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ABSTRACT

In this paper, we introduce a new distance computed from the
construction of dual-rooted minimal spanning trees (MSTs).
This distance extends Grikschat’s approach [7], exhibits at-
tractive properties and allows to account for both local and
global neighborhood information. Furthermore, a function
measuring the probability that a point belongs to a detected
class is proposed. Some connections with diffusion maps [8]
are outlined. The dual-rooted tree-based distance (DRPT) al-
lows us to construct a new affinity matrix for use in a spectral
clustering algorithm, or leads to a new data analysis method.
Results are presented on benchmark datasets.

1. INTRODUCTION

Data clustering is the task of partitioning a set of data into
non-overlappingsubsets, without using any prior knowledge,
such that patterns belonging to a same cluster share more
similarity with each other than with patterns belonging to
different clusters [15]. Such problems are commonly en-
countered in statistics, data mining, pattern recognition, im-
age segmentation and bio-informatics [17]. Although many
strides were achieved in this area, there remains many open
issues. Hierarchical clustering, graph partitioning algorithms
and k-means [10] for instance are among the most populars
ones (see e.g. [17, 15] for a more exhaustive state of art).
More recently, a new class of clustering methods based on
some graph theory notions has emerged: the spectral clus-
tering algorithms [11]. As in other methods, little success
is found if clusters do not form convex subsets or are not
well separated or even overlapping. Furthermore the pres-
ence of noise or outliers leads to dramatically decreased per-
formances in general. Our methods exhibit improved perfor-
mances in this context.

A crucial issue in clustering problems concerns the
choice of an affinity measure between data points. We will
restrict the scope of this paper to the case where data points
are made of numerical features. Many situations cannot be
efficiently addressed by methods using Euclidean distances
to measure similarities between data points. Consider for
instance an Euclidean space and two imbricated non con-
vex clusters. Two points from cluster 1 may be more sep-
arated from each other than e.g. 2 points from the neigh-
boring borders of cluster 1 and cluster 2 respectively. In
such a case, no linear form will correctly classify the data
from the set of pairwise distances. This makes the motiva-
tion for introducing more geometrically descriptive similar-
ity measures. In their seminal work, Grikschat et al. [7]

proposed a method inspired by some recent research on dif-
fusion graphs [8], establishing connections between diffu-
sion process on manifolds and random walks on finite data
sets. Grikschat’s method is based on symmetrically grow-
ing MSTs rooted at each pairs of points, by Prim’s algorithm
[12]; the hitting time of the two MSTs measures the affin-
ity between points1. Dual rooted trees hitting time allows to
describe global as well as local geometrical properties of the
data set. In this paper, we introduce a slight modification of
Grikschat’s method, that confers new appealing properties.
The new proposed distance is applied for both clustering and
data analysis tasks. Additionally, a probability estimatethat
a point belongs to the different clusters is inferred from the
proposed distance.

In Section 2.1, MST definitions and Prim’s construction
algorithm are briefly sketched. Dual-rooted MST (drMST)
principles and drMST based distance and its properties are
introduced in Section 2.2. Applications in the framework
of clustering is presented in section 2.3; relation to existing
method is proposed in Section 2.4, and some data exploratory
application is presented in section 2.5. Section 3 presentsre-
sults on both synthetic and real datasets.

2. METHODOLOGY

2.1 MST and Prim’s algorithm

Let V = {v1,v2, . . . ,vn} denote a sample of data points inRl

having unknown Lebesgue multivariate densityλ . The goal
is to partitionV into K clusters. LetP= {C1, . . . ,CK} stand
for a set of clusters.

Let G = (V,E) be an undirected graph whereE = (ei j :
e(vi ,v j),(i, j) ∈ (1, . . . ,N)) denotes a set of undirected edges
between vertices ofV. The weightwi j of an edge measures
the dissimilarity between two verticesvi andv j .

A spanning treeT through the set of verticesV is a
connected acyclic graph which passes through all theN ver-
ticesvi , i ∈ {1, . . . ,N} in the set. The minimal spanning tree
(MST) is the tree which has the minimal weight

LN,γ (V) = min
T

∑
e∈T

wi j

A common choice forwi j is wi j = |e|γ , γ ∈ (0, l), wheree is
the Euclidean distance between vertices. The tree of minimal

1Hitting time is defined there as the number of iterations until the two
subtrees collide.
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power weighted length enjoys many interesting properties
(see e.g. [5]). However, in this paper the only assumptions
made for the weightwi j arewii = 0 andwi j = wji . We apply
the Prim’s algorithm [12], whose complexity isO(N log(N)).
Prim’s algorithm is a greedy procedure for growing trees by
recursively connecting a new vertex to the existing subtree.
At each iteration, the new vertex among the unconnected ver-
tices is chosen, such that the edge which connects the new
vertex to the subtree has a minimal weight. The procedure
is iterated until no unconnected vertex remains. The resulted
tree is unique2, i.e., independent of the initial vertex of the
graph, acyclic (no loop) and of minimal weight.

2.2 Dual Rooted Prim Tree

In [7], Grikschat et al. propose a graph-based distance mea-
sure between two verticesvi andv j to be the hitting-time of
the two Prim subtrees simultaneously grown, rooted atvi and
v j . A slight modification is proposed here consisting in com-
petitive growing : at each step of the tree growing procedure,
only one of the two Prim subtrees is grown, namely the one
for which the new edge has minimal weight. As in [7], this
process continues until the two subtrees collide. However,
the number of vertices connected within each subtree are no
longer identical. LetNiter denote the hitting time of the sub-
trees.

The tree obtained by the union of the two Prim subtrees is
referred to asDualRootedPrim Tree (DRPT) (Fig. 1). The
DRPT rooted invi ∈V and inv j ∈V will be notedDR(vi ,v j).

Different distances measuresd(vi ,v j) can be computed
based onDR(vi ,v j):
• the hitting time of the two sub-MSTs

diter(vi ,v j) = Niter , (1)

• the length of the final tree constructed

dleng(vi ,v j) =
Niter

∑
iter=1

witer , (2)

• and the weight of the final edge connected

dmax(vi ,v j) = maxiter∈[1,Niter ]witer . (3)

All these distances measures (1, 2, 3) enjoy the properties
of being metrics in the mathematical sense3.

This DRPT (Fig. 1) enjoys many interesting properties,
some of which are used in the rest of the paper.

Property 2.1 For a given couple of vertices{v1,v2} serving
as roots of two subtreesT1 andT2, the last constructed edge,
which connects the two subtrees together, of weight noted
wlast is always the largest (with maximum weight) among the
set of all edges from both subtrees.

Property 2.2 Let d(v1,v2) = wlast the weight of the largest
edge among all the edges involved on the subtrees rooted at
vertices v1 and v2, d is a distance.

2The symmetry propertywi j = wji insures unicity of the resulting graph,
assuming furthermore that there is no ties in the similaritymatrix.

3They are symmetric, positive, and satisfy the triangular inequality;
proofs are developed with many details in [6].

Property 2.3 The union of the subtreesT1 andT2 rooted at
v1 and v2 respectively is the MST for the subset of vertices
involved in one or the other subtree. This property is rather
straightforward to prove, as a MST is unique and does not
depend upon the root used for initializing Prim’s algorithm.

Property 2.4 Property 2.1 above insures that any Prim’s al-
gorithm rooted at a vertex fromT1∪T2 will connect all ver-
tices ofT1∪T2 before connecting a vertex outsideT1∪T2.
Then, by using property 2.2 above, it can therefore be con-
cluded that

∀vi ∈ T1,∀v j ∈ T2,d(vi ,v j) = d(v1,v2)

and

∀(vi ,v j) ∈ [T1×T1]∪ [T2×T2],d(vi ,v j)≤ d(v1,v2)

Property 2.5 Let R
v1
v2 stands for the relation, defined rela-

tively to v1 and v2 by viR
v1
v2 v j if d(vi ,v j)≤ d(v1,v2).

R
v1
v2 is trivially symmetric and reflexive. Transitivity ofR

v1
v2 is

easily obtained as a consequence of properties 2.2 and 2.4.
Therefore,Rv1

v2 is an equivalence relation and the obtained
clusters are equivalence classes wrtR

v1
v2
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Figure 1: Dual rooted Prim tree built on a data set. Sym-
bol X marks the rooted vertices. The dashed edge is the last
connected edge.

It must be pointed out that two ’distances’ are involved
in the dual-rooted tree approaches : the first one is related to
the weightwi j , as introduced in section 2.1. The second is
indexed on the MST grown on the vertex set from the knowl-
edge of allwi j .

When a new vertex is added in the process of growing
trees, it is associated to an edge of minimal weight : this
deals with local properties (neighborhood related) of the
vertex set. Although Euclidean distances are commonly
used for thewi j , other dissimilarity measures may better fit
the nature of the data at hand (e.g. information divergences
if the data are spectra as presented later). Whatever the
chosen functionwi j , its properties are encompassed in the
construction of the tree, the DRPT distance properties 2.1
to 2.5 are preserved. More specifically, it is important to
emphasize that the DRPT distance is a metric, whereaswi j
may be a semi-metric only. DRPT distances account for
more ’global’ features of the setV, as described e.g. by
property 2.4.
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2.3 Dual rooted trees-based distances for clustering

There exists a lot of clustering methods developed to parti-
tion a set of data, as mentioned in the introduction. Recently,
spectral graph clustering algorithms [4] have received a lot
of interests because of their properties and the quality of the
results obtained [11, 2]. Basically, the algorithm starts with a
neighborhood graph built on the dataset (either KNN-graph,
ε-graph or even fully connected graph) and a distance matrix
d (di, j = d(vi ,v j)) is computed. This distance matrix is used
to derive an affinity matrix commonly defined as:

Ai j = exp

(

−di, j

σ

)

.

The eigendecomposition of the normalized Laplacian (L)
of the graph is realized:

D = diag
(

∑Ai j
)

,L = D−1/2AD−1/2.

A K-means algorithm is finally applied on the eigenvectors
corresponding to thek largest eigenvalues, to exhibit the can-
didate clusters.

The usual distance measuredi, j used in the expression of
A is the Euclidean distance. In [7], the authors proposed to
use instead their graph-based distance. The obtained results
overcome those obtained with the Euclidean distance, espe-
cially when the classes have non convex shapes. Following
[7], we use DRPT distance together with spectral clustering
algorithms to exhibit clusters.

Parameterσ in the affinity matrix determines the hori-
zon above which two vertices are considered to be extremely
distant from each other and cannot belong to a common clus-
ter. Although this parameter drastically influences the quality
of the results, there is no broadly adopted strategy to deter-
mine its value [9] . In [7], the authors choose the maximum
distance ind. In order to be more robust to the outliers,
Schclar [13] proposed two heuristics for choosingσ : the
median heuristic (median ofd) and the max-min heuristic
(maxi minj di j ). All these heuristics allow to define a global
parameter. Based on this observation, Zelnik-Manor and Per-
ona [18] have proposed to consider a localσ in the compu-
tation of the affinity matrix. The choice ofσ depends on the
neighborhood of each vertex:σi = d(vi ,vK), wherevk is the
K th nearest neighbor ofvi . Therefore, the affinity matrix

is changed into this new expression:Ai j = exp
(

−d(vi ,vj )
σiσ j

)

.

The main drawback of this approach is its sensitivity to the
numberK of neighbors, for which no heuristic exists.

In Fig.2, the Jaccard [17]. index is computed on the re-
sults obtained by applying the spectral clustering algorithm
with the Euclidean distance on the Wine data set [1] for var-
ious values ofσ . Note thatσ (horizontal axis) is normalized
by the median of the distance distribution, in order to insure
independence of the results with respect to affine transform
of the data. Thenσ corresponds to the percentage of the me-
dian distance ofd. This plot highlights the importance of the
parameterσ in the clustering result.

2.4 Relation to Diffusion Maps, probability of member-
ship

In many applications, data clusters may overlap each other
and/or exhibit complicated non convex shapes. In such
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Figure 2: Jaccard index computed on the results obtained by
applying the spectral clustering algorithm with the Euclidean
distance on the Wine data set withσ varying.

situation, “hard labeling” turns out to be not satisfactory
enough. A crucial issue is then to introduce the probability
that a given data point is a member of a detected cluster or
of another. In this section, we introduce such a probability
of membership, and a close relation to transition matrices
introduced for diffusion maps [8] is presented.

For each vertexv, it is proposed to compute the probabil-
ity of being a member of the clusterCi as follows (4):

Proba(v∈Ci) =
∑vi∈Ci

h(d(v,vi))

∑v∈V h(d(v,vi))
, (4)

whereh may be any integrable decreasing function of the
distance measured(v,vi).

A popular choice forh is the exponential function:

h(d(v,vi)) = exp

(

−d2(v,vi)

ε

)

, (5)

whereε stands for the characteristic decay length. Note that
a discussion for choosingε would use similar arguments as
those developed for discussingσ in the previous section.

Euclidean distance is often chosen ford but the algorithm
fails to correctly clusterV when the classes are either non-
convex or lie on some non-linear manifold; it is proposed
here to substitute DRPT distance tod. Actually DRPT prop-
erties allow to deal with non-convex clusters by following
the shape of the clusters on the manifold (see [5]) and to
account for both local and global feature of the data space,
as explained previously (see Fig. 3). Let us emphasize that
replacingd by the DRPT distance is made possible, as the
latter is actually a metric. This could not make sense for
Grikschat’s distances for instance, as it is not a metric.

It is worth noticing that the expression of the probability
measure (4) is similar to the expression of the probabilities
entering the transition probability matrix of Lafon et al. [8]
for constructing diffusion maps. The probability of diffusion
from vertexi to vertex j is actually defined given by

M(vi ,v j) =
exp

(

‖vi−vj‖
2

ε

)

∑exp
(

‖vi−vj‖2

ε

) .

The diffusion map is given by the eigenelements ofM, and
clusters are issued by applying a simple (e.g. K-means) al-
gorithm on the obtained map.

1196



0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5  

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Probability membership map of the upper half-
moon data set with the use of the DRPT distances.

2.5 Exploratory analysis of Droopi clustering

Several methods can be used to obtain an embedding of the
data set into a low dimensional-space where the data can be
easily explored. A popular method to achieve such represen-
tation consists in projecting the data onto a low dimensional
Euclidean space, under the constraint that the Euclidean dis-
tances on the image space are as close as possible to the dis-
tances in the high dimensional original data space. This is
the strategy adopted in the Multi Dimensional Scaling algo-
rithm (MDS) [16] or Isometric mapping (Isomap) [14]. Note
that Laplacian eigenmaps introduced by Belkin et al. [2] also
provide a solution to this problem, exploited in spectral clus-
tering algorithms. This section is focused on applying MDS
to the Droopi distance matrix introduced previously.

MDS may be summarized by the following steps:

• First computeJ: J = I− 1
N11

t . J is referred to as the
double centering matrix.

• Normalize the row and column ofd: introduceL′
i j =

− 1
2Jdi j J.

• Compute the eigen-decomposition ofL′ and keep thek′

largest eigenvaluesλ j and their corresponding eigenvec-
torsµ j .

• The new set of coordinates is given by computing
√

λ j µ j .

The Iris data set consists in 150 points in 4-dimensions
containing three clusters (one of which is well separated from
the others and the two others exhibit interleave). Figure 4
shows this set embedded in a 2-dimensional space computed
by MDS with the Euclidean distances (a) and with the DRPT
distances (b). This clearly emphasizes the ability of Droopi
distance to ‘concentrate’ the image vertices on the low di-
mensional space into three well separated clusters. No theo-
retical details will be given here, but this appears clearlyas
being a consequence of property 2.4 above. By applying a
basic K-means algorithm in the low dimensional Euclidean
space represented on Fig.4(b), a correct labeling score of
146/150 was obtained (136/150 for classical unsupervised
clustering algorithms).

This simple experimentation allows us to attest the major
importance of the distance measures computed on the data
poin wts. The use of the dual-rooted trees-based distances
better discriminates the data points into relevant clusters.
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Figure 4: Embedded Iris data set with MDS (a) Euclidean
distance, (b) DRPT distances.

3. EXPERIMENTAL RESULTS

The performances of the proposed methods are illustrated
on various data sets. The main features of the algorithm
are tested on simulation data. The quality of the results are
evaluated by computing the Jaccard index LetP∗ be some
known ground truth reference partition of the data and let
P be the obtained partition. The Jaccard (J) index between
P andP∗ measures the similarity between the partitions. It
is expressed asJ(P,P∗) = a

a+b+c, wherea is the number of
pairs of points inV belonging to a same set inP and a same
set inP∗, b is the number of pairs of points inV belonging to
a same set inP and different sets inP∗ andc is the number
of pairs of points inV belonging to different sets inP and a
same set inP∗. J(P∗,P) = 1 indicates a perfect match of the
partitions.

Simulated Data Sets: We consider the classical ’two
moons’ problem with ouliers. Spectral clustering method
(with Euclidean distance) with a local scaling ofσ succeeds
in recovering the classes in the absence of outliers, but fails
when outliers are present (V counts 150 data points and 100
outliers). Replacing the Euclidean distance by the DRPT dis-
tance leads much better results, as shown on figure 5 . For
both cases,σ was chosen according to Zelnik-Malnor and
Perona method. The performance of DRPT based approach
comes from its ability to convey information from both local
and global features of the analyzed setV.
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Figure 5: Two Moons perturbated by a random noise: Spec-
tral clustering with (a) Euclidean distance, (b) DRPT dis-
tances.
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Real data: The Iris and Wine data sets from the UCI
machine learning repository [1] are used for benchmarking
the proposed approach. Firstly, spectral clustering algorithm
are applied to detect clusters, with Euclidean distances and
DRPT based distances (with Euclidean weight used in the
Prim’s growing algorithm). The number of clusters is known
a priori. As Wine dat set is made of a set of proportions of
chemical elements, it behaves like a spectrum. Following
[3], we propose to use a symmetrized Kullback information
divergence (Dkls) for the weight functionwi j ; this choice for
wi j leads to improved results aswi j is better adapted to the
nature of the data, although it is not a metric.

Secondly, we applied MDS algorithm to embed the data
into a 2-dimensional Euclidean space where K-means can be
used. The inter vertex distance matrices computed in their
original (high dimensional) space are either using Euclidean
metric or DRPT based distances.

Again, the proposed graph-based distances allow im-
proved performances, especially in the case (Wine) where
the weightw function is adapted to the data characteristics,
and despite it is not a metric.

Table 1: Results obtained in terms of Jaccard Index for vari-
ous datasets.

Methods Iris Wine
Spectral Clustering (Euclidean) 0.7445 0.4397

Spectral Clustering (diter) 0.8876 0.6627
Spectral Clustering (dleng) 0.8876 0.4276
Spectral Clustering (dmax) 0.5000 0.4276

Spectral Clustering (Grikschat [7]) 0.8876 0.4499
MDS (Euclidean) + Kmeans 0.7016 0.4199

MDS (DRPT) + Kmeans 0.8876 0.5338

Remark : This choice to embed the data in a 2 dimen-
sional space is not motivated by some theoretical properties
but was set for sake of visualization. The determination of
the optimal embedding dimension is not addressed in the
present paper.

4. CONCLUSION

In this paper, we have presented some dual-rooted diffusion
distances (DRPT) computed from the construction of dual-
rooted MSTs. These distances exhibit appealing properties
and allow to account for both local and global properties of
the set to be clustered. As the new proposed distance is a
metric, it allows us to introduce a function that measures
the probability of a point to belong to the different classes,
that brings some connections with diffusion maps. It allows
furthermore to use non metric distance measures for grow-
ing trees on which the DRPT is based, which may leads to
improved clustering performances in some cases (’spectrum-
like’ data). The usefulness of the new proposed distance is
illustrated through some spectral clustering applications, and
for some data exploratory analysis.
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