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ABSTRACT

Previously, using the Maximum Likelihood (ML) method,
we obtained a new Gaussian Multiple-Input Multiple-Output
(MIMO) detector which is robust to the correlation between
the subarrays [1]. It is found that this new detector has the
same statistical properties in the absence of target irregard-
less if the subarrays are correlated or not. It becomes the
MIMO Optimum Gaussian Detector (OGD) [2, 3] when the
subarrays are uncorrelated. In this paper, we define two main
configurations, transmit or receive diversity, with varying de-
gree of freedoms (subarrays). Using these configurations, we
study the detection performance of this detector and its adap-
tive version with respect to various parameters.

1. INTRODUCTION

In the context of radar, a statistical Multiple-Input Multiple-
Output (MIMO) radar is one where both the transmit and re-
ceive elements are sufficiently separated so as to provide spa-
tial diversity. This reduces the fluctuations of the target Radar
Cross Section (RCS) due to the different target aspects seen
by each pair of transmit-receive elements. It can also be used
to improve the probability of detection and resolutions. On
top of that, each transmit element sends a different (orthog-
onal) waveform which can be separated at the receive end.
This provides waveform diversity which in turn increases the
separation between clutter and target returns.

Assuming that all the subarrays are uncorrelated, the op-
timum detector under Gaussian clutter is the MIMO Opti-
mum Gaussian Detector (MIMO OGD) [2, 3]. According
to [2], the subarrays have to be sufficiently spaced in order to
decorrelate the signal returns in each subarray. It might not
be possible to respect this condition, especially when we con-
sider MIMO-STAP where the transmit and/or receive subar-
rays are moving. Moreover, perfectly orthogonal waveforms
do not exist, especially in the presence of Doppler frequency.
We assume that insufficient spacing between subarrays and
imperfect orthogonality of the transmitted waveforms intro-
duce correlation between the subarrays.

Under this context, we obtained a new Gaussian MIMO
detector which is robust to the correlation between subar-
rays [1]. It is found that this new detector has the same sta-
tistical properties in the absence of target irregardless if the
subarrays are correlated or not. It becomes the MIMO OGD
when the subarrays are uncorrelated. Due to its robustness,
we will denote it as Robust-MIMO (R-MIMO) detector.

The authors would like to thank DSO National Laboratories (Singapore)
for funding this project.

The following signal model that takes into account the
correlation of the different subarrays has been used:

y = Pααα +z,

where the vectors y, ααα and z are the concatenation of all the
received signals, target RCS and clutter returns, respectively:

y =

 y1
...

yK

 ααα =

 α1
...

αK

 z =

 z1
...

zK

 ,

where K is the effective number of subarrays, αi is the RCS
of the target seen by the i-th subarray. zi is the Lix1 clutter
vector and Li is the effective number of elements in the i-
th subarray. P is the (∑K

i=1 Li)xK matrix containing all the
steering vectors:

P =

 p1 0
. . .

0 pK

 ,

and pi is the Lix1 steering vector for the i-th subarray.
The covariance matrix of each zi is given by Mii while

the inter-correlation matrix between zi and z j is denoted as
Mi j such that z ∼ CN (0,M) where ∼ means to be dis-
tributed as and CN denotes the complex normal distribution.

Remark 1.1. This signal model is of a so-called hybrid con-
figuration, i.e. it can have the characteristics of both the
classical phased array radar and the fully statistical MIMO
radar. It includes also both radars as special cases.

In this paper, we recap the R-MIMO detector as well as
its adaptive version. Based on this detector, we discuss sev-
eral parameters and their effects on performance detection.
Using several different configurations, Monte-Carlo simula-
tions are then done to validate the results.

This paper is organized as follows. Firstly, we recap the
R-MIMO detector and its statistical properties in the begin-
ning of Section 2. We then identify several parameters and
discuss their effects on detection performance (Section 2.2).
Some simulations results are presented in Section 2.3. Next,
in Section 3, we consider the adaptive version of this new de-
tector which has been derived based on the Kelly’s Test [4].
Due to the estimation of the covariance matrix, there is a loss
factor, b which we will discuss briefly in Section 3.2. Sim-
ulation results are then presented in Section 3.3. Finally, the
results are summarized in Section 4.
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2. ROBUST MIMO DETECTOR

The robust MIMO (R-MIMO) detector is given by [1]:

lnΛ(y) = y†M−1P(P†M−1P)−1P†M−1y
H1
≷
H0

λ .

2.1 Statistical Properties
As shown in [1], y ∼ CN (0,M) under H0 and the dis-
tribution of the detector is simply the central chi-square
with 2K degrees of freedom, denoted by χ2

2K(0). This is
the same as the distribution of the MIMO OGD detector
where the subarrays are not correlated. Under H1, y ∼
CN (Pααα,M) and the distribution of the detector becomes
the non-central chi-square with 2K degrees of freedom and
a non-centrality parameter of 2ααα†P†M−1Pααα , denoted by
χ2

2K(2ααα†P†M−1Pααα).
Note that the distribution does not depend on the corre-

lation between the subarrays, showing the M-Constant False
Alarm Rate (M-CFAR) property of the R-MIMO OGD de-
tector. This property is very useful as it means that the re-
quirement of independence between subarrays can be relaxed
for some applications, e.g. the regulation of false alarms.

2.2 Discussion
K - effective number of subarrays
Let there be Ñ transmit subarrays and M̃ receive subarrays.
Due to waveform diversity, the effective number of subarrays
is given by: K = ÑM̃. It determines the degree of freedom
in the distribution of the detector. Given the same Signal-to-
Noise Ratio (SNR), detection performance deteriorates with
increasing degree of freedom, as a higher threshold λ is re-
quired to maintain the same Pf a (see Appendix A). However,
with fewer subarrays, SNR can vary greatly due to the fluctu-
ations of the target RCS. Hence the choice of K will depend
on the applications, e.g. large K for surveillance and small K
for direction finding.

Ne - effective number of elements
Consider that the n-th transmit and m-th receive subarray
contain Nn and Mm elements, respectively, for n = 1, . . . , Ñ
and m = 1, . . . ,M̃. The physical number of elements is given
by N = ∑

Ñ
n=1 Nn + ∑

M̃
m=1 Mm. The effective number of el-

ements in each subarray is Li = NnMm while the effective
number of elements is given by Ne = ∑

K
i=1 Li. One of the ad-

vantages of transmit diversity in MIMO is that it can increase
the effective number of elements such that it is greater than
the physical number of elements, N.

SNR gain is defined to be:

SNRg =
SNRpost

SNRpre
,

=
ααα†P†M−1Pααα

|α|2ave
σ2

,

=
ααα†P†M−1

normPααα

|α|2ave
,

≈ ∑
K
i=1 Li|α|2ave

|α|2ave
= Ne,

where SNRpre and SNRpost are the pre- and post-processing
SNR, respectively. |α|2ave = ααα†ααα

K and M = σ2Mnorm. Note
that the non-centrality parameter in the distribution of the de-
tector under H1 is 2SNRpost . The factor 2 comes from the
fact that the clutter power is divided equally between its real
and imaginary part such that it is halved for each degree of
freedom.

Remark 2.1. SNR gain is proportional to Ne. This gain
comes from the coherent processing gain within the subar-
rays.

2.2.1 Multiple-Input Single-Output (MISO) Case

Consider the Multiple-Input Single-Output (MISO) case
where there are K widely-spaced transmit elements and one
single receive array with L elements. Keeping the total num-
ber of elements, N to be the same, if there are more transmit
elements (thus creating more effective subarrays), there will
be fewer elements in the receive array. This affects the effec-
tive total number of elements which in turn affects the SNR
gain.

2.2.2 Single-Input Multiple-Output (SIMO) Case

On the other hand, consider the Single-Input Multiple-
Output (SIMO) case where there is only 1 transmit element.
The spatial diversity comes only from the receive subarrays.
With N total number of elements, there are L = N−1

K elements
in each receive subarray (where N−1

K is an integer). Hence
the effective total number of elements remains the same for
different K. Note that Ne = N−1 in this case.

The variation of Ne with K for both cases (MISO and
SIMO) is shown in Fig. 1.

Figure 1: Variation of Ne with K for MISO and SIMO cases. N =
13.

2.3 Simulation Results
For the simulations in this paper, the covariance matrix Mii
of each zi, without loss of generalities, is chosen identically
and equal to Msa. Msa is spatially colored and its elements
are given by:

Msa(p,q) = ρ
|p−q|e j π

2 (p−q).
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The correlation coefficient ρ is chosen to be 0.2 such that
there is a slight correlation between different elements of
the subarray. The subarrays are set to be correlated and the
inter-correlation matrices are generated using uniformly dis-
tributed variables:

Mi j(p,q) = τi jρ
|p−q|
i j e j π

2 (p−q),

where ρi j is uniformly distributed in the interval [0,0.4] such
that the mean of ρi j is equal to ρ . The inclusion of τi j is to
make the power of the intercorrelation matrices Mi j smaller
than that of the correlation matrices Mii and it is uniformly
distributed in the interval [0,0.1].

In Fig. 2, the Probability of Detection (Pd) against SNRpre
(dash-dotted lines) and SNRpost (solid lines) are plotted for
K=3,6,12 and N=13 for the SIMO case. Here, the effective
number of elements remains the same. Hence the SNR gain
is basically the same for all K. However, with increasing
degrees of freedom, the detection performance degrades.

Figure 2: Pd against SNRpre (dash-dotted lines) and SNRpost (solid
lines) under Gaussian clutter for correlated subarrays. Pf a = 10−3.
SIMO case.

In Fig. 3, Pd against SNRpre (dash-dotted lines) and
SNRpost (solid lines) are plotted for K=3,6,12 and N=13 for
the MISO case. Here, the effective number of elements Ne
changes depending on K. From Fig. 1, we see that Ne for
K=6 is better than that for K=3. Indeed, we see that the de-
tection performance for K=6 becomes better after taking into
consideration processing gains.

3. ADAPTIVE MIMO DETECTOR

As the covariance matrix is usually unknown in reality, we
consider in this section the adaptive version of the detec-
tor. As derived in [1] based on Kelly’s Test [4], the optimum
adaptive detector is given by:

Λ̂(y) =
y†M̂−1P(P†M̂−1P)−1P†M̂−1y

Nr +y†M̂−1y

H1
≷
H0

η , (1)

where M̂ is the Sample Covariance Matrix of M and is given
by:

M̂ =
1
Nr

Nr

∑
l=1

c(l)c(l)†.

Figure 3: Pd against SNRpre (dash-dotted lines) and SNRpost (solid
lines) under Gaussian clutter for correlated subarrays. Pf a = 10−3.
MISO case.

c(l) are target-free secondary data which are assumed to be
independent and identically distributed and Nr is the number
of secondary data.

3.1 Statistical Properties
According to [5], the distribution of the adaptive version is:

Λ̂(y) d=
{

H0 : βK,Nr−Ne+1(0),
H1 : βK,Nr−Ne+1(γ),

where βK,Nr−Ne+1 is the beta-distributed random variable
(r.v.) with parameters K and Nr-Ne+1. The beta-distributed
r.v. is central under H0 and non-central with non-centrality
parameter γ under H1. γ is conditional on b which is also
beta-distributed with parameters Nr-Ne+K+1 and Ne-K:

γ = 2SNRpost ·b b∼ βNr−Ne+K+1,Ne−K . (2)

b can be considered as a loss factor on SNRpost due to the
estimation of the covariance matrix.

Theorem 3.1. In the case where there is only 1 effective ele-
ment per subarray such that Ne = K, the loss factor becomes
1 and the non-centrality parameter is simply:

γ = 2SNRpost .

Proof. When there is only 1 element per subarray, P = I and
Eqn. (1) becomes:

Λ̂(y) =
y†M̂−1y

Nr +y†M̂−1y
,

=
y†M̄−1y

1+y†M̄−1y
,

where M̄ = NrM̂ ∼ CW(Nr,Ne,M) and CW denotes the
complex Wishart distribution.

Let us define the matrix C = M−1/2M̄M−1/2. Accord-
ing to [6], C∼ CW(Nr,Ne,I). Consider the whitened signal
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x = M−1/2y, we next perform an unitary transformation on
x by V which is defined as:

V =
[

x√
x†x

, Ṽ
]
,

where Ṽ†x = 0. The transformed variable can be expressed
using e†

1 = [1 0 · · · 0]:

V†x =
√

x†xe1

and the detector becomes:

Λ̂(x) =
x†xe†

1G
−1e1

1+x†xe†
1G
−1e1

,

=
x†x g11

1+x†x g11
,

where G = V†CV ∼ CW(Nr,Ne,I) and g11 is the top left
element of G−1. Using Theorem 1 in [5], we find that the
distribution of g11 is χ2

2(Nr−Ne+1) and it is independent from
x.

Under H0, x ∼ CN (0,I) such that x†x ∼ χ2
2Ne

(0) =
χ2

2K(0). Under H1, x ∼ CN (M−1/2ααα,I) such that x†x ∼
χ2

2K(2ααα†M−1ααα) = χ2
2K(2SNRpost). Hence the distribution

of the detector can be described as:

Λ̂(y) d=
{

H0 : βK,Nr−Ne+1(0)
H1 : βK,Nr−Ne+1(2SNRpost)

Therefore, b is equal to one.

3.2 Discussion
b - loss factor
The mean value of the loss factor, b, for receive and transmit
diversity cases, respectively is plotted in Fig. 4. b∈ [0,1] and
there is no SNR loss if b=1. Lr = Nr

Ne
is the number of times

Nr is greater than Ne. Note that for the SIMO case, there
are some values of K that are not possible as it will result in
non-integral number of elements in each subarray.

As expected, with Lr=2, we have mean(b)≈0.5 which is
roughly equivalent to the well-known 3dB loss case. The
loss factor becomes bigger (less loss) with increasing number
of subarrays, K. The SIMO case has bigger loss factor in
general.

3.3 Simulation Results
In Fig. 5, we have Pd against SNRpre for different K, Lr=3
and N=13. This is for the MISO case. As expected, we have
the best performance when the effective number of element
is largest (see Fig. 1). However, note that more secondary
data are required to ensure Lr=2 when Ne is large.

Staying in the MISO case, we have Pd against SNRpre
for different Lr, K=6 and N=13 in Fig. 6. We see that the
minimum number of secondary data required is Lr=2. While
the detection performance improves with increasing Lr, the
improvement is no longer significant for Lr>4.

Fig. 7 shows a slice of Fig. 5 (K=6) and Fig. 6 (Lr=3).

(a) SIMO case

(b) MISO case

Figure 4: Mean value of loss factor b against K and Lr.

Figure 5: Pd against SNRpre and K under Gaussian clutter for cor-
related subarrays. Pf a = 10−3, Lr = 3 and N = 13. MISO case.

4. CONCLUSIONS

In this paper, we studied the properties of the new R-MIMO
detector which takes into consideration possible correlation
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Figure 6: Pd against SNRpre and Lr under Gaussian clutter for
correlated subarrays. Pf a = 10−3 and K = 6. MISO case.

Figure 7: Pd against SNRpre under Gaussian clutter for correlated
subarrays. Pf a = 10−3, Lr = 3, K = 6 and N = 13. MISO case.

between subarrays. Several different parameters were con-
sidered, e.g. the effective number of subarrays K and the ef-
fective number of elements Ne. On one hand, K can change
Ne which in turn affects the SNR gain. On the other hand,
it changes the threshold required to maintain the same Pf a.
Monte-Carlo simulations are then carried out to compare the
detection performance for different K.

For the adaptive version, we discussed the loss factor b
which arises due to the estimation of the covariance matrix
and the number of secondary data Nr required for satisfac-
tory detection performance. Monte-Carlo simulations are
then carried out to compare the detection performance for
different K as well as for different Nr.

A. PROOF THAT THRESHOLD INCREASES WITH
DEGREE OF FREEDOM

Proof. For a given Pf a and Λ(y)∼ χ2
2K(0):

Pf a = P(Λ(y) > λ |H0) =
∫

∞

λ

1
2KΓ(K)

xK−1e−x/2 dx,

=
Γ(K, λ

2 )
Γ(K)

,

where Γ(n,a) and Γ(n) are the upper incomplete Gamma
function and Gamma function, respectively. After modify-
ing Eqn. (6.5.22) in [7], we have:

Γ(K,
λ

2
) = (K−1)Γ(K−1,

λ

2
)+(

λ

2
)K−1e−

λ
2 .

As K is an integer, Γ(K) = (K−1)! and hence:

Γ(K, λ

2 )
Γ(K)

=
Γ(K−1, λ

2 )
Γ(K−1)

+
(λ

2 )K−1e−λ/2

Γ(K)
.

As the second term on the right hand side is positive, it means
that given the same threshold λ , Pf a is bigger for bigger K.
To keep Pf a constant, λ will have to be increased for bigger
K.
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