
AREA OPTIMIZATION OF ROM-BASED CONTROLLERS
DEDICATED TO DIGITAL SIGNAL PROCESSING APPLICATIONS

Bertrand LE GAL, Aurélien RIBON, Lilian BOSSUET and Dominique DALLET

IMS Laboratory - UMR CNRS 5218
University of Bordeaux - Talence, FRANCE

e-mail: {firstname.lastname}@ims-bordeaux.fr

ABSTRACT
The interest in using High-Level Synthesis flows to design
Digital Signal Processing (DSP) circuits greatly increased
in the last years. This is primarily due to the growing pro-
cessing complexity combined with the limitations of the
time-to-market constraint. Dedicated processor design is a
complex process, and tools have to optimize processor data-
path and controller. In this paper, we propose a controller
design flow based on mapping Finite-State Machines into
Memory Blocks in order to limit the controller critical path.
Our design flow approach takes into account DSP circuit
singularities providing efficient area saving compared to
other approaches (more than 5%, and up to 62% on real life
applications).

1. INTRODUCTION

Custom circuits generated using High-Level Synthesis
(HLS) design methodologies [1, 2] are based on generic
architectures. Actually, these custom circuits, usually dedi-
cated to Digital Signal Processing (DSP) applications [3, 4],
are composed of two parts: a datapath to perform computa-
tions and a controller to control the hardware resources.
Generated circuit complexity increases with application
functionalities [5, 6], performance and system constraints
[7]. Design complexity heavily impacts on the circuit con-
troller size. Therefore, this controller may become a per-
formance bottleneck for the circuit due to increasing critical
path delay (this delay limits the circuit maximum clock fre-
quency and throughput).
Many controller related issues have been addressed in con-
trol-intensive researches. It has been demonstrated that im-
plementing a controller using a ROM based design provides
interesting characteristics [8]. However, existing techniques
have been developed for control-intensive applications and
must be adapted to efficiently manage computation-
intensive application specificities.

In this paper, we present a design flow to save memory area
for ROM-based controllers dedicated to custom DSP cir-
cuits. These circuits − hand-written or automatically gener-
ated using HLS tools − have two main characteristics: (1)
every datapath resource is not used on each clock cycle [9,
10] (this can permit command signal optimizations) and (2)
the controller can be split into smaller parts for better area
reduction.
This paper approach is different from literature ones, indeed
we do not consider that the next state computation part of
the controller is the most complex one. In the case of DSP
circuits, the controller complexity is located in the output
decoder part of the design. The main issue is in this case to
factorize efficiently the output command signals to save
design area.
Article is organized as follows. Section 2 presents the litera-
ture approaches for ROM based controller implementation
optimizations and explains the motivation for studying this
type of solution. Section 3 details the area optimization al-
gorithm used and extend literature approaches to handle
DSP singularities. Experimental results validating our meth-
odology are reported in Section 4. Finally, Section 5 con-
cludes this paper.

2. RELATED WORKS

Controller optimization techniques [11, 12] have been de-
veloped considering logic-based implementation (Figure 1).
Logic based controller design has been proved inefficient for
controllers with: large number of states [13, 14] and huge
number of output signals.
One way to cope the relation between the critical path and
the number of FSM states is to implement the design con-
troller in a ROM-based design (Figure 2). Using such con-
troller architecture, the output values and the transition con-
ditions are pre-computed before logical synthesis and stored
in ROM element. In this controller architecture, the critical

Figure 1 - Logic-based implementation of a FSM controller

State register

g: (X×S) → Y
(logic)

clock

X

Y

f: (X×S) → S
(logic)

S

Figure 2 - ROM-based implementation of a FSM controller

State register
f: (X×S) → S

g: (X×S) → Y

(ROM)

clock

X
Y

S

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010 ISSN 2076-1465 547

path is almost constant whatever the number of states and
the number of resources (depending only on resource char-
acteristics, place and route choices and logical synthesis tool
options [15]).
General methods for ROM-based controller synthesis target-
ing implementation of sequential circuits using embedded
memory blocks have been proposed in [8, 16]. These meth-
ods dedicated to control-intensive applications, save ROM
area by decomposing the memory block (corresponding to
the controller) into two blocks: a semi-combinational ad-
dress modifier and a smaller memory block to store the out-
put values. An appropriately chosen decomposition strategy
may reduce the required memory size at the cost of addi-
tional logic cells. These optimizations focus only on the next
address computation part of the controller implementation.
A similar approach was proposed in [17] which considers
the controller power consumption problem. Finally, in [18,
19], the author uses don't care value to simplify state transi-
tion equations. This simplification reduces the memory size
as well as multiplexer complexity of the address modifier
part only of the controller.

Literature approaches consider general FSM models with
uncorrelated output signals. These works consider that the
next state computation part of the controller is more com-
plex that the output decoding one. DSP circuit controllers do
not have such characteristics:

1. The FSM models are mainly linear (the next state de-
coding equations and conditions are simples)

2. The output signal set is complex (huge numbers of
states and output signals).

In custom DSP circuits, the FSM output signals are used to
control the datapath resources like ones shown in Figure 3.
The controller next state computation part is elementary

since its execution path is linear.

Proposed approach - An efficient way to design this kind
of controllers is to implement the next state computation
function f using an adder, a register and a multiplexer re-
source. The output decoding function g is implemented
using a ROM memory. Each word of the ROM stores the
output commands associated to state S. In this paper, we
propose a cluster-based methodology, efficiently reducing
the ROM area associated to output signal generation.

3. AREA SAVING TECHNIQUES

ROM area increases with the number of resources and the
number of FSM states. Depending on circuit complexity,
these requirements can become huge. Two literature tech-
niques have been proposed, removing spatial and temporal
redundancy. These techniques use the fact that command
signals (controller outputs) are not required for each hard-
ware resources at each clock cycle. Undefined command
values named don't care values are represented using X in
the truth table (example in Figure 4). Don't care values help
the ROM area reduction process, as they can be modified
without any design functionality impact.

Spatial redundancy - The first approach to save ROM area
is to realize column compaction [20, 21]. This technique
aims at removing output signals (columns) which are logi-
cally equivalent, or can be made equivalent through as-
signment of don't cares. Given a set of output columns, the
problem of finding the smallest column set to drive the
overall datapath resources can be obtained by compacting
the given set. Figure 4 present the thrust table before and
after the optimization process. This problem is related to the
maximum clique-partitioning problem, which is NP-
complete.

Removing temporal redundancy – The second approach is
used to remove the inter-instruction redundancy, reducing
the ROM height. Removing the temporal redundancies
modifies output computation function g:X×S→Y updating it

Figure 3 - Circuit composed of a datapath and its controller

reg_1
reg_2
reg_3

MULT
reg_4
reg_5
reg_6

ADD

reg_14
SUB

reg_13
reg_7
reg_8
reg_9 MULT

reg_10

Controler unit register and multiplexer command signals

In1

In2

In3

Out2

Out1reg_11

reg_12

D1

D2
D4

D3

M1

M2

M3

M4

M5

M6

M7

M8 M11

M10

M9 M13

M12

Figure 4 - Column compaction examples.

Controller
State

Ouput signalsOuput signalsOuput signalsOuput signalsOuput signalsOuput signalsOuput signalsController
State 1 2 3 4 5 6 7

1 X X 1 1 1 1 1
2 X 1 X 0 X 0 0
3 X 1 X 1 X 0 0
4 0 1 1 1 1 0 0
5 1 0 1 X X 1 1
6 X 0 X 1 X 0 0
7 X X 1 1 X 1 1

Controller
State

Ouput signalsOuput signalsOuput signalsOuput signalsOuput signalsController
State 1 2/5 3 4 6/7

1 X X 1 1 1
2 X 1 X 0 0
3 X 1 X 1 0
4 0 1 1 1 0
5 1 0 1 X 1
6 X 0 X 1 0
7 X X 1 1 1

1

Figure 5 - Instruction compaction examples.

Controller
State

Decoder ouput signalsDecoder ouput signalsDecoder ouput signalsDecoder ouput signalsDecoder ouput signalsDecoder ouput signalsController
State 1 2 3 4 5 6

1 X 0 1 1 X 1
2 X 1 X 0 1 0
3 X 1 X 1 X 0
4 0 1 1 1 X 0
5 1 0 1 X 1 0
6 X 0 X 1 0 X
7 0 X 1 1 X 1

Instr Decoder ouput signalsDecoder ouput signalsDecoder ouput signalsDecoder ouput signalsDecoder ouput signalsDecoder ouput signals
dec. 1 2 3 4 5 6

1 0 0 1 1 0 1
2 X 1 X 0 1 0
3 0 1 1 1 X 0
4 1 0 1 X 1 0

Controller
State

Ouput
Instr.

1 1
2 2
3 3
4 3
5 4
6 1
7 1

Figure 6 - Architecture for instruction indexed controllers

System clock

g:(I) → Y

(Instruction ROM)
T:(X×S)
→ I

(ROM)

State register

Next
State

Current
StateSystem

inputs
f: (X×S) → S

Ouput
signals

548

by g’:T(X×S)→Y where T:(X×S)→I is the function which
associates an instruction for each controller state. Figure 5
presents an example of instruction compaction result. This
indexed relation between current controller state and the
output signals required an architectural modification: a new
ROM memory is required to implement the T relation.
Modified controller architecture is shown in Figure 6.

However, this optimization technique may leads to ROM
size increasing in some circumstancies i.e. when their exist a
low instruction redundancy in the controller (indexing ROM
may be more expensive than memory saved compacting
instructions).

4. PROPOSED CLUSTER-BASED APPROACH

Using a single controller to manage the overall datapath
resources (Figure 7a) is a bottleneck during the optimization
process, i.e. merging rows or columns can be forbidden by
only one bit value over hundreds. To solve this optimization
issue, dedicated processing circuits can be divided into in-
dependent synchronous elements. These elements named
clusters are atomic groups composed of:
− A computation resource (arithmetic or logic resource),
− Associated storage elements (registers),
− Required steering logic resources (multiplexers).
Each cluster has its own characteristics (i.e. computation
starting and ending states which depends on resource usages
specified during the HLS scheduling step [9, 10]). In exam-
ple, architecture shown in Figure 3 is composed of 4 clus-
ters: one for each multiplier (MULT), one for the substractor
(SUB) and one for the adder (ADD). With such circuit de-

composition (Figure 7b), each cluster controller can be op-
timized without considering others. This approach improves
results obtained using instruction compaction technique.
Unfortunately, the drawback of duplicating controllers using
an island-styled approach (Figure 7b) is design area in-
crease. Fully clustered appraoch reduces the column com-
paction opportunities during area optimization step and it
requires indexing ROMs in each cluster.
Efficient datapath controller design is located between the
clustered approach and single ROM one (Figure 7c). The
cluster-merging problem is an optimization problem where
the objective function can be described as follow:

with N the number of controllers; Area(ci) the
controller memory size of the ith controller.

To find an efficient controller solution, a weighted graph
B=(C, E) is built. Each vertex cl ∈ C represents a cluster
controller. Node ci is weighted with vi which represents the
minimum memory cost of the ith controller. E ∈ (C × C) is
the set of weighted edges el,m between cl and cm. Edges rep-
resent the merging possibility between the linked controller
nodes. Weight wl,m associated with edge el,m corresponds to
the area saving (or lost) obtained while merging both linked
controllers.

4.1 First Step: Creating the weighted graph
For each cluster ci with i ∈ [1, N] in the architecture, we

 (a) A single controller manages the overall elements (b) Each cluster has its own controller (c) Mixed approach where controllers are

factorized to minimize area

Figure 7 - Possible controller designs in custom DSP circuits

MULT_1

reg
reg
reg
reg
reg
reg
reg

ADD_1

MULT_1

Controler unit

SUB_1

reg
reg
reg
reg
reg
reg
reg

reg
reg
reg
reg
reg
reg
reg

reg
reg
reg
reg
reg
reg
reg

Controler unit

Controler unit

OPR_1

reg
reg
reg
reg
reg
reg
reg

Controler unit

OPR_2

Controler unit

OPR_4

Controler unit

OPR_5

Controler unit

reg
reg
reg
reg
reg
reg
reg

reg
reg
reg
reg
reg
reg
reg

reg
reg
reg
reg
reg
reg
reg

OPR_1

reg
reg
reg
reg
reg
reg
reg

OPR_2

OPR_4 OPR_5

reg
reg
reg
reg
reg
reg
reg

reg
reg
reg
reg
reg
reg
reg

reg
reg
reg
reg
reg
reg
reg

Controler unit

(a) Initial graph model (b) Redundant edge removing (c) Inefficient edge removing (d) ROM factorization result

Figure 8 - Bi-partite graph models obtained during the proposed optimization process.

549

create a node ci in B. For each node ci we compute the asso-
ciated controller minimum memory cost vi. The optimal vi
weight is obtained after applying the overall optimization
schemes. There exist three distinct possible ways to obtain
the best ROM design:
1. Using column compaction only
2. Using column and instruction packing
3. Using the same optimizations as (2) but executed in

reverse order.
These three optimization ways are explored and the best one
(having the minimum cost value) is selected and used as
node weight (vi).
Once all nodes have been created, edges can be inserted.
Each graph node is linked to all others. Each edge ei,j models
the area saving obtained while merging controller ci with cj.
For each node couple (ci, cj) we create three distinct edges,
weighted using the merged controller cost obtained using the
three optimization processes (similar as nodes weight). An
example of such graph is presented in Figure 8a.

4.2 Second Step: Removing inefficient opportunities
Once the overall, weighted graph B has been constructed,
we first eliminate the redundant edges linking node couples:
for each couple (ci, cj) we only keep one edge ei,j corres-
ponding to the best area saving. In case of area saving equi-
valence, column compacted only solution is preferred to
other ones for critical path reason. This step result is pre-
sented in Figure 8b.

Finally, the inefficient merging possibilities are removed
(merging opportunities which increase the controller design
area). Each edge is evaluated and ones with wi,j > 0 are re-
moved. This model transformation is illustrated in Figure 8c.

4.3 Third Step: Incremental graph compaction
Graph compaction problem is solved using greedy approach
to limit the algorithmic complexity. The B graph is analyzed
to find the maximum weight wi,j value. This weight corres-
ponds to best controller merging opportunity (area saving).
We merge the two controllers associated to ei,j, removing
nodes ci and cj from B. A new node ck is inserted in B. Edges
linking ck to cm with cm ∈ B/{ck} are created and weighted as
described in algorithm Step 1. Newly created edges are op-
timized and the procedure performed again until there is no
more available merging (Figure 8d).
Saving results may be improved considering smaller clusters
at the optimization start i.e. one dedicated controller for each
icrcuit element (registers and multiplexers). Unfortunately,
increasing the number of clusters will increase in the same
time drastically the optimization complexity and runtime.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results. The ROM
based optimization techniques have been integrated in the
VHDL backend of the GraphLab HLS tool [22]. Experi-
ments are based on usually used digital signal processing
applications. The optimization process results have been

Table 1 - ROM area saving for two applications synthesized under different timing (latency) constraints

Application Technique
of execution

states
of resources

(controller output bits)
of clusters in

the design
ROM decoder output

width (# of bits)
of different
instructions

of ROM
bits

ROM size
(kByte)

EXP5 method
saving

2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT2d DCT

64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT64 taps FFT

inverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEGinverse JPEG

EXP1

80 646

1 646 80 52326 6,4 47,8!%
EXP2

80 646
1 354 80 28674 3,5 4,8!%

EXP3 80 646 1 354 80 28674 3,5 4,8!%
EXP4

80 646

35 515 [2, 65] 34330 4,2 20,5!%
EXP5

80 646

4 396 [16, 80] 27297 3,3 ------
EXP1

120 640

1 640 120 77440 9,5 51,9!%
EXP2

120 640
1 330 120 39930 4,9 6,7!%

EXP3 120 640 1 330 118 39787 4,9 6,4!%
EXP4

120 640

26 481 [3, 97] 49792 6,1 25,2!%
EXP5

120 640

3 348 [59, 117] 37253 4,5 ------

EXP1

91 1247

1 1247 91 114724 14,0 67,3!%
EXP2

91 1247
1 692 91 63664 7,8 41,1!%

EXP3 91 1247 1 692 69 48392 5,9 22,5!%
EXP4

91 1247

61 1043 [6, 35] 45057 5,5 16,8!%
EXP5

91 1247

13 852 [29, 44] 37509 4,6 ------
EXP1

274 1069

1 1069 274 293975 35,9 80,6!%
EXP2

274 1069
1 551 274 151525 18,5 62,3!%

EXP3 274 1069 1 551 157 88707 10,8 35,6!%
EXP4

274 1069

54 873 [3, 65] 74305 9,1 23,2!%
EXP5

274 1069

10 677 [53, 89] 57095 7,0 ------

0,0

EXP1

80 2805

1 2805 80 227205 27,7 77,7!%
EXP2

80 2805
1 1221 80 98901 12,1 48,7!%

EXP3 80 2805 1 1221 72 88479 10,8 42,6!%
EXP4

80 2805

256 2295 [4, 30] 78307 9,6 35,2!%
EXP5

80 2805

37 1674 [13, 33] 50749 6,2 ------
EXP1

140 2472

1 2472 140 348552 42,5 69,4!%
EXP2

140 2472
1 1110 140 156510 19,1 31,9!%

EXP3 140 2472 1 1110 125 139737 17,1 23,7!%
EXP4

140 2472

119 1963 [2, 76] 148909 18,2 28,4!%
EXP5

140 2472

4 1136 [91, 94] 106635 13,0 ------

550

obtained for different synthesis constraint sets applied to the
applications. Generated circuits have different controllers
architectures (different number of resources to manage,
different number of states, different decoder filling). This
procedure helps us to provide a fairly evaluation of the de-
coder area saving obtained. Five methodologies have been
compared:
• EXP1: ROM-based implementation of the controller

without any optimization.
• EXP2: ROM-based implementation of the controller

optimized using column compaction technique.
• EXP3: ROM-based implementation of the controller

optimized using column and instruction compaction
techniques. Best solution obtained using both optimiza-
tion orders is provided.

• EXP4: ROM-based implementation of the controller
using a full clustered-based approach: each cluster has
its own ROM decoder. ROM decoders are column and
instruction compacted.

• EXP5: ROM-based implementation of the controller is
obtained using the proposed approach. Clusters are op-
timized and merged according to area saving opportuni-
ties as described in Section 4.

Results presented in Table 1 show ROM area saving ob-
tained for benchmark applications. Results highlight that the
proposed technique always provide better area saving (from
5% to 62% saving, average=27%) compared to other meth-
odologies. Experiments also prove that method efficiency
depends on controller characteristics and content. Finally,
proposed approach helps in finding interesting tradeoffs
between column and instruction compaction.

6. CONCLUSION

In this paper, we have presented a new ROM area saving
methodology which takes care of DSP circuit singularities to
extend literature approaches. The controller architecture is
generated using an efficient trade-off between single and
fully clustered controller approaches. Proposed methodol-
ogy is integrated to a high-level synthesis tool. As the ex-
perimental results show, the controllers generated using our
design flow have significantly less area: 5% up to 62% com-
pared to a single based controller design and 17% up to 36%
compared to a fully clustered approach.

REFERENCES
[1] J. P. Elliott, Understanding Behavioral Synthesis. A Practical Guide

to High-Level Design. Kluwer Academic Publishers, 2000.
[2] Special issue on High-Level Synthesis, P. Coussy and A. Takach

Ed., IEEE Design & Test of Computers, vol. 26, issue 4, 2009.
[3] E. Casseau, B. Le Gal, P. Bomel, C. Jégo, S. Huet, and E. Martin.

“C-based rapid prototyping for digital signal processing”. In
Proceedings of the European Signal Processing Conference
(EUSIPCO), Antalya, Turquie, 4-8 September 2005.

[4] Arvind et al. “High-Level Synthesis: an essential ingredient for
designing complex ASICs,” In Proceedings of the Internationnal
Conference on Computer-Aided Design, pp. 775–782, 2004.

[5] W. Kaijie, and R. Karri, “Fault Secure Datapath Synthesis using
Hybrid Time and Hardware Redundancy,” IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems, vol 23,
No. 10, pp. 1476-1484, October 2004.

[6] B. Le Gal and E. Casseau, “Automated Multimode System Design for
High Performance DSP Applications,” In Proceedings of the
European Signal Processing Conference (EUSIPCO), Glasgow,
Scotland, August 24-29, 2009.

[7] S. Ahuja, W. Zhang, L. Avinash, S. K. Shukla, “A Methodology for
Power Aware High-Level Synthesis of Co-processors from Software
Algorithms,” In Proceedings of the VLSI Design Conference, pp.
282-287, 2010.

[8] H. Selvaraj, M. Rawski, T. Łuba, “FSM implementation in
embedded memory blocks of programmable logic devices using
functional decomposition,” in Proceedings of International
Conference on Information Technology: Coding and Computing
(ITCC), p. 355, 2002.

[9] G. Lakshminarayana, A. Raghunathan, N.K. Jha, S. Dey,
“Transforming control-flow intensive designs to facilitate power
management,” In Proceedings of the IEEE/ACM international
Conference on Computer-Aided Design (DAC), pp. 657-664, 1998.

[10] E. Musoll and J. Cortadella, “High-level synthesis techniques for
reducing the activity of functional units.” In Proceedings of the
International Symposium on Low Power Design, pp. 99-104, 1995.

[11] W. Shiue, “Power/Area/Delay aware FSM synthesis and
optimization,” Microelectronics Journal, vol. 36, no. 2, pp. 147–162,
February 2005.

[12] K. Kuusilinna, V. Lahtinen, T. Hamalainen, and J. Saarinen, “Finite
state machine encoding for VHDL synthesis,” In Computers and
Digital Techniques, vol. 148, no. 1, pp. 23–30, 2001.

[13] P. Bomel, E. Martin, and E. Boutillon, “Synchronization processor
synthesis for latency insensitive systems,” in Proceedings of the
Design Automation and Test in Europe Conference, p. 896, 2005.

[14] M.P. Desai, H. Narayanan, S. Patkar, "The Realization of Finite State
Machines by Decomposition and the Principal Lattice of Partitions
of a Submodular Function,” Special Issue on Submodular Functions,
Discrete Applied Maths, vol. 131, pp. 299-310, 2003.

[15] Xilinx corporation, “Block Memory Generator, ” version 3.3,
September 16, 2009.

[16] M. Rawski, H. Selvaraj, and T. Luba, “An application of functional
decomposition in ROM-based FSM implementation in FPGA
devices,” Journal of Systems Architecture, vol. 51, p. 424, 2005.

[17] A.Tiwari and K.Tomko, “Saving power by mapping finite-state
machines into embedded memory blocks in FPGAs,” in Proceedings
of the conference on Design, Automation and Test in Europe
(DATE), page 20916, 2004.

[18] R. Senhadji-Navarro, I. Garcia-Vargas, G. Jimenez-Moreno, A.
Civit-Ballcels, "ROM-based FSM implementation using input
multiplexing in FPGA devices,” Electronics Letters, Volume 40,
Issue 20, pages 1249-1251, Octobre 2004

[19] I. García-Vargas, R. Senhadji-Navarro, G. Jiménez-Moreno and A.
Civit-Balcells, P. Guerra-Gutiérrez, “ROM-Based Finite State
Machine Implementation in Low Cost FPGAs”. In the Proceedings
of the International Symposium on Industrial Electronics (ISIE), pp.
2342-2347. Vigo, Spain, June 4-7, 2007.

[20] D. Binger and D.W. Knapp, “Encoding multiple outputs for
improved column compaction,” in Proceedings of the International
Conference on Computer Aided Design (ICCAD), pp 230–233, 1991.

[21] S. Mitra, L. Avra and E. Mc Cluskey, “An output encoding problem
and a solution technique,” in Proceedings of the International
Conference on Computer-Aided Design (ICCAD),pp 304–307, 1997.

[22] E. Casseau and B. Le Gal, “ High-Level Synthesis for the Design of
FPGA-based Signal Processing Systems”, In the Proceedings of
SAMOS’09, Samos, Greece, July 20-23, 2009

551

