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ABSTRACT

This paper focuses on simple versus composite hypothesis
testing in Bayesian settings. The Posterior distribution of
the Likelihood Ratio (PLR) provides an interesting alter-
native to the classical Bayes Factor (BF). First its general
properties are studied and reveal its relationships with the
BF, the Fractional BF and the Generalized Likelihood Ratio.
Then the PLR is proved to be equal to a frequentist p-value
for an invariant model and the corresponding invariant prior.

A practical implementation of the test can be performed
using a simple Monte Carlo Markov Chain. Performances of
the PLR used as a test are illustrated on extra-solar planet
detection using direct imaging. Finally, the possibility to
use different parametrizations of the test is illustrated by
the study of their operating characteristics.

1. INTRODUCTION

Simple versus composite hypothesis testing is a general sta-
tistical issue in parametric modeling. It consists for a given
dataset x in choosing among the hypotheses H0 : θ = θ0 and
H1 : θ 6= θ0 with θ unknown. Under the Bayesian approach
adopted here, the simple versus composite hypothesis test
may be expressed in terms of the underlying priors: θ = θ0

or θ ∼ π(θ) where π(θ) 6= δ(θ − θ0) is a given multivari-
ate prior describing the uncertainty and constraints on the
parameter of interest θ. We assume that the data model
p(x|θ) has the same expression under H0 and H1 and does
not depend on other parameters than θ.

This paper tackles this decision problem using the Pos-
terior distribution of the Likelihood Ratio p(x|θ0)p(x|θ)−1

This approach has been initially proposed in [7] and studied,
to our knowledge, only in [1, 2]. It is organized as follows:

• Section 2 introduces the frequentist and Bayesian hy-
pothesis testing tools involved in the rest of the paper.
• Section 3 develops new theoretical properties of the Pos-

terior distribution of the Likelihood Ratio. First its defi-
nition is given and a practical implementation procedure
is proposed. Then, its general properties are derived,
including its relationships with other classical tests. Fi-
nally, it is proved to be equal to a frequentist p-value for
an invariant model and the corresponding invariant prior.
• Section 4 presents numerical simulations. First the PLR

is applied to a realistic test case, then a Monte Carlo sim-
ulation using a simpler data model is used to characterize
the frequentist properties of the test.

2. CLASSICAL HYPOTHESIS TESTING
PROCEDURES

We first recall some classical notations used in frequentist de-
cision theory that will be usefull in the sequel. Of particular

interest ([16]) is the Likelihood Ratio (LR) defined by

LR(x, θ) =
p(x|θ0)

p(x|θ) (1)

LR(x, θ) evaluated at θ = θ̂ML(x) is the usual frequentist
Generalized Likelihood Ratio (GLR):

GLR(x) = LR(x, θ̂ML(x)) =
p(x|θ0)

maxθ p(x|θ)
(2)

The GLR test consists in thresholding GLR(x).
We now recall basic notions of Bayesian testing under

the hypothesis test

H0 : θ = θ0 H1 : θ ∼ π(θ) (3)

Using the additional piece of prior information Pr(H0), the
Posterior Odds Ratio

POR(x) =
Pr(H0|x)

Pr(H1|x)
(4)

minimizes the Bayesian risk under the 0-1 loss function as-
sociated to the estimation of the indicator function Iθ0(θ)
[11]. Then, practical Bayesian hypothesis testing often con-
sists in giving the POR, and thresholding it if a 0-1 decision
is required: Reject H0 if POR(x) ≤ ζ. The POR equals the
classical Bayes Factor (BF) [12]

BF(x) =
p(x|H0)

p(x|H1)
=

p(x|θ0)R
p(x|θ)π(θ)dθ

(5)

up to the multiplicative prior odds ratio Pr(H0)Pr(H1)−1

which does not depend on x. The BF is also classicaly used
for 0-1 decision and its threshold can be interpreted on its
own grounds [12].

An important issue of the POR and the BF is that they
are not uniquely defined if the prior π(θ) is improper, ie ifR
π(θ)dθ = ∞. However, even though the prior is improper

the posterior distribution π∗(θ|x) is in general proper. Tak-
ing advantage of this fact, Partial Bayes Factors have been
proposed as alternatives to the Bayes Factor. Schematically,
they assume that there exists a “minimal training sample” y
chosen from the whole sample x such that π∗(θ|y) is proper.
Then, a (“Partial”) Bayes Factor can be uniquely defined
from the rest of the data, using π∗(θ|y) as the proper prior.
In particular, a Fractional Bayes Factor FBF(x, b), b ∈ (0, 1)
has been proposed in [14]:

FBF(x, b) =
p(x|θ = θ0)R
p(x|θ)π(θ)dθ

„
p(x|θ = θ0)bR
p(x|θ)bπ(θ)dθ

«−1

(6)

Note that FBF(x, 0) = BF(x).

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 144



Hypothesis test practitioners in general expect some
“predata” information about the operating characteristics
of the test. In frequentist procedures, the Probability of
False Alarm of the test (PFA) and the Probability of good
Detection (PD) may be used for calibration and/or perfor-
mance assessment. Calibration under the PFA is in general
attributed to the Neyman Pearson paradigm and opposed to
the Bayesian one, but quoting [17] for example, “A Bayesian
is calibrated if his probability statements have their asserted
coverage in repeated experience”. In particular, these quan-
tities are also of interest in the (Bayesian) exoplanet detec-
tion frame presented in section 4.

Some “postdata” information is in general also expected.
The most classical frequentist post-data measure about the
significance of a decision of the form “Reject H0 if T (x) ≤ ζ”
is the p-value [13] defined by

pval{T (x)} = Pr{T (y) ≤ T (x)|H0, x} (7)

It can be easily verified that the distribution of the p-value
under H0 is uniform in (0, 1) if T (x) is a continuous random
variable. Although p-values are still widely studied and gen-
eralized even in the Bayesian frame, the POR (and relatives)
remain the standard Bayesian post-data evidence.

3. TESTING WITH THE POSTERIOR
DISTRIBUTION OF THE LIKELIHOOD RATIO

3.1 Definition and motivation

A. Dempster proposed in 1974 [7] the first Bayesian test
for (3) that relies on the Likelihood Ratio LR(x, θ) defined
in Eq. (1). For a given dataset x, the test consists in rejecting
H0 if the probability that the data are ”much more” likely
under θ 6= θ0 than θ0 is ”high enough”:

Reject H0 if PLR(x, ζ) > p (8)

with PLR(x, ζ) = Pr{LR(x, θ) ≤ ζ|x} (9)

The PLR (Posterior of the Likelihood Ratio) is simply the
posterior cumulative distribution of the Likelihood Ratio.
Fig. 4 illustrates a case where H0 is rejected (left plot) and
a case where H0 is accepted (right plot).

Dempster’s motivation in [7] is based on the role of the
Likelihood Ratio in statistical inference, also emphasized by
[16]. The PLR has only been studied as such by M. Aitkin
in 1997 [1, 8] and in 2005 [2], on case studies mostly.

3.2 Implementation and optimization of the PLR

Note that implementation of this test may appear compli-
cated. This complexity can be highly reduced using a Monte
Carlo Markov Chain (MCMC) algorithm:

1. generate {θ[j] ∼ π∗(θ|x)}j using a MCMC algorithm

2. compute the chain {LR(x, θ[j])}
3. compute the PLR (9) as the empirical cumulative distribu-

tion of the LR chain
4. if H0 is rejected, use the chain {θ[j]} for estimation

Interestingly enough, the PLR is a family of tests
parametrized by two parameters: (ζ, p). Unlike detectors
defined from a single threshold, it is possible to optimize
the test inside this family. We propose to do it using the
Receiver Operating Characteristics (ROC) curve, which dis-
plays PD(ζ, p) as a function of PFA(ζ, p). The principle is

1. compute PFA(ζ, p) and PD(ζ, p) ∀(ζ, p)
2. fix a PFA0 and obtain {(ζ, p) : PFA(ζ, p) = PFA0}
• choose from this set (ζ∗(PFA0), p∗(PFA0)) that maxi-

mizes PD(ζ, p).

This procedure is performed numerically using the pro-
posed MCMC algorithm. For each hypothesis, a matrix of
size NI ×NJ containing on line i the Markov chain obtained
from dataset i is built. Each matrix is reordered by sorting
in increasing order each line (cumulative posterior distribu-
tion for a given dataset) and then each column (cumulative
frequentist distribution for a given ζ). For a number NI
of datasets and a chain length NJ both sufficiently large,
approximate PFA(ζ, p) and PD(ζ, p) can be read from each
matrix. For example, for ζ(i, j) = LR(i, j) (i.e. the (i, j)th

component of the matrix) and p(i, j) = j/NJ , the PFA is ap-
proximately given by PFA(ζ(i, j), p(i, j)) = i/NI . Therefore,
the approximate optimal parameters can be easily obtained
from the two matrices.

Finally, note that an analog procedure can be used for
the FBF: the FBF is computed from the Markov chain
{LR(x, θ[j])} using an importance sampling procedure and
the test is optimize with respect to the threshold and b.

3.3 General properties of the PLR

The first result illustrates the deep connections existing be-
tween the FBF and the posterior distribution of the LR. The
proof is straightforward but no reference has been found.

Proposition 1 If the prior π is proper, the FBF for the
simple versus composite hypothesis test equals the fractional
posterior moment of the LR:

∀b, FBF(x, b) = E[LR(x, θ)1−b|x] (10)

This result shows that the BF (b = 0) is the posterior mean
of the LR. The BF can then be interpreted as the mean
square error estimator of LR(x, θ). A standard uncertainty
on this inference would be given by the the posterior stan-
dard deviation of the LR:cLR(x, θ) = BF(x)± std(LR(x, θ)) (11)

= BF(x)±
p

FBF(x,−1)− BF(x)2

However, although this uncertainty is natural for an estima-
tion of LR, it is not relevant for its thresholding. It will be
illustrated in the simulations.

The next result gives two general properties about the
posterior density pLR|x of the LR. These results assume that
the hypotheses are nested: θ0 ∈ Sup(π). This case is of
particular interest in many practical applications, such as
the problem addressed in the last section of the paper.

Proposition 2 The posterior density of the LR of a nested
simple versus composite hypothesis verifies:

• The minimum of its support is GLR(x):

min
ζ
{ζ : pLR|x(ζ|x) > 0} = GLR(x) (12)

• Under regularity assumptions that get stronger as L (the
length of θ) increases, the function ζ → pLR|x(ζ|x) di-

verges for ζ → GLR(x)+.

Illustrations of these results are shown in figure 3.
Whereas the first property is a direct consequence of (2),

the proof of the second is much more delicate. A usual trans-
form to infer the distribution of LR(x, θ) is

φ : θ → (LR(x, θ), θ̌1) with θ̌1 = (θ2, .., θL)

The usual variables transformation gives:

pLR(x,θ),θ̌1
(ζ, ǔ1) =

X
k

π∗(vk|x)

|J(vk)| , J(θ) =
∂LR(x, θ)

∂θ1
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where the vk are all the solutions of φ(vk) = (ζ, ǔ1). For L =
1 (θ is scalar), the result is straightforward if θ → LR(x, θ) is
continuously differentiable. For L > 1, L−1 integrations are
required to marginalize out θ̌1. We show [19] that if locally
there exists α > L and (α1, .., αL) ∈ RL+∗ such that for all θ

close enough to θ̂ML(x)

GLR(x) < LR(x, θ) ≤ GLR(x) +

LX
`=1

α`(θ − θ̂ML(x))α`

then ε−1 Pr(GLR(x) < LR(x, θ) ≤ GLR(x)+ε|x)→∞ when
ε→ 0.

3.4 PLR under a general invariant case

Dempster noticed that when testing the mean of a normal
distribution with a constant prior density, the PLR is equal
to 1 minus the p-value introduced in Eq. (7). Aitkin gener-
alized this result with an additional nuisance parameter in
the mean.

The next theorem states that the result of Dempster is
true in some general invariant cases. Invariance is a central
framework to unify the frequentist, Fisherian pivotal and
Bayesian paradigms [9, 10]. It relies on two assumptions on
the model: the likelihood belongs to an invariant distribu-
tion family and the prior distribution is invariant under the
transformation group defining the likelihood family.

The next definition specifies the invariance of a family of
densities under a group of transformations.

Definition 1 A family FΘ = {f(.|θ), θ ∈ Θ} of densities
wrt a measure µ on X is said to be invariant under the
transformation group G if, for every g ∈ G there exists a
unique θ∗ ∈ Θ such that if the random variable X has den-
sity f(.|θ), Y = g(X) has density f(.|θ∗) ∈ FΘ. We define
Ḡ as the set of all functions ḡ induced by the group G and
defined as θ∗ = ḡ(θ). Ḡ is a group.

In Bayesian models, it is often required to define a non-
informative prior related to some specific property [4]. In
particular, model invariance can be accounted for using the
right Haar prior [4, 9]. It is in general improper.

Definition 2 (Haar measure) A right invariant Haar
measure, to be denoted Hr, under a group of transforma-
tions G is a measure which, for all measurable functions κ
on G and for all g0 ∈ G satisfiesZ

G
κ(g)Hr(dg) =

Z
G
κ(gg0)Hr(dg)

A left invariant Haar measure Hl is defined replacing gg0

by g0g.

The group G is related to the parameters space Θ assum-
ing that the function φθ : G → Θ, φθ(g) = g(θ) is bijective
for all g ∈ G. The measure induced by Hr is then defined for
all A ⊂ Θ by Pr(θ ∈ A) = Hr(φ−1

a A). The measure induced
by Hr can be defined in the same way on X if the function
φx: G → X , φx(g) = g(x) is bijective.

The main contribution of this paper is an expression of
the PLR, under invariance assumptions, as a frequentist in-
tegral involving the modulus of the group of transformations.

Definition 3 The modulus of G is the function ∆ defined
on G to (0,∞) which, for all measurable functions κ on G
satisfies Z

G
κ(gg−1

0 )Hl(dg) = ∆(g0)

Z
G
κ(g)Hl(dg)

Theorem 1 Let FΘ = {f(.|θ), θ ∈ Θ} be a family of proba-
bility densities wrt a measure µ on X . Assume that:

1. FΘ is invariant under the group G.
2. φθ and φx are bijective. X and Θ are isomorphic.
3. The prior measure on Θ is the measure induced by Hr

from φθ.
4. The measure µ on X is the measure induced by Hr

from φx.

Then the PLR defined in Eq. (9) can be reexpressed as the
frequentist integral:

PLR(ζ, x) = Pr


f(x|θ0)

∆(φ−1
c (x))

≤ ζ f(y|θ0)

∆(φ−1
c (y))

|H0, x

ff
(13)

for all c ∈ X .

The proof of this theorem, which is well beyond the scope of
this article, is available in [19].

Setting ζ = 1 in (13) leads directly to the following corol-
lary where the second equality follows from the uniform dis-
tribution of the p-value.

Corollary 1 Under the same hypothesis as theorem 1

PLR(1, x) = 1− pval


f(x|θ0)

∆(φ−1
c (x))

ff
(14)

Consequently, the PFA of the test (8) for ζ = 1 equals 1− p.

The assumption of an isomorphism between X and Θ
is rather restrictive. This constraint is relaxed considering a
family of probability densities where the invariance is defined
on τ(X) ∈ T , a sufficient statistics for θ ∈ Θ, such that T , G,
Θ and Ḡ are all isomorphic. In this case the proof of theorem
1 can be extended. It leads to (13,14) where the statistics
used in the p-value is now fs(τ |θ0)/∆(φ−1

c (τ)) where fs(τ |θ0)
is the marginal distribution of τ(X) under H0.

Many studies try to conciliate or compare frequentist
and Bayesian hypotheses tests procedures. For the simple
vs composite hypothesis test see for example [3, 11]. This
result contributes to this issue, but in the frame of measure
of evidence using the LR [16, 7] and not measure of accuracy
of a set estimation Iθ0 [11].

It also has some practical interest. For example, for ζ = 1
the threshold 1− p equals the significance level of the test.

4. APPLICATION TO EXOPLANET
DETECTION WITH DIRECT IMAGING

The detection procedure presented in section 3 is realistically
applied to the detection of exoplanets from direct imaging
using the future VLT instrument SPHERE [5].

4.1 Statistical model for exoplanet detection in di-
rect imaging

A hierarchical Bayesian model precisely related to our con-
text has been developed in [18] and is summed up here. The
θ vector of the hypothesis test (3) refers to the exoplanet
intensity in the different channels.

• The dataset is made of K successive sets of L images
associated to different spectral bands, where each image
is a M × 1 vector i`(k). The xtk = (i1(k)t, .., iL(k)t) are
assumed to be conditionally independent and described
by:

xk|µ,Σ, θ ∼ NLM (Akθ + µ,Σ) (15)

Matrix Ak contains source profiles p`(k) assumed known.
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Figure 1: Simulated data from CAOS-SPHERE with a con-
trast of 106 between the star and the planet. Left: data
x2(20)0.2. Right: source response p2(20)0.2.
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Figure 2: Histograms of two Markov chains {θ[j] ∼ π∗(θ|x)}
resulting from the data with and without a planet.

• Due to the high dynamics involved in possible low sig-
nal to noise ratio cases, and due to the inherent wide
range of sources intensities, the distribution of θ has to
spread out on several order of magnitudes. It is therefore
natural to assume that (ln θ1, . . . , ln θL)t is jointly gaus-
sian. This so-called multivariate log-normal distribution
describes high dynamics signals, has a positive suppor
and is proper:

θ|m,B ∼ logN (m,B) (16)

Conjugate priors (Normal - inverse Wishart in both cases)
are assumed for the unknown parameters. This first level
likelihood is marginalized and leads to an explicit form of
π∗(θ|x) where x = {xk}k=1,..,K . The Markov chain {θ[j] ∼
π∗(θ|x)}j necessary to compute the test statistics is obtained
from a slice sampling method [15].

4.2 Application of the detection procedure on a re-
alistic dataset

The simulation of realistic astrophysical datasets is per-
formed by the dedicated physical step-by-step Software
Package SPHERE [5] developed and used within the CAOS
environment [6]. A dataset x is simulated under H1 with
a luminosity contrast of 106 between the star and the ex-
oplanet (corresponding to an intensity θH1), and another
under H0, obtained from an area adjacent to the one under
H1. The data under H1, of size (K,L,M) = (20, 2, 425) are
illustrated on figure 1. Note that it is impossible to simulate
many datasets.

The detection procedure described in section 3 and used
with the realistic statistical model summarized in section 4.1
is finally applied to these two datasets. The hyperparameters

are chosen simply (ν = 2M , Σ0 = cσ2I2M ) or unfavourable
(m0 = ln(1000θH1)). NI = 105 samples are computed for

each chain {θ[j]}.
Figure 2 shows the histograms of the Markov chains

resulting from these two cases. Under the H1 case, the
Bayes Factor (5) seems to indicate with no ambiguity a
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Figure 3: Histograms of the {LR(x, θ[j])} chains, computed

from the chains {θ[j]} shown in figure 2. The GLR and the
BF are indicated.

Figure 4: A posteriori empirical cumulative distributions of
LR, displayed from the chains {LR(x, θ[j])} shown in Fig. 3.

detection: BF = 0.04 < ζ0 for ζ0 = 0.11. The measure
PLR(x, ζ0) = 0.94 > 0.8 confirms the absence of ambiguity
of the BF result. Similarly, in the H0 case, BF = 3.7 in-
dicates again with no ambiguity that there is no exoplanet.
This is confirmed by the quantile PLR(x, ζ0) = 0. For a
more complete information, the empirical posterior distribu-
tions of LR(x, θ[n]) are presented on figure 3 and figure 4.
They also illustrate the properties given in section 3.

Finally, estimation can be performed for the data where
a signal has been detected (ie data simulated under H1). The
posterior distribution is shown on figure 2 (left). The signal
is estimated by the posterior mean and its uncertainty by the
posterior standard deviation: θ = (6.2± 2.8 ; 4.6± 2.6).10−4

for a true θH1 = (8 ; 0.5).10−5.

4.3 Comparison with a frequentist GLR test

The proposed procedure is compared to a Generalized Likeli-
hood Ratio Test. The GLR as defined in (2) on the marginal-
ized density p(x|θ) being analytically intractable, the GLR
has been derived directly on the first level likelihood (15)
assuming that the covariance matrix is proportional to iden-
tity: Σ = σ2ILM . This last assumption is required to avoid
a complex constrained optimization and to obtain a closed
form expression of the test. Then,

GLR2(x) =
maxµ,σ{

Q
k p(xk|µ, σ

2ILM , θ = 0)}
maxµ,σ,θ{

Q
k p(xk|µ, σ2ILM , θ)}

(17)

The analytical maximization of the likelihood under H1 for
L > 1 generalizes a computation in [20] where L = 1, and
leads to:

GLR2(x) =

„bσ2
H1bσ2
H0

«KLM
2

(18)

where bσ2
Hi =

P
k ‖xk −AkbθHi − bµHi‖2

KLM

1The uncertainty defined in equation (11) gives “LR = 0.04 ±
0.34”. As mentioned, this measure of uncertainty is not relevant
for detection.
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Figure 5: ROC curves of the PLR, the FBF and the GLR2.

where bθH0 = 0 and (bµtH1, bθtH1) and bµH0 minimize least square
criteria obtained from the model (15).

Note that since the hypotheses are nested, contrary to
LR(x, θ[n]) GLR2(x) has always a value inferior or equal to
1. Here, ln(GLR2(x)) = −4350 for the data simulated under
H1 and ln(GLR2(x)) = −1300 under H0. Since it is not nu-
merically possible to realistically simulate a large number of
datasets, it is impossible to relate numerically the threshold
of the GLR test to its PFA. The model (15) is not identically
distributed, so the classical results on the asymptotic distri-
bution of the GLR neither apply. It is consequently difficult
to choose the threshold ζ.

In any case, the values of GLR2(x) applied to areas
closed but distinct from the precedent cases indicate that
the GLR2(x) discriminates with difficulty H0 and H1.

4.4 Illustration of the PLR optimization procedure

Other interesting properties of the PLR are now illustrated
on an astrophysical context totally similar to the previous
one, but the data are now simulated from the statistical
model and not the physical one, so that a long run per-
formance analysis can be performed. The data are simu-
lated from the marginalized likelihood presented in [18] for
KLM = 80. The data under H1 are characterized by a fixed
θ = θH1.

Fig. 5 illustrates the ROC curves obtained for some in-
tuitive parametrizations (ζ = 1 etc) and the optimal ones.
The optimal ROC curves are computed using the procedure
discribed in section 3.2. We note that:

• The classical Bayes Factor is uniformly less performant
than the other FBF and the PLR. For PFA = 0.1, the
performances of the PLR overpass the ones of the Bayes
Factor by 15%.
• The tests with fixed parametrization have performances

very close to the optimal ones. It strenghtens their use.
• The bad performances of the GLR2 test (18) where Σ

was wrongly assumed to be proportionnal to identity are
confirmed here: it is equivalent to a heads or tails test.
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