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ABSTRACT
Bi-frequency Coherence is a normalized spectrum func-

tion based on Lòeve Spectrum. In this work, we investigated
the use of Bi-frequency Coherence function for correlationof
two non-stationary processes, particularly for EEG signals.
We define a procedure to achieve Bi-frequency Coherence
starting from Lòeve Spectrum. Then we present a numerical
estimation of this approach. We compare our method with
traditional coherence and TF-coherence functions, by means
of some examples to show its advantages. It is shown that for
some non-stationary processes, the proposed Bi-frequency
Coherence function may extract underlying coupling better
than other approaches.

1. INTRODUCTION

Inspection of the relations between two or more processes
occurred simultaneously, has a significant role in signal pro-
cessing. Analysis of stochastic processes, from this pointof
view, is a challenging issue. Various methods have been pro-
posed to show coupling between stochastic processes such as
cross correlation, cross spectra, coherence function, etc. Co-
herence function is one of the most widely used techniques to
analyze such processes and find applications in a wide range
of disciplines from optics to neuroscience[1, 2, 3, 4, 5, 6].
Coherence function is simply obtained by normalizing cross-
spectrum of two processes with their auto-spectra [1] as
shown in eq. (1):

|CXY(ω)|2 =
|SXY(ω)|2

SX(ω)SY(ω)
(1)

where the cross-spectrum ofX(t) andY(t) is obtained by
taking the Fourier transform of the cross-correlation function
of two processes:

SXY(ω) = F{RXY(τ)} (2)

and the cross-correlation is calculated as,

RXY(τ) = E[X(t)Y(t + τ)] (3)

Here,F andE denote the Fourier transform and expectation
operators respectively.

Coherence function, which is indeed a frequency domain
representation, is very special since, most of the time, pro-
cesses under consideration (thought to be coupled) are trig-
gered by oscillatory events. By definition, coherence func-
tion is effective only on wide-sense-stationary, stochastic

This work was supported by The Research Fund of The University of
Istanbul. Project numbers: 3898, UDP-4382/14102009

processes. However, almost all signals encountered in na-
ture, like physiological signals, are said to be non-stationary.
Thus some further analysis methods are needed to overcome
this theoretical shortcoming of the coherence function. A
method is suggested to observe evolution of coherency by
time, called “Time-Frequency (TF) Coherency” [7, 8, 9]. Ba-
sically, TF Coherence is a reflection of TF “auto” spectra on
“cross” case:

|CXY(ω ,t)|2 =
|SXY(ω ,t)|2

SX(ω ,t)SY(ω ,t)
(4)

TF Coherence function is based upon the fact that second
moment of the processes is dependent on time

RXY(τ,t) = E[X(t)Y(t + τ)] (5)

so is the cross spectrum,

SXY(ω ,t) = F{RXY(τ,t)} (6)

It is obvious that TF-Coherence is very useful examining
time evolution of coherence function. However, as in
the previous case, the assumption of being wide sense
stationary still has to be ensured even though in a manner
of changing by time. Loosely speaking, coherence function
is useful to show coupling in single frequency, correlation
of two processes inωi frequency for instance. On the other
hand, TF-coherence yields information about evolution of
correlation inωi frequency by time. The question is what
if the coupling exists between two different frequenciesωi
andω j . Such processes exist and referred as “Harmonizable
Processes” [10, 11]. In the rest of this paper, we will revisit
the definition of non-stationarity and try to extend it to
investigate bi-frequency spectral concept.

On the other hand, the concept of being coupled involves
stationarity in some manner. To be more precise, we intend
to extract “stationarity” between non-stationary processes.
From this point of view, one may define coupling as being
stationary of two or more processes according to each other
with respect to some manner.

2. BI-FREQUENCY COHERENCE FUNCTION

2.1 Bi-frequency Spectrum

The question is if there is a way to show coupling between
two different processes in different frequencies. The answer
should hold the properties of coherence function besides
it should be applicable to non-stationary processes. As
a starting point, we must go back to the auto-correlation
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function, which can be seen as the ground of coherence func-
tion, and drop the wide sense stationarity (WSS) assumption.

In a more comprehensive way, auto-correlation function
of a stochastic processX(t) is given by,

RX(t1, t2) = E[X(t1)X
∗(t2)]. (7)

Since the auto-correlation functionRX(t1, t2) involves
two time parameters, its frequency domain representation
or “power spectrum” should have two dimensions as well,
and both these dimensions should refer to frequencies. The
Bi-frequency or Loève Spectrum of this process is defined
as 2-dimensional (2D) Fourier transform of the above auto-
correlation function[10]:

SX(ω1,ω2) = Ft1{Ft2{RX(t1, t2)}} (8)

without any assumptions on time parameters. Let the Fourier
transform of any realization of the processX(t) is defined by
equation (9), for any observationx(t).

X(ω) = F{x(t)} (9)

It can easily be shown that the Bi-frequency Spectrum
SX(ω1,ω2) can be calculated as the expected value of the
outer product of Fourier transformX(ω) with its complex
conjugate as,

SX(ω1,ω2) = E[X(ω1)X
∗(ω2)] (10)

In contrast to the WSS case,SX(ω1,ω2) has imaginary
components. Moreover, it is symmetric with respect to the
ω1 = ω2 axis whereas on theω1 = ω2 line it is exactly equal
to its 1D counterpart “Power Spectrum”. We can then say
that, whileω1 6= ω2, SX(ω1,ω2) reveals information about
relations between different frequency components of the
process.

2.2 Bi-frequency Coherence

A cross spectrum function (11) can be defined in bi-
frequency plane as in auto-spectrum case (9).

SXY(ω1,ω2) = E[X(ω1)Y
∗(ω2)] (11)

Normalizing procedure can then be defined as (12), since
(11) is an inner product in Hilbert Space.

|CXY(ω1,ω2)|
2 =

|SXY(ω1,ω2)|
2

SX(ω1)SY(ω2)
(12)

For the case, whenω1 = ω2, CXY(ω1,ω2) function is
equal to its 1D counterpart, i.e., the coherence function given
in (1). We can state that, bi-frequency coherence function is
a combination of weighting coefficients which are produced
by linear relations between two non-stationary processes in
variant oscillations.

3. NUMERICAL CALCULATIONS

3.1 Spectral Estimation

The calculation of a spectra of a stochastic process requires
estimation. Any spectral estimation technique found in the
literature may be used for calculations [12]. For simplicity,
we use Welch’s modified periodograms [13] in our experi-
ments.

ŜXY(ω1,ω2) =
1
N

N

∑
i

Pi
XY(ω1,ω2) (13)

where
Pi

XY(ω1,ω2) = Xi(ω1)Y
∗
i (ω2)

and

Xi(ω) =
∫

x(τ)h(t − i,τ)e− jωτdτ (14)

3.2 Trust Level

Since estimation of the spectrum relies on some approxima-
tion process (i.e. expected value of a quantity) we have to
determine in what condition one can trust these results. In
literature a line called confidence limits is added to the co-
herence graphs as a representation of the trust level and val-
ues below this level is assumed to be zero as the evidence of
lack of coupling [1]. The confidence limit is a measure of the
expectation variance and obtained as;

1− (1−α)1/(L−1) (15)

Here α andL represents the interval of the confidence
limits and the number of observation instances respectively.
%95 confidence interval is used for this work.

4. EXPERIMENTAL RESULTS

We used both synthetic signals and real EEG signals in or-
der to show that there may be some situations where the
bi-frequency method may be more useful then the conven-
tional coherence and the joint TF methods. Synthetic sig-
nals were generated according to two different cases each
of which took under consideration different scenarios. 10-
second long, 25 observations were generated as synthetic sig-
nals.

100 msec. non-overlapping Hamming windows were
used for the analysis. Sampling frequency was chosen as
500 Hz. Upper confidence limit within 95% confidence in-
terval was 0.0012 for bi-frequency-coherence and traditional
coherence. Confidence limit, for TF-coherence, was 0.1178,

4.1 Synthetic Signals

Case 1: Null condition. We considered two uncorrelated
processes as the null situation for the first case. We chose
two Normal distributed random processes with zero mean
and unit variance.

x1(t) = ϕ1(t) ϕ1 ∼ N (0,1)

and
y1(t) = ϕ2(t) ϕ2 ∼ N (0,1)
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Figure 1: Traditional coherence function for Case 1. Dotted
straight line shows upper confidence limit within 95% confi-
dence interval.

Figure 2: TF-coherence function for Case 1. Confidence
limit is calculated as 0.1178. No significant pattern is ob-
served in the absence of coupling, as expected

Case 2: Coupling in different frequencies. In this case,
we have two signals correlated in different frequencies, with
additive noise, i.e.,

x2(t) = asin(θ1(t))+ ϕ1(t), ϕ1 ∼ N (0,1)

and

y2(t) = bsin(θ2(t))+ ϕ2(t), ϕ2 ∼ N (0,1)

where the frequencies are chosen as,

1
2π

dθ1(t)
dt

=

{

25Hz, 3.2 sec≤ t < 4 sec;
72Hz, 6.3 sec≤ t < 7.1 sec;
0, otherwise.

and

f2(t) =

{

57Hz, 3.2 sec≤ t < 4 sec;
37Hz, 6.3 sec≤ t < 7.1 sec;
0, otherwise.

where,

fi(t) =
1

2π
dθi(t)

dt
, i = 1,2

The bi-frequency coherence function is the only approach
that extracts the underlying information in this case. For the

Figure 3: Bi-frequency coherence function for Case 1. No
significant pattern is observed, as expected
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Figure 4: Coherence for Case 2.

analysis of processes having coupling in different frequen-
cies as in this example, the traditional coherence and the TF-
coherence functions give the same results as for the uncorre-
lated processes as shown in figures.

4.2 Bi-frequency Coherence Analysis of EEG Signals

Conventionally, coherence function (1) has been widely used
to determine coupling between two processes. As it is shown
in the previous section, the shortcomings of the traditional
coherence may be overcome using the proposed bi-frequency
coherence. Hence the coupling between two EEG channels
was investigated in this study. Recordings were taken from
BCI III competition [14]. 4− 9 measurements were taken
from a subject in three sessions. With visual feedback on a
screen, left or right imaginary movement task is performed
by the subject in each recording [15].

Off-diagonals indicates some patterns both in Fig.7 and
Fig.8. Hence, one can deduce that linear relations exist
among different frequencies. Also, these patterns may be
used to distinguish different tasks from each other.

5. CONCLUSIONS

In this study, we investigate the use of Bi-frequency Coher-
ence function for non-stationary processes, particularlyfor
EEG signals.

We discuss some conventional methods used for analyz-
ing cross relations of EEG signals and conceptional deficien-
cies of these methods. We present the Bi-frequency Coher-
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Figure 5: TF-coherence for Case 2.

Figure 6: Bi-frequency coherence for Case 2.

ence function by means of the Loève Spectrum. It is shown
that Bi-frequency Coherence can be used as an alternative
way of dealing those shortcomings. Consequently, in some
situations, it is shown that TF Coherence may have some
problems, and Bi-frequency Coherence is more convenient
in extracting the information. Furthermore a sample EEG
signal couple were analyzed with very encouraging results.
It is shown that EEG couples have some components that
could not be determined by TF methods but extracted using
Bi-frequency Coherence.

Joint TF spectral approaches assume that processes under
investigation are stationary around a definite time duration,
even though in a manner of evolution. From this point of
view, one can say that joint TF spectral estimation methods
investigate non-stationarity by tracing information about sta-
tionarity (like in conventional frequency methods) changing
over time. In this work, it is shown that being non-stationary
may exist on the far side of being “stationary changing by
time” generally for any non-stationary process by using syn-
thetic signals. Though bi-frequency plane is not commonly
used in electro-physiological signal analysis, the need may
arise similar to the EEG signal example shown here.

Figure 7: Imaginary right movement

Figure 8: Imaginary left movement

Fourier based methods are considered while calculating
Bi-frequency Coherence in the present study. Other ap-
proaches such as wavelet, AR models etc. may be employed
for calculating Bi-frequency Coherence as well. More-
over, investigating time evolution of Bi-frequency Coherence
function may yield some extra information. Another interest-
ing information is the phase that Bi-frequency function car-
ries. This may be useful for the investigation about which
process is leading (triggering) the other [1], which is fre-
quently searched in most conventional coherence studies.
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