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ABSTRACT
It is known that the detection of a seismic radiation emitted
from the earth’s crust is useful for predicting earthquakes.
We have been observing the electromagnetic (EM) wave in
the Extremely Low Frequency (ELF) band. Various meth-
ods have been proposed to detect an anomalous EM radiation
from recorded data. In this paper, we propose the anomalous
signal detection based on HMM whose input vector is the
amplitude density distribution of an EM wave. The ampli-
tude density distribution is calculated from the image of an
EM wave data. The optimal scale of an image to calculate
an amplitude density distribution is examined with use of a
false detection rate. Moreover the optimal number of states
of HMM is investigated to achieve an accurate detection.

1. INTRODUCTION

Anomalous radiation of EM waves due to an earth dias-
trophism has been recorded in advance of earthquakes and
volcanic activities[1]. We have been measuring the EM ra-
diation in the ELF band. Our research is directed towards
identifying an anomalous radiation of earthquakes from the
EM wave data[2]. Observed signals contain undesired com-
ponents associated with the magnetosphere, the ionized layer
and the lightning radiation in the tropics, and so on[3]. Var-
ious signal processing techniques have been proposed to de-
tect and understand the anomalous radiation in the ELF band.

The normal value method[4] and the principal compo-
nent analysis[5] were proposed as simple and reasonable
anomalous signal detection. These methods require the ob-
servation signal recorded over several years at the same ob-
servation point. Due to this limitation, it is difficult to de-
tect an anomalous signal in a new observation point. The
neural network[6] was applied to overcome the weakness of
conventional methods. The observation signal at the same
point is not necessary for the training of the neural network.
However, in order to achieve the accurate detection, many
anomalous signals related to the great earthquake are neces-
sary as the training data set. The anomalous signal detection
using a linear prediction error detects a seismic signal with-
out anomalous signals. However, abrupt noises are detected
as an anomalous signal.

Requirements for an anomalous signal detection are out-
lined below.
• An anomalous signal can be detected at a different obser-

vation point.
• Decrease the number of anomalous signal as training data

• Decrease the false detection due to an abrupt noise

In this paper, the HMM is applied as the anomalous
signal detection satisfying the above requirements. The
HMM input signal the amplitude density distribution calcu-
lated from the waveform of the EM wave data excluding the
anomalous signal. The training data is observed at various
seasons and observation points. The observation signal in-
cluding the abrupt noise is also used as training data to avoid
the false detection. Results of the anomalous signal detec-
tion will indicate the different characteristics when the dis-
play scale of the waveform is changed. The number of states
of HMM influence the anomalous signal detection accuracy.
This paper represents the optimal display scale of the image
and the number of state of HMM.

2. ELECTROMAGNETIC WAVE

We observed the EM wave radiation in the ELF band
(223Hz) as represented by the east-west, north-south, and
vertical magnetic field components at about forty observation
stations in Japan (Fig.1). Collected data is averaged over 6
seconds interval (14400 points per day) at each station and
direction. The EM wave data averaged over 6 and 150 sec-
onds interval is recorded on the data logger established in
Nagoya Institute of Technology. The data server provides us
the numerical data and its graphical image. The typical seis-
mic radiation from the earth’s crust observed in the ELF band
has a field strength of about on pico tesla normalized by the
square root of one frequency(pT/

√
Hz).

A signal observed at Aomori-Hachinohe station is shown
in Fig.2. The vertical axis represents a density of a magnetic
flux (pT/

√
Hz), the horizontal axis indicates the time. The

right-hand side origin is set to 0:00 AM, August 13th, 2001.
An earthquake occurred on the 13th of August 2001.

The seismic radiation must be extracted accurately, from
the observation signal including various noises, due to a sen-
sor noise, an artificial noise, a noise from atmosphere and
magnetosphere. The observed EM wave data in ELF band
consists of three components given below.

• Background noise: The dominant background noise is
the lightning radiation from the tropics. It passes between
the ionized layer and the surface of the earth. It is weak in
the daytime and strong at night because of the properties
of propagation path. Furthermore, it has a seasonal trend
from about 1 to 2 pT/

√
Hz in summer to 0.3 to 1 pT/

√
Hz

in winter.
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Figure 1: Observation sites for ELF EM wave measuring in
ELF band

Figure 2: Observed EM wave

• Anomalous signal: The typical anomalous signal is
recorded a level from 0.1 to tens of pT/

√
Hz, and is de-

pendent on the scale of the earthquake event, its depth
and a distance to the observation point.

• Abrupt noise: Spike noises are common and signifi-
cantly degrade the accuracy of detecting the anomalous
signal. The main cause is the incomplete removal of a
sensor noise and the effect of a thunder radiation in near
field. These spikes are short and have strong amplitude
from several pT/

√
Hz to several tens pT/

√
Hz.

Assume that EM wave data at timet is x(t), it is repre-
sented as the sum of a background noise componentT(t), an
anomalous signalP(t) and other noisesw(t). A model of the
observed data is expressed as;

x(t) = T(t)+P(t)+w(t). (1)

Our goal is to detect theP(t) accurately. In this paper, ob-
served data is divided into two categories. One includes the
anomalous, another does not contain theP(t). The former
expressed asT(t) + P(t) + w(t) is called as an anomalous
pattern, the latter represented byT(t)+w(t) is referred as a
normal pattern.

3. HIDDEN MARKOV MODEL

3.1 Configuration of HMM

In this paper, a HMM[7] is adopted to detect the anoma-
lous signal from the EM wave data. The HMM with left-
to-right type (Fig.3) is employed. The HMM has parame-
ter states transition probabilityai j which consists of stateqi ,

a00 a11 a22 a33

q0 q1 q2 q3 q4

b0(k) b1(k) b2(k) b3(k) b4(k)
a01 a12 a23 a34

a44

Figure 3: State transition diagram for a 5-state left-to-right
HMM

state transition probabilityai j and observation symbol prob-
ability b j(k).
• States: q0,q1,q2, · · · ,qN−1

HMM is composed byN states. Each state provides the
state transition connected to a next state and itself.

• State transition probability : ai j
ai j is the transition probability of transitioning from a
stateqi to a stateq j . ai j satisfies 0≤ ai j ≤ 1 with

∑
j

ai j = 1. (2)

• Observation symbol probability: b j(k)
Observation symbol probability in a stateq j is expressed
asb j(k), wherek is the observation symbol.b j(k) satis-
fies;

∑
k

b j(k) = 1. (3)

Each parameter is estimated by using Baum-Welch algo-
rithm whose training data is composed by the normal pattern
data. The trained HMM outputs a high-acceptance probabil-
ity for a normal pattern, while a low-acceptance probability
for an anomalous pattern.

3.2 Baum-Welch Algorithm

In order to use the HMM for a pattern recognition, a parame-
terai j andb j(k) should be estimated. The Baum-Welch algo-
rithm based on EM algorithms is applied to calculate HMM
parameters by using given symbols extracted from observa-
tion signals. The Baum-Welch algorithm is composed by the
forward and backward algorithm.
• Forward algorithm : Assume that observed symbols are

O = O1O2 · · ·OT , states areQ = q1q2 · · ·qT . The obser-
vation probability is calculated when the observed partial
seriesO = O1O2 · · ·Ot is observed in stateqi at time t.
The forward probabilityαt(i) is calculated as;

αt(i) =
N−1

∑
j=0

αt−1( j)ai j b j(kt) (4)

where,k = k0k1 · · ·kt · · ·kT−1 is an observed symbol.
• Backward algorithm : The observation probability

is calculated when the observed partial seriesO =
Ot+1Ot+2 · · ·OT is observed in stateqi at time t. The
backward probabilityβt(i) is calculated as;

βt(i) =
N−1

∑
j=0

βt+1( j)ai j b j(kt+1). (5)
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Figure 4: Waveform area in the image of EM wave data

Figure 5: Observed signal and input symbols

3.3 Viterbi Algorithm

The acceptance probability of HMM is calculated by the
Viterbi algorithm. The likelihood at the timet in the state
qi is expressed as;

log( f (i, t))=max
j

log( f ( j, t−1))+log(a ji )+log(b j(kt)).

(6)
The log likelihoodf (N−1,T) of the final stateqN−1 at time
t = T is defined as the acceptance probability.

4. INPUT OF HMM

The observation symbol is defined as the amplitude density
distribution calculated from EM wave data. The symbol is
extracted from the waveform of an EM wave data provided
by a data server. The procedure of a symbol extraction is
given as following steps:

1. Acquire the Graphics Interchange Format (GIF) file of
EM wave data

2. Convert GIF image into Microsoft Windows Bitmap Im-
age (BMP) image

3. Extract the waveform area (Fig.4)
4. Count the number of pixels of waveform area at each line

(o = o1o2 · · ·o86)
5. Input symbolO = O1O2 · · ·O86 is calculated by a nor-

malizing coefficientSando, as shown in (7) and (8)

S =
maxo

31
(7)

O = o·S. (8)

The input image and its observation symbolO is shown in
Fig.5.

Table 1: Combination of training data and test data
training data test data

ABCD EF
ABCE DF
ABDE CF
ACDE BF
BCDE AF

5. SIMULATION METHOD

The waveform of the EM wave data can be displayed on the
following conditions.
• X-axis(Observation days): 1, 2, 7, 14, 30, 60 [days]
• Y-axis(Upper of density of magnetic flux):

3, 5, 10, 20, 50, 100, 200[pT/
√

Hz]
Anomalous signals are often observed several weeks before
an earthquake. These signals tend to decrease just before the
earthquake. This fact indicates that it is difficult to detect
the anomalous signal from the image of X-axis 1 and 2 days.
The image displayed with the scale of 7, 14, 30 and 60 days
is used to the observation symbol extraction. Most of nor-
mal pattern signals are observed as a level of 5 pT/

√
Hz or

less. It is known that the EM wave radiation recorded in the
level of 10 pT/

√
Hz or more is the anomalous signal from an

empirical knowledge. Therefore, as for the maximum value
of Y-axis, 10 pT/

√
Hz or more is unnecessary. The image

displayed with 5 or 10 pT/
√

Hz is used.
Fifty normal pattern data and ten anomalous pattern data

for each scale are prepared. Fifty normal pattern data are
divided into five groups named as group A, B, C, D and
E. Each group includes ten normal pattern data respectively.
Ten anomalous pattern data are called group F. Selected four
groups of normal patterns are applied to HMM as training
data. A remaining group normal pattern and the group F are
applied to the trained HMM as test data (Table 1).

The threshold to distinguish between the normal pattern
and the anomalous pattern is the lowest acceptance probabil-
ity which is calculated from the test normal patterns. There-
fore, one HMM has one threshold. The false detection is
defined as a percentage of the number of anomalous signal
which yields larger acceptance probability than threshold.
This process is calculated with all combinations of display
scale of the image, and number of state is changing from 1 to
10.

An example of the Log likelihood derived by HMM is
shown in Fig.6. X-axis and Y-axis of the waveform is 14
days and 5pT/

√
Hz respectively. In Fig.6, the horizontal axis

shows a number of states of HMM, vertical axis is an Log
likelihood. The solid line and the short dotted line indicates
the Log likelihood calculated by the normal pattern and the
anomalous pattern, respectively. From Fig.6, the Log like-
lihood of one anomalous pattern is larger than the threshold
when the number of states is one, two and from six to ten.

6. SIMULATION RESULT

The false detection rate with various image display scales
and the number of states is shown in Table 2. The lowest
false detection rate is produced by the image scale of 14
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Figure 6: Example of false detection (Number of state vs.
Log likelihood)

Table 2: False detection rate

Scale of image False detection rate [%]
X-axis Y-axis Number of state
[days] [pT/

√
Hz] 1 2 3 4 5 6 7 8 9 10

7 5 10 12 18 6 12 20 24 10 6 8
10 12 12 20 24 18 22 20 18 18 18

14 5 0 0 12 12 10 18 22 16 16 20
10 8 8 18 16 14 16 12 22 18 12

30 5 12 16 12 20 18 16 16 16 20 20
10 14 16 16 18 22 32 36 46 40 40

60 5 10 10 14 18 18 18 20 22 26 26
10 14 14 22 16 16 20 22 26 24 22

days, 5pT/
√

Hz, and the number of states is one and two.
Now we focus on the relationship between a display scale
of Y-axis and a false detection. 29 false detection rates of
the image displayed with 5 pT/

√
Hz are less than their 10

pT/
√

Hz Therefore, the image displayed with 5 pT/
√

Hz is
more effective to detect the anomalous signal than the image
displayed with 10 pT/

√
Hz.

7. CONCLUSION

We proposed a HMM-based detection method of the anoma-
lous signal related to EM wave radiated from earth’s crust.
The amplitude density distribution of the observed data cal-
culated from the EM wave is adopted as the training data.
The observation signal at various sites and seasons, and only
normal pattern data is used as training data. It is shown that
proposed method has a possibility of obtaining a good per-
formance on the anomalous signal detection.

As future works, we consider the more good condition of
HMM, about number of state and image display scale. And,
the abrupt noise is evaluated by using the false detection.
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