors is uncertain. This new dissimilarity measure 

Od  is de-

fined as 
  ( ) ( ) ( ) ( )( )BSASBAdO ,min.sin, ϕ= . (18) 

A second geometric feature of a tensor is naturally shape 
factor. Let us define another measure 

Sd  between tensors 

only based on a shape difference by computing the ratio of 
intrinsic shape factors 
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This measure is an indicator that ranges from 1 (identical 
shapes) to infinity. 

By combining the measures 
Od  and

Sd , we define the 

Shape-Orientation (SO) distance: 
  ( ) ( ) ( ) q

s
q

OSO BAdBAdBAd −= 1,,,  (20) 

where q is a parameter that varies from 0 to 1 and can adjust 
the weight relative of distances in orientation or in shape. 
Because the shape measure is higher than 1, it is clear that 
the SO measure is mainly dependant of the orientation meas-
ure. Moreover, in the case of a shape factor equal to zero, i.e. 
a circular tensor, the SO dissimilarity measure value is unde-
termined and must be set to zero. 

Behavior of the SO measure is illustrated in Figure 2: we 
set a reference tensor A characterized by a null orientation 

( ) 0=Aθ  and a shape factor S(A)=1/3 when the tensor B is 

characterized by a variable orientation ( ) [ ]2/,0 πθ ∈B  and a 

variable shape factor ( ) [ ]1,0∈BS . 

 
 

Figure 2 - Measure response from a tensor A, with ( ) 0=Aθ  and 

S(A)=1/3, compared to a tensor B with ( ) [ ]2/,0 πθ ∈B  and 

( ) [ ]1,0∈BS . 

5. RESULTS 

A comparative study of methods is carried out on real di-
rectional textured image in order to show the capability to 
enforce the saliency of the structural components highlighted 
in the tensor field. We conduct experiments on seismic data 
which are challenging data due to the fact that seismic imag-
ing exhibits very noisy data with poorly sampling in terms of 
geometric structures. 

 Acquisition of reflection seismic data aims to provide a 
seismic image of acoustic impedance interfaces. These inter-
faces or reflectors are assumed to follow lithologic bounda-
ries and as a consequence a seismic image can be considered 
as an image of subsurface geological units and structures. 
Thus, the goal of seismic interpretation is to recognize plaus-
ible geological patterns in seismic images. The identification 
of structures is critically important to oil and gas exploration 
activities. The structural complexity of seismic field imposes 
to increase continuously the relevance of algorithms used to 
process data for structural interpretation. These techniques 
include dip and azimuth estimation for delineation of fault 
patterns, and fault slices to evaluate juxtaposition and fault 
seal which can be obtained by regularization of the ST field. 

We perform a comparison on real data shown in Figure 3. 
The sample image has been divided coarsely in three geolog-
ical areas delimited by fault crossing. Illustrating the regula-
rization impact is provided by interpreting data on three Re-
gions Of Interested (ROI) which exhibit horizon ends and 
noisy patches.  
The initial tensor field of the image is computed with σ=1, 
i.e. a 7x7 Gaussian window. Moreover, the tensor enhancing 
parameter p is set to 1/3. In all experiments, the following 
bilateral filter parameters are fixed:  

� The mapping (.)H  considered is the Log-

Euclidean.  
� The weight function (.)w  is a 3x3 square. 
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Figure 3 - Up Row, Left: Original Image, 

Middle Row, Left to Right: Filtering results after 10 iterati
Bottom Row, Left to Right: Filtering results after 100 iteration

 

 

 
: Original Image, Middle: Original ST field. Right: Scheme of areas and ROI in the seismic image.

: Filtering results after 10 iterations with SO, Frobenius, Log-Euclidean distance.
: Filtering results after 100 iterations with SO, Frobenius, Log-

Area 1

ROI 3

 

 

 
Scheme of areas and ROI in the seismic image. 

Euclidean distance. 
-Euclidean distance. 

Area 1 Area 2 Area 3 

ROI 1 

ROI 2 

ROI 3 
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� The error function is the Perona-Malik penalizer of 
equation (9). 

The Shape-Orientation, the Log-Euclidean and the Frobe-
nius distances are compared. 
The choice of the penalizer parameter λ is crucial for the 
regularization performance. A low value will result in an 
unchanged tensor field whereas a high value will completely 
smooth the data and provide a blurry tensor field. Moreover, 
according to the used distance, the value of λ can be com-
pletely different, which makes the comparison not trivial. A 
set of values has been chosen according to each distance his-
togram (Figure 4). Indeed, λ values have been selected for 
each method, by observing equivalent discontinuities re-
sponse values on the barrier images resulting from the error 
function ψ’(.). Thus, a comparative table of filtered tensor 
field is shown in Figure 3 where rows 2 and 3 correspond 
respectively to 10 and 100 iterations.  

In ROI 1 and ROI3, we observe that the fault information, 
i.e. horizon ends, has been completely removed by the Log-
Euclidean and Frobenius distances whereas the SO dissimi-
larity measure preserves them. Moreover, with the SO meas-
ure, the ROI 2 after filtering exhibits more homogenous con-
tent and have well defined boundaries. Because the SO 
measure does not take into account the tensor energy, the 
resulting tensor field does not exhibit energy discontinues 
like in the Frobenius and Log-Euclidean cases, and in low 
energy areas, the SO measure provides more accurate orien-
tation. 
 

 

 
Figure 4 – Distance Histograms. Up: Log-Euclidean Distance. Bot-

tom Left: SO dissimilarity measure. Bottom Right: Frobenius 
Distance 

 

6. CONCLUSION 

Because early works on tensor regularization do not deal 
great with structure tensor, we proposed two improvements: 
a shape reinforcement and a geometric based dissimilarity 
measure between tensors called Shape-Orientation dissimi-
larity measure. Applied in a structure tensor field smoothing 
process within bilateral filter, the obtained results proved 
their benefits for seismic images structure analysis. Future 

works will concern extension of other classical filters, like 
anisotropic diffusion filter, to structure tensor case. The in-
terest of our proposition for other applications, such as fin-
gerprint recognition, corner detection or optical flow, will be 
investigated. 

 

REFERENCES 

[1] P. Mrázek, J. Weickert, A. Bruhn, “On robust estimation 
and smoothing with spatial and tonal kernels”. In R. 
Klette, R. Kozera, L. Noakes, J. Weickert (Eds.): Geo-
metric Properties from Incomplete Data, 335-352, 
Springer, Dordrecht, 2006. 

[2] C. Chefd’hotel, D. Tschumperlé, R. Deriche, and O. 
Faugeras, “Regularizing flows for constrained matrix-
valued images”. J. Math. Im. Vis., 20(1-2):147–162, 
2004. 

[3] C. A. Castaño-Moraga, C. Lenglet, R. Deriche, J. Ruiz-
Alzola, “A Riemannian approach to anisotropic filtering 
of tensor fields.” Signal Processing 87(2): 263-276, 
2007. 

[4] P. Fillard, V. Arsigny, N. Ayache, X. Pennec: “A Rie-
mannian framework for the processing of tensor-valued 
images”. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, 
A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 112–123. 
Springer, Heidelberg, 2005. 

[5] V. Arsigny, P. Fillard, X. Pennec, N. Ayache, “Log- 
Euclidean Metrics for Fast and Simple Calculus on 
Diffusion Tensors.” Magnetic Resonance in Medicine, 
56(2):411-421, 2006. 

[6]  J. Bigun and G. Granlund "Optimal Orientation Detec-
tion of Linear Symmetry". First int. Conf. on Computer 
Vision, ICCV, (London): 433-438, Piscataway: IEEE 
Computer Society Press, Piscataway, 1987. 

[7] H. Knutsson, “Representing local structure using ten-
sors,” in The 6th Scandinavian Conference on Image 
Analysis, Oulu, Finland,  pp. 244–251,1989. 

[8]  R.L. Stevenson, B.E. Schimtz, E.J. Delp. “Discontinuity 
oreserving regularization of invervse visual problems”. 
IEEE Transactions on Systems, Man and Cybernetics. 
24:455-469, 1994. 

[9] L. Pizarro, B. Burgeth, S. Didas, J. Weickert,  
“A generic neighbourhood filtering framework for ma-
trix” fields. In D. Forsyth, P. Torr, A. Zisserman (Eds.): 
Computer Vision – ECCV 2008. Lecture Notes in Com-
puter Science, Vol. 5304, 521-532. Springer, Berlin, 
2008. 

[10] I.L. Dryden, A. Koloydenkon D. Zhou, “Non-Euclidean 
statistics for covariance matrices, with applications to 
diffusion tensor imaging” Annals of Applied Statistics, 
volume 3, Number 3,1102-1123. 2009. 

 
 
 
 
 
 

 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

distance

fr
eq

ue
nc

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6
x 10

4

distance

fr
eq

ue
nc

y

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

distance

fr
eq

ue
nc

y

1334


