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ABSTRACT

The discrete evolutionary transform is applied to signals
in a blind-way, i.e., without using any parameters to char-
acterize the signal. For this reason, it is not optimal and
needs an improvement by using some information about the
signal. In this paper, we propose an improvement for the
discrete evolutionary transform and redefine the generalized
time-bandwidth product optimal shorttime Fourier transform
as a special case of the discrete evolutionary transform. The
optimized kernel function of the shorttime Fourier transform
is determined according to the instantaneous frequency of
linear FM signals-type signals. Even in case of quadratic
FM signals, the resulting localization of the time-frequency
representations improves remarkably. The performance of
this adaptive discrete evolutionary transform is presented on
signals with time-varying instantaneous frequencies.

1. INTRODUCTION

In nature, most of the signals vary both in time and frequency
simultaneously and their characterization in both domains is
an important issue for various applications such as process-
ing speech, acoustic and biomedical signals, modeling and
estimating the impulse responses of wireless communication
channels, analyzing sonar, radar and seismic signals. To ac-
quire more information about the signal, we need to reveal
its joint time-frequency behavior besides individual time-
domain or frequency-domain structures separately. Thus,
signal processing applications become much more powerful
and accurate.

Time-frequency analysis tools such as short—time Fourier
transform (STFT), spectrogram, continuous wavelet trans-
form, Wigner Distribution (WD) and its derivatives have
been used for this purpose for a long time. WD generates
sharp and well-localized time-frequency representations of
single—-component signals, however it becomes inefficient for
multi-component signals as it introduces cross-terms on the
time-frequency plane [1]. Being a linear distribution, STFT
is a reliable choice for multi-component signals. Moreover,
to avoid the resolution problem of wavelet transform at high
frequencies, STFT becomes an attractive alternative provid-
ing uniform resolution for all frequency bands on the time-
frequency plane.

STFT of a signal x(n) is defined as

STFT.(1,f) = / (=1 P a1

where Ah(t) is a low-pass unit-energy window function. Up
until now, STFT has been improved by various techniques,
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i.e., in [2], an instantaneous frequency (IF) estimation tech-
nique is added to STFT to choose the window function ap-
propriately. In [3, 4], fractional Fourier transform (FrFT) is
used to obtain high-resolution STFT images. Moreover, Du-
rak et. al. introduce the generalized time-bandwidth product
(GTBP)-optimal STFT by using FrFT and time-bandwidth
product (TBP) of signals in fractional Fourier domains [5, 6].
This way, it has been possible to adapt the STFT of signals
to both IF and fractional Fourier domain TBP of the signal
simultaneously. In the simulations they presented the im-
provement imposed by the GTBP—optimal STFT on linear
and quadratic FM signals. The GTBP definition provides
a rotation-invariant measure of signal support on the time-
frequency plane. Then, the optimal STFT kernel providing
the most compact representation is obtained by considering
the GTBP of signals The proposed time-frequency analysis
is shown to be equivalent to an ordinary STFT analysis con-
ducted in a scaled fractional Fourier domain [5, 6].

On the other hand, the discrete evolutionary transform
(DET) is introduced for non-stationary signal—analysis in [7].
Two different DET models have been defined as sinusoidal
basis-DET and chirp basis-DET, previously. The appropri-
ate DET can be selected depending on the application. If the
signal is narrow-band, sinusoidal bases are more suitable to
represent in time-frequency plane. On the other hand, chirp
basis-DET is more capable when the signal contains wide-
band components. Time and/or frequency dependence is in-
herently included in selecting the window type. For example,
Malvar-based windows are both time and frequency depen-
dent orthogonal bases, on the contrary Gabor-based windows
are time-dependent. In the DET analysis, Malvar-based and
Gabor-based windows are used in [8]. The DET is used in
various applications such as a jammer excision algorithm [9],
estimation of multipath fading and frequency selective chan-
nels [10].

The goal of this paper is to prove that the GTBP—optimal
STFT is a special case of DET. The remainder of this pa-
per is organized as follows. In Section 2, preliminary in-
formation is given on discrete evolutionary transform, time-
frequency localization, GTBP-optimal STFT and instanta-
neous frequency (IF) estimation procedure. Section 3 shows
the link between the optimal STFT and the DET. Simulation
results are given in Section 4. Finally, conclusions are drawn
in Section 5.

2. PRELIMINARIES
2.1 Discrete Evolutionary Transform

The DET is a time-frequency method that provides a repre-
sentation of non-stationary signals as well as their spectra.
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Figure 1: Block diagram of Gabor-based DET calculation.

The DET can be defined by using sinusoidal or chirp basis.
When sinusoidal basis are used, the evolutionary kernel of
the DET becomes

N—1
= Y x(OWi(n,D)e P 0<k<K-1 (2)
=0

X(nvfk)

where Wy (n, ) represents the time—frequency dependent win-
dow function. The inverse DET is stated as

K—1
n)=Y X(n, fi)e™ " 0<n<N-1. (3)
k=0

If chirp bases are used, the kernel is changed to

(n, ) pr YWie(m,n)e /CFlim+op(m) (4

where x,,(n) and ¢, (n) represent each of the individual signal
components and phases, respectively. In case of chirp basis,
the inverse transform is defined by

P—1K-1

— Z Z Xp(n,fk)ej(mfk"ﬂ‘p”(")) ) 5)
P k=0

When Gabor-based DET is calculated, both the analysis
function 7(.) and its dual pair synthesis function 4(.) are em-
ployed. Figure 1 shows the block diagram that illustrates the
calculation of the evolutionary kernel of sinusoidal-DET for
x(t) when Gabor-bases are used. Gabor—coefficients a(m,k)
are obtained as

(n—mL)e 72" "k, (6)

N-1
= ¥ty

Then, the evolutionary kernel becomes

S(n, fi) = Zamk n—mL) @)

the time-varying DET window is defined as

M-1
= Z Y (n—mL)h(n—mL) . 8)
m=0

The main difference between the ordinary STFT and the DET
is that in DET the analysis window varies by time. The time-
varying window has been expressed as a function of a set
of orthogonal functions in [7]. The evolutionary spectrum is
defined as the magnitude square of the DET kernel as

Se(n, fi) = X (n, fi) > ©9)

| [F estimation

I

X(®) STFT STFT, (t.9)
Gorse() [ byGTBP
Tx & Bx

calculation

Figure 2: Block diagram of GTBP—opt. STFT.

In Malvar-based DET, the analysis—window length is
chosen with respect to the analyzed signal by using a cost-
function optimization. However, Gabor—based DET does not
depend on the signal. Thus, it can be said that the DET pro-
vides a signal representation and its corresponding spectrum
without using any of the characteristics of the signal, and
thus it can be improved. Moreover, if the signal consists
of multi-components, DET requires the separation of each
component by using a mask in an offline—procedure. For this
task, instantaneous frequency of each of the signal compo-
nents must be estimated. Therefore, each mask represents a
region of a single component. Then, each of the components
can be analyzed individually.

2.2 Time-Frequency Localization of Signals

Localization of a signal on time—frequency domain gives in-
formation about the signal support. According to the well-
known uncertainty principle, there is a lower bound on the
spread of a signal’s energy in both time and frequency do-
mains together. This concentration may be measured by the
time-bandwidth product (TBP), which is defined as the prod-
uct of time-width 7, and bandwidth B,, and it is bounded by
[11, p.50]

1
>
IBx > i (10
where
1
_ 24412
. Lae=n)lstoPar] )
[l
1
— X 24f]2
L R "
[l
and 1, Ny and [|.|| are the time and frequency mean val-

ues and the norm operator, respectively. X (f) is the Fourier
transform of x(¢). The Gaussian function is the best local-
ized function in both time and frequency domain having, the
lowest TBP which equals to 1/(4r).

2.3 GTBP-Optimal STFT Definition

GTBP-optimal STFT is introduced as a signal dependent
representation by Durak et. al. [5, 6]

D.(t,f) = efjw/.x(f) gorpp(t—1) e T dT  (13)
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where y = (12 — £2) sin @ cos ¢ + 27 f sin” ¢y and the optimal

kernel is

_jn_rzcotq)o(yz—l) ) yc302¢0
gorep(T)=Ke = Troth o rreta o (14)
. _ 1+ jcot g _
with K = /o0 and ¥ = By, /Ty, . By, and Ty, de-

note the bandwith and time-width of the agth—order frac-
tional Fourier domain signal, respectively. Additionally, ¢g
is defined as a5 and represents the orientation of the sig-
nal on the time-frequency plane with the corresponding frac-
tional Fourier order ag. Since the phase y can be ignored
in D,(z, f), it is easy to see that the desired representation
in Eq.( 13) has the form of an ordinary STFT with kernel
gcrep(T). Except the fractional order ag determination, the
computational complexity of Eq.(13) is the same as the com-
putational complexity of the ordinary STFT.
The discretized-version of the optimal STFT is

N—1

Dy(m, k) =e” J”"’Zx

n=0

) 8Grap(n—m) e i (15)

where N is the number of frequency bins. Furthermore when
the second term of the discrete version of Eq. (14) is included
in the exponential term in Eq. (15), the D,(m,k) can be rec-
ognized as a generalized discrete Fourier transform (GDFT),
which has recently introduced by Akansu [15]. Figure 2
shows the block diagram of the optimal STFT computation.
The algorithm first obtains the appropriate FrFT order by
using an IF estimation technique. Then, the signal x(t) is
transformed to the fractional Fourier domain where the trans-
formed signal has a minimum TBP. Hence, TBP and GTBP
of x,(t) are equal to each other. The definition of the FrFT is
given in Appendix A.

In [5], the optimal STFT is derived as follows. At first,
TBP is chosen as a suboptimal measure of support and TBP—
optimal STFT kernel is obtained by using the following op-
timization scheme.

min (12+72)"7 . (B2+B)"? . (6
Tg:Bg; Tg-Bg=> 77

It is shown that the TBP-optimal solution g(7) must be the
Gaussian kernel

grpp(t) = e BT 17

By using GTBP-optimal STFT technique an appropriate
analysis window is determined for the signal x(¢) that varies
in time, so that time-frequency distribution with the maxi-
mum concentration is obtained. The desired time-frequency
representation of x(¢) can equivalently be obtained as the
counter-clockwise rotation of the optimal STFT for x,, (r) by
an angle of ¢ where

STFT,, (1, ) / [ / W — 1) B ()| de
(18)
with optimal Gaussian kernel h(r) = e~ ™V! *. The desired rep-

resentation of x(z) is expressed as

Dx(tvf) = R¢0{STFTXa0 (taf)} (19)

—/ R%{/ht —1) " B, (1, T)dt} dt .

where the kernel function B,(z,#') and a two-dimensional
(2 — D) the rotation operator function D(u, V) are defined as

o (TSQn(sing) /4+9/2)
[sing|1/2

jr(t2cotg—2t1' csco+cot§)

Bu(t,t) =
(20

Ry{D(u,v)} = D(ucos¢ + vsin¢, —usin 4+ vcos¢). (21)

In Eq. (19), the expression in the brackets can be rec-
ognized as the —a"-order FrFT of h(t' —t) e/*™/ "' which is
simply the time and frequency shifted form of the kernel /(7).
In [5] its shown that Eq. (19) is equivalent to Eq.(13).

2.4 Estimation of the Instantaneous Frequency

IF gives information about the frequency variation of a sig-
nal by time. Instantaneous frequency (IF) of a signal x(1) =
A(1)e/?1) can be defined as f,( )= 5 (t). There are a lot
of IF estimation techniques in the hterature [2,12-14]. In [2]
STFT has been employed to estimate IF of the signal. Two
different IF estimation algorithms are proposed by using an
optimization scheme, which makes use of the maximum frac-
tional time-bandwidth ratio and a minimum essential band-
width which is expressed as the minimum sum of the band-
widths of the separate signal components [12]. Genetic algo-
rithms are employed to determine the IF of the signal com-
ponents. Image processing techniques are used in [13] for
multi-components LFM signals. Except these, one way of
determining the IF of an LFM signal component is to search
for the peaks of the FrFT magnitudes computed at various
fractional orders. This method makes use of the relationship
between the Radon—Wigner transform (RWT) of a signal and
its corresponding FrFT [14]. Figure 3 shows the FrFT order
estimation by searching the maximum peak values among all
FrFTs of a chirp signal with a chirp rate of 0.5. The ana-
lyzed signal includes AWGN noise of 5dB SNR. Thus, this
IF procedure is robust against the noise.

3. REPRESENTATION OF THE ADAPTIVE-DET

The DET uses time and time-frequency dependent windows
to analyze the signal x(¢). Eq. (4), which belongs to the clas-
sical DET, looks like Eq. (15). In Eq. (15), the optimal win-
dow is determined according to time—width and bandwidth of
the signal on the appropriate fractional Fourier domain. The
optimum window, which contains the appropriate chirp com-
ponent of the analyzed signal, is given in Eq. (14) in contin-
uous time domain. This component is considered as a time—
varying window. Under these circumstances, it can be said
that the optimal STFT is a special case of the DET. More-
over, this technique improves the DET by taking into account
of signal—specific information such as 7, B, and /F. Thanks
to the RWT-FRFT relations, IF values are estimated robustly
for each of the components when a multi-component signal
is analyzed.
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4. SIMULATIONS

Time-frequency domain localization by using the adaptive-
DET of a synthetic LFM signal and a real bat echolocation
signal with multiple components are computed in simula-
tions. Figure 4 shows a synthetic LFM signal. Its IF value
is estimated as 0.5 by using IF estimation algorithm. Its
time variation and WD are given in Figure 4 (a) and (b).
When the signal is mono-component, WD provides a sharp
time-frequency representation. Figure 4 (c) and (d) represent
the STFT and adaptive-DET images. The performance of
adaptive—DET is very high and almost equivalent to WD’s.
The bat echolocation signal includes four non-linear
chirp components. First, we obtained discretized STFT of
the signal by using a Gaussian window h(n) = ¢~™" Then,
time—width and bandwidth of the signal are calculated in the
fractional Fourier domain which gives the minimum TBP. By

using these values to construct the optimal window, TBP—
optimal STFT is obtained. It is shown in Figure 5(c). Fi-
nally, gop:(n), which is given in Eq. (14), is used to calculate
the adaptive-DET. It can be easily seen that, adaptive—DET
images have higher concentrations than ordinary—STFT’s.

5. CONCLUSIONS

In this paper, we link up between the classical DET and the
GTBP-optimal STFT. The optimal STFT enriches the DET
by taking into account of the three parameters related to sig-
nals. These are time-width and bandwidth terms in a frac-
tional Fourier domain and the IF parameter. The signal—
adaptive DET results are presented by an LFM signal and a
bat echolocation signal. As future work, we will present high
resolution adaptive DET images for quadratic chirp signals.

6. APPENDIX A
The a'"-order FrFT of x(t) is defined as

xalt) = F{x(1)} = /Ba(t,t’)x(t’)dt 22)

where 0 < |a] < 2 and the transformation kernel B, (z,') is

Ba(l‘7l‘/) _ Aq)efjn(chot((p)7211/csc((p)+t/200t((p) (23)
with

Ap= ¢~ Imosn(sin(@)/4+7(9)/2 /| sin()[1/2 (24)

where the transform angle (¢) and the FrFT order is related
by ¢ = an/2. Discrete FrFT definitions are also developed
by many researchers [16, 17].
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Figure 5: Real Bat echolocation signal (a) in time , (b) its STFT (c) TBP—opt.STFT and (d) adaptive DET
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