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ABSTRACT 
The interest in using High-Level Synthesis flows to design 
Digital Signal Processing (DSP) circuits greatly increased 
in the last years. This is primarily due to the growing pro-
cessing complexity combined with the limitations of the 
time-to-market constraint. Dedicated processor design is a 
complex process, and tools have to optimize processor data-
path and controller. In this paper, we propose a controller 
design flow based on mapping Finite-State Machines into 
Memory Blocks in order to limit the controller critical path. 
Our design flow approach takes into account DSP circuit 
singularities providing efficient area saving compared to 
other approaches (more than 5%, and up to 62% on real life 
applications). 

1. INTRODUCTION 

Custom circuits generated using High-Level Synthesis 
(HLS) design methodologies [1, 2] are based on generic 
architectures. Actually, these custom circuits, usually dedi-
cated to Digital Signal Processing (DSP) applications  [3, 4], 
are composed of two parts: a datapath to perform computa-
tions and a controller to control the hardware resources. 
Generated circuit complexity increases with application 
functionalities [5, 6], performance and system constraints 
[7]. Design complexity heavily impacts on the circuit con-
troller size. Therefore, this controller may become a per-
formance bottleneck for the circuit due to increasing critical 
path delay (this delay limits the circuit maximum clock fre-
quency and throughput).  
Many controller related issues have been addressed in con-
trol-intensive researches. It has been demonstrated that im-
plementing a controller using a ROM based design provides 
interesting characteristics [8]. However, existing techniques 
have been developed for control-intensive applications and 
must be adapted to efficiently manage computation-
intensive application specificities. 

In this paper, we present a design flow to save memory area 
for ROM-based controllers dedicated to custom DSP cir-
cuits. These circuits −  hand-written or automatically gener-
ated using HLS tools − have two main characteristics: (1) 
every datapath resource is not used on each clock cycle [9, 
10] (this can permit command signal optimizations) and (2) 
the controller can be split into smaller parts for better area 
reduction. 
This paper approach is different from literature ones, indeed 
we do not consider that the next state computation part of 
the controller is the most complex one. In the case of DSP 
circuits, the controller complexity is located in the output 
decoder part of the design. The main issue is in this case to 
factorize efficiently the output command signals to save 
design area. 
Article is organized as follows. Section 2 presents the litera-
ture approaches for ROM based controller implementation 
optimizations and explains the motivation for studying this 
type of solution. Section 3 details the area optimization al-
gorithm used and extend literature approaches to handle 
DSP singularities. Experimental results validating our meth-
odology are reported in Section 4. Finally, Section 5 con-
cludes this paper. 

2. RELATED WORKS 

Controller optimization techniques [11, 12] have been de-
veloped considering logic-based implementation (Figure 1). 
Logic based controller design has been proved inefficient for 
controllers with: large number of states [13, 14] and huge 
number of output signals. 
One way to cope the relation between the critical path and 
the number of FSM states is to implement the design con-
troller in a ROM-based design (Figure 2). Using such con-
troller architecture, the output values and the transition con-
ditions are pre-computed before logical synthesis and stored 
in ROM element. In this controller architecture, the critical 

 
Figure 1 -  Logic-based implementation of a FSM controller  
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Figure 2 - ROM-based implementation of a FSM controller 
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path is almost constant whatever the number of states and 
the number of resources (depending only on resource char-
acteristics, place and route choices and logical synthesis tool 
options [15]).  
General methods for ROM-based controller synthesis target-
ing implementation of sequential circuits using embedded 
memory blocks have been proposed in [8, 16]. These meth-
ods dedicated to control-intensive applications, save ROM 
area by decomposing the memory block (corresponding to 
the controller) into two blocks: a semi-combinational ad-
dress modifier and a smaller memory block to store the out-
put values. An appropriately chosen decomposition strategy 
may reduce the required memory size at the cost of addi-
tional logic cells. These optimizations focus only on the next 
address computation part of the controller implementation. 
A similar approach was proposed in [17] which considers 
the controller power consumption problem. Finally, in [18, 
19], the author uses don't care value to simplify state transi-
tion equations. This simplification reduces the memory size 
as well as multiplexer complexity of the address modifier 
part only of the controller. 

Literature approaches consider general FSM models with 
uncorrelated output signals. These works consider that the 
next state computation part of the controller is more com-
plex that the output decoding one. DSP circuit controllers do 
not have such characteristics: 

1. The FSM models are mainly linear (the next state de-
coding equations and conditions are simples) 

2. The output signal set is complex (huge numbers of 
states and output signals). 

In custom DSP circuits, the FSM output signals are used to 
control the datapath resources like ones shown in Figure 3. 
The controller next state computation part is elementary 

since its execution path is linear.  

Proposed approach - An efficient way to design this kind 
of controllers is to implement the next state computation 
function f using an adder, a register and a multiplexer re-
source. The output decoding function g is implemented 
using a ROM memory. Each word of the ROM stores the 
output commands associated to state S. In this paper, we 
propose a cluster-based methodology, efficiently reducing 
the ROM area associated to output signal generation. 

3. AREA SAVING TECHNIQUES 

ROM area increases with the number of resources and the 
number of FSM states.  Depending on circuit complexity, 
these requirements can become huge. Two literature tech-
niques have been proposed, removing spatial and temporal 
redundancy. These techniques use the fact that command 
signals (controller outputs) are not required for each hard-
ware resources at each clock cycle. Undefined command 
values named don't care values are represented using X in 
the truth table (example in Figure 4). Don't care values help 
the ROM area reduction process, as they can be modified 
without any design functionality impact. 

Spatial redundancy - The first approach to save ROM area 
is to realize column compaction [20, 21]. This technique 
aims at removing output signals (columns) which are logi-
cally equivalent, or can be made equivalent through as-
signment of don't cares. Given a set of output columns, the 
problem of finding the smallest column set to drive the 
overall datapath resources can be obtained by compacting 
the given set. Figure 4 present the thrust table before and 
after the optimization process. This problem is related to the 
maximum clique-partitioning problem, which is NP-
complete. 

Removing temporal redundancy – The second approach is 
used to remove the inter-instruction redundancy, reducing 
the ROM height. Removing the temporal redundancies 
modifies output computation function g:X×S→Y updating it 

 
Figure 3 - Circuit composed of a datapath and its controller 
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Figure 4 - Column compaction examples. 
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Figure 5 - Instruction compaction examples. 
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Figure 6 - Architecture for instruction indexed controllers 
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by g’:T(X×S)→Y  where T:(X×S)→I  is the function which 
associates an instruction for each controller state. Figure 5 
presents an example of instruction compaction result. This 
indexed relation between current controller state and the 
output signals required an architectural modification: a new 
ROM memory is required to implement the T relation. 
Modified controller architecture is shown in Figure 6. 

However, this optimization technique may leads to ROM 
size increasing in some circumstancies i.e. when their exist a 
low instruction redundancy in the controller (indexing ROM 
may be more expensive than memory saved compacting 
instructions). 

4. PROPOSED CLUSTER-BASED APPROACH 

Using a single controller to manage the overall datapath 
resources (Figure 7a) is a bottleneck during the optimization 
process, i.e. merging rows or columns can be forbidden by 
only one bit value over hundreds. To solve this optimization 
issue, dedicated processing circuits can be divided into in-
dependent synchronous elements. These elements named 
clusters are atomic groups composed of: 
− A computation resource (arithmetic or logic resource), 
− Associated storage elements (registers), 
− Required steering logic resources (multiplexers). 
Each cluster has its own characteristics (i.e. computation 
starting and ending states which depends on resource usages 
specified during the HLS scheduling step [9, 10]). In exam-
ple, architecture shown in Figure 3 is composed of 4 clus-
ters: one for each multiplier (MULT), one for the substractor 
(SUB) and one for the adder (ADD). With such circuit de-

composition (Figure 7b), each cluster controller can be op-
timized without considering others. This approach improves 
results obtained using instruction compaction technique. 
Unfortunately, the drawback of duplicating controllers using 
an island-styled approach (Figure 7b) is design area in-
crease. Fully clustered appraoch reduces the column com-
paction opportunities during area optimization step and it 
requires indexing ROMs in each cluster. 
Efficient datapath controller design is located between the 
clustered approach and single ROM one (Figure 7c). The 
cluster-merging problem is an optimization problem where 
the objective function can be described as follow: 

 

 

with N the number of controllers; Area(ci) the 
controller memory size of the ith controller. 

 
To find an efficient controller solution, a weighted graph 
B=(C, E) is built. Each vertex cl ∈ C represents a cluster 
controller. Node ci is weighted with vi which represents the 
minimum memory cost of the ith controller. E ∈ (C × C) is 
the set of weighted edges el,m between cl and cm. Edges rep-
resent the merging possibility between the linked controller 
nodes. Weight wl,m associated with edge el,m corresponds to 
the area saving  (or lost) obtained while merging both linked 
controllers. 

4.1 First Step: Creating the weighted graph 
For each cluster ci with i ∈ [1, N] in the architecture, we 

 
 (a) A single controller manages the overall elements (b) Each cluster has its own controller (c) Mixed approach where controllers are 

factorized to minimize area 

Figure 7 - Possible controller designs in custom DSP circuits 
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Figure 8 - Bi-partite graph models obtained during the proposed optimization process. 

549



create a node ci in B. For each node ci we compute the asso-
ciated controller minimum memory cost vi. The optimal vi 
weight is obtained after applying the overall optimization 
schemes. There exist three distinct possible ways to obtain 
the best ROM design: 
1. Using column compaction only 
2. Using column and instruction packing 
3. Using the same optimizations as (2) but executed in 

reverse order. 
These three optimization ways are explored and the best one 
(having the minimum cost value) is selected and used as 
node weight (vi). 
Once all nodes have been created, edges can be inserted. 
Each graph node is linked to all others. Each edge ei,j models 
the area saving obtained while merging controller ci with cj. 
For each node couple (ci, cj) we create three distinct edges, 
weighted using the merged controller cost obtained using the 
three optimization processes (similar as nodes weight). An 
example of such graph is presented in Figure 8a. 

4.2 Second Step: Removing inefficient opportunities 
Once the overall, weighted graph B has been constructed, 
we first eliminate the redundant edges linking node couples: 
for each couple (ci, cj) we only keep one edge ei,j  corres-
ponding to the best area saving. In case of area saving equi-
valence, column compacted only solution is preferred to 
other ones for critical path reason. This step result is pre-
sented in Figure 8b. 

Finally, the inefficient merging possibilities are removed 
(merging opportunities which increase the controller design 
area). Each edge is evaluated and ones with wi,j > 0 are re-
moved. This model transformation is illustrated in Figure 8c. 

4.3 Third Step: Incremental graph compaction 
Graph compaction problem is solved using greedy approach 
to limit the algorithmic complexity. The B graph is analyzed 
to find the maximum weight wi,j value. This weight corres-
ponds to best controller merging opportunity (area saving). 
We merge the two controllers associated to ei,j, removing 
nodes ci and cj from B. A new node ck is inserted in B. Edges 
linking ck to cm with cm  ∈ B/{ck} are created and weighted as 
described in algorithm Step 1. Newly created edges are op-
timized and the procedure performed again until there is no 
more available merging (Figure 8d). 
Saving results may be improved considering smaller clusters 
at the optimization start i.e. one dedicated controller for each 
icrcuit element (registers and multiplexers). Unfortunately, 
increasing the number of clusters will increase in the same 
time drastically the optimization complexity and runtime. 

5. EXPERIMENTAL RESULTS 

In this section, we present experimental results. The ROM 
based optimization techniques have been integrated in the 
VHDL backend of the GraphLab HLS tool [22]. Experi-
ments are based on usually used digital signal processing 
applications. The optimization process results have been 

 
Table 1 - ROM area saving for two applications synthesized under different timing (latency) constraints 

Application Technique
# of execution 

states
# of resources 

(controller output bits)
# of clusters in 

the design
ROM decoder output 

width  (# of bits)
# of different 
instructions

# of ROM 
bits

ROM size 
(kByte)

EXP5 method 
saving

2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT

64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT

inverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEG

EXP1

80 646

1 646 80 52326 6,4 47,8!%
EXP2

80 646
1 354 80 28674 3,5 4,8!%

EXP3 80 646 1 354 80 28674 3,5 4,8!%
EXP4

80 646

35 515 [2, 65] 34330 4,2 20,5!%
EXP5

80 646

4 396 [16, 80] 27297 3,3 ------
EXP1

120 640

1 640 120 77440 9,5 51,9!%
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120 640
1 330 120 39930 4,9 6,7!%
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1 2472 140 348552 42,5 69,4!%
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EXP3 140 2472 1 1110 125 139737 17,1 23,7!%
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140 2472

119 1963 [2, 76] 148909 18,2 28,4!%
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obtained for different synthesis constraint sets applied to the 
applications. Generated circuits have different controllers 
architectures (different number of resources to manage, 
different number of states, different decoder filling). This 
procedure helps us to provide a fairly evaluation of the de-
coder area saving obtained. Five methodologies have been 
compared: 
• EXP1: ROM-based implementation of the controller 

without any optimization. 
• EXP2: ROM-based implementation of the controller 

optimized using column compaction technique. 
• EXP3: ROM-based implementation of the controller 

optimized using column and instruction compaction 
techniques. Best solution obtained using both optimiza-
tion orders is provided. 

• EXP4: ROM-based implementation of the controller 
using a full clustered-based approach: each cluster has 
its own ROM decoder. ROM decoders are column and 
instruction compacted. 

• EXP5: ROM-based implementation of the controller is 
obtained using the proposed approach. Clusters are op-
timized and merged according to area saving opportuni-
ties as described in Section 4. 

Results presented in Table 1 show ROM area saving ob-
tained for benchmark applications. Results highlight that the 
proposed technique always provide better area saving (from 
5% to 62% saving, average=27%) compared to other meth-
odologies. Experiments also prove that method efficiency 
depends on controller characteristics and content. Finally, 
proposed approach helps in finding interesting tradeoffs 
between column and instruction compaction. 

6. CONCLUSION 

In this paper, we have presented a new ROM area saving 
methodology which takes care of DSP circuit singularities to 
extend literature approaches. The controller architecture is 
generated using an efficient trade-off between single and 
fully clustered controller approaches. Proposed methodol-
ogy is integrated to a high-level synthesis tool. As the ex-
perimental results show, the controllers generated using our 
design flow have significantly less area: 5% up to 62% com-
pared to a single based controller design and 17% up to 36% 
compared to a fully clustered approach. 
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