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ABSTRACT

These two last decades, Higher Order (HO) High Resolu-
tion (HR) Direction Finding (DF) algorithms, such as 2q-
MUSIC (q ≥ 1 ), exploiting the information contained in the
HO circular cumulants of the data, have been developed for
non Gaussian sources to overcome some limitations of second
order (SO) methods. However, for 2q-th order noncircular
sources such as M−PSK sources with M ≤ 2q, strong gains
in performance may be obtained by taking into account the
information contained in both the 2q-th order circular and
noncircular cumulants of the data, giving rise to noncircular
2q-th order DF algorithms. As Noncircular HO DF methods
are very scarce, the purpose of this paper is to introduce and
to analyze some performance of the NonCircular 2q-MUSIC
(NC-2q-MUSIC) method (q ≥ 1), for mixtures of arbitrary
sources ( 2q-th order circular or not), typical of operational
contexts.

1. INTRODUCTION

Angle Of Arrival (AOA) estimation using an array of sen-
sors finds applications in many fields, such as radar, sonar
and wireless communications in particular. For more than
two decades, HO high resolution DF methods, exploiting the
information contained in the HO circular cumulants of the
data, have been developed for non Gaussian sources [12] to
overcome some limitations of SO methods such as MUSIC
[13]. Among these methods, the 2q-MUSIC method (q ≥ 1)
[5], which exploits the information contained in the circu-
lar 2q-th order cumulants of the data [2], [11] is probably
the most popular. This method may process a number of
sources greater than the number of sensors and has a reso-
lution and a robustness to modelling errors which increases
with q [5]. However, for 2q-th order noncircular sources such
as M -PSK sources with M ≤ 2q, omnipresent in radio com-
munications contexts, the information contained in the 2q-th
order circular cumulants of the data is not exhaustive and
some information is also contained in the 2q-th order noncir-
cular cumulants of the data. In such conditions, strong gains
in performance may be obtained by taking into account the
information contained in both the 2q-th order circular and
noncircular cumulants of the data, giving rise to noncircular
2q-th order DF methods. Several noncircular DF methods
have been developed this last decade at the SO (q = 1),
mainly for rectilinear sources [3], [8], [9] except [1] which
also considers the case of nonrectilinear sources. However,
for q > 1, only one noncircular DF method, presented in [10],
seems to be available but under the restrictive condition of
rectilinear sources. The purpose of this paper is to over-
come this limitation by introducing and by analyzing some
performance of the noncircular 2q−MUSIC (NC-2q-MUSIC)
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method, for mixtures of arbitrary sources (2q-th order cir-
cular or not), typical of operational contexts. The develop-
ment of the NC-2q-MUSIC method for arbitrary noncircular
sources is based on a new tool introduced in this paper and
corresponding to the decomposition of a source in a finite
or infinite number of rectilinear sources. The problem is
formulated in section 2. Higher order statistics of the data
jointly with the new tool are introduced in section 3. The
NC−2q−MUSIC algorithm for arbitrary sources is presented
in section 4. Computer simulations showing off the interest
of the proposed method are presented in section 5. Section
6 concludes the paper.

2. MODEL AND PROBLEM FORMULATION

Let us assume that a noisy mixture of P narrow-band sources
of AOAs Θi, 1 ≤ i ≤ P , is received by an array of N sensors.
The associated observation vector, x(t), whose components
xn(t), 1 ≤ n ≤ N , are the complex envelopes of the signals
at the output of the sensors, is then given by

x(t) =

P∑
i=1

a (Θi) mi(t) + n(t), (1)

where n(t) is an additive noise vector which is supposed to
be spatially white, circular and Gaussian, and mi(t) is the
complex envelope of the ith source and a (Θ) is the array
response in direction Θ (or steering vector). In the case of
plane wave and homogeneous array, this steering vector is

a (Θ) =




a1 (Θ)
...

aN (Θ)


 with an (Θ) = exp

(
j

2π((pn)T k(Θ))
λ

)

(2)
where pn and k (Θ) are the location vector of the nth an-
tenna and the wave vector respectively such that

k (Θ) =

[
cos (θ) cos (∆)
sin (θ) cos (∆)

sin (∆)

]

where θ and ∆ are the azimuth and elevation angles re-
spectively. To simplify the following analysis, the signals
mi(t) are assumed to be statistically independent, but no
particular assumption is made on their circular or noncircu-
lar properties contrary to [10]. The purpose of this paper is
to develop an extension of the 2q-MUSIC (q ≥ 1 ) algorithm
which takes benefit of the potential SO or HO noncircular-
ity of the sources but which can also be adaptable to any
circular sources. To this aim we analyze in section 3 the al-
gebraic structure of the HO statistics of the extended data
x̃(t) = [ x(t)T x(t)H ]T , where (.H) and (.T ) denote the
transpose conjugate and transpose symbols respectively and

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 671



we derive from this analysis the NC-2q-MUSIC algorithm in
section 4. Impact of modelling errors on the NC-2q-MUSIC
algorithm will be presented elsewhere.

3. FULL 2Q-TH ORDER STATISTICS OF THE
DATA

We present in this section the full 2q-th order statistics of the
data and we analyze some properties of the latter, required
to develop the NC-2q-MUSIC algorithm in section 4.

3.1 Full 2q-th order statistics of x(t)

The full 2q-th order statistics of x(t) correspond to the set
of both the circular and the noncircular 2q-th order cumu-
lants of x(t), i.e. to the circular 2q-th order cumulants of
the extended vector x̃(t). According to (1) and the fact

that mi(t) = (hIQ)H mi(t) where (hIQ)H = [ 1 j ] and

mi(t)
T = [ real (mi(t)) imag (mi(t)) ], the signal x̃(t) can

be written as

x̃(t) =

P∑
i=1

A (Θi) mi(t) + ñ(t) (3)

where

A (Θi) =

[
a (Θi)h

H
IQ

a (Θi)
∗ hT

IQ

]
=

[
a (Θi) ja (Θi)
a (Θi)

∗ −ja (Θi)
∗

]

(4)
∗ means conjugate and ñ(t) = [ n(t)T n(t)H ]T . Note
that matrix A (Θi) of (4) has the following properties

1. A (Θi)
H A (Θi) =

(
a (Θi)

H a (Θi)
)
× I2 (5)

2. A (Θi)
∗ = TA (Θi) with T =

[
0 IN

IN 0

]
(6)

Thus, the columns of A (Θi) are orthogonal and
the matrices A (Θi)

∗ and A (Θi) are equal through
a permutation matrix. The circular 2q-th or-
der statistics of x̃(t) correspond to the elements
< cum

(
x̃i1 (t) , ..., x̃iq (t) , x̃iq+1 (t)∗ , ..., x̃i2q (t)∗

)
> for

(1 ≤ ij ≤ 2N), where x̃j (t) is the j−th component of x̃(t),
the symbol <.> corresponds to the time-averaged operation
and cum (.) the cumulant. In a similar way as for the
2q−th-order circular cumulants of the vector x(t), the latter
entries can be arranged in the C2q,x̃ matrix in different ways,
indexed by the same integer l such that (1 ≤ l ≤ q) [5]. How-
ever, we easily deduce from (6) that all the arrangements in
the C2q,x̃ matrix are equivalent and we choose for the fol-
lowing the natural arrangement defined by C2q,x̃ (I, J) =<
cum

(
x̃i1 (t) , ..., x̃iq (t) , x̃iq+1 (t)∗ , ..., x̃i2q (t)∗

)
> with

I = L0 and J = Lq where

Ll =

q∑

k=1

Nq−k (il+k − 1) + 1 (7)

The NC-2q-MUSIC method presented in section 4 has to ex-
ploit the information contained in C2q,x̃. Under the previous
assumptions, we deduce from (3) that in the presence of sta-
tistically independent signals mi(t), the matrix C2q,x̃ can be
written as

C2q,x̃ =
P∑

i=1

A (Θi)
⊗q C2q,mi

(
A (Θi)

⊗q)H
+ C2q,ñ

(8)
where C2q,ñ = σ2I2δ (q − 1), δ (.) is the Kronecker symbol,
⊗ the Kronecker product, σ2 the power of the noise per

sensor, C2q,mi is the 2q-th order statistical matrix of mi(t)
and A⊗q = A ⊗ · · · ⊗ A with q − 1 kronecker products.
To get more insight into the signal and noise subspaces of
C2q,x̃, it is necessary to analyze the algebraic structure, and
in particular the rank, of both the 2q×2q matrix C2q,mi and
the (2N)q × 2q matrix A (Θi) .

3.2 Algebraic structure of C2q,m

We analyze in this section the algebraic properties of
the time-averaged 2q-th order statistical matrix C2q,m of
m(t)T = [ real (m(t)) imag (m(t)) ] = [ u1(t) u2(t) ]
associated with the complex envelope m(t) = u1(t) + ju2(t),
where u1(t) and u2(t) are real-valued quantities. Let us
recall that the elements of C2q,m are the quantities <
cum

(
ui1 (t) , ..., uiq (t) , uiq+1 (t) , ..., ui2q (t)

)
> for (1 ≤ ij ≤

2).These elements are arranged in the C2q,m matrix in a
natural way described in the previous section for N = 2.
The main purpose of this section is to evaluate the potential
rank of C2q,m for a given m(t). To this aim, two methods are
considered. The first one consists to evaluate the number of
different rows of C2q,mwhereas the second one deduces the
rank from available results about the generic rank of q−th
order real tensors.

3.2.1 Method 1 : Evaluation of the number of different
rows of C2q,m

The row I = L0 of C2q,m is associated with the q−uplet
(i1, . . . , iq) through (7) with N = 2. As the 2q-th order cu-
mulants are invariant by any permutation of the indices, we
deduce that when two q−uplets (i1, . . . , iq) and (j1, . . . , jq)
are invariant by permutation, the associated rows are iden-
tical. Such two q−uplets will be qualified as redundant
q−uplets. Then the maximal number of different rows of
C2q,m corresponds to the number of nonredundant q−uplets
of indices (i1, . . . , iq). As the cumulants and the multiplica-
tion operation have the same permutation invariance prop-
erty, the maximal number of nonredundant rows of C2q,m

also corresponds to the maximal number of nonredundant
products ui1 (t) × ... × uiq (t), i.e. the maximal number of

nonredundant components of m(t)⊗q. It is then straightfor-
ward to verify that, for arbitrary nonzero signals u1 (t) and
u2 (t), the nonredundant elements of m(t)⊗q corresponds to

the (q+1) elements u1 (t)q−I+1 u2 (t)I−1 for 1 ≤ I ≤ q+1. A
similar reasoning may be done for the columns of C2q,m. We
deduce from this analysis that the maximal value of the rank
of C2q,m is (q + 1) and this rank is reached in particular for
circular source. At the opposite for noncircular sources, the
rank of C2q,m may decrease below (q +1). It is in particular
the case for a rectilinear source for which u1 (t) and u2 (t)
are proportional (u2 (t) = α u1 (t), where α is a real scalar).

In this case, the (q + 1) elements u1 (t)q−I+1 u2 (t)I−1 for
1 ≤ I ≤ q +1 correspond to the (q +1) elements αI−1u1 (t)q

, which are all proportional to u1 (t)q. Then the (q+1) asso-
ciated rows of C2q,m become also proportional and the rank
of C2q,m is only 1. As a summary we obtain

1 ≤ rank (C2q,m) ≤ q + 1 (9)

Note that the relation between m(t)⊗q and the associated
non-redundant vector m̄(t) is

m(t)⊗q = Γq
2q,q+1 m̄(t)q (10)

Γ2q,q+1 =
(
I2 ⊗ Γ2q−1,q

) [
Iq 0q,1

0q,1 Iq

]
(11)

where m̄(t)q (I) = u1 (t)q−I+1 u2 (t)I−1 and Γ2q,q+1 is a
(2q) × (q + 1) full rank matrix composed by 0 and 1 where
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Γ1,1 = I2.The relation between C2q,m and the matrix
C2q,m̄

IQ
composed by the non redundant elements of C2q,m

is then
C2q,m = Γ2q,q+1C2q,m̄

IQ

(
Γ2q,q+1

)T
(12)

3.2.2 Method 2 : Exploitation of results about generic rank
of 2q-th order real tensors

Expression (9) can be obtained from available results about
the generic rank of q−th order real tensors. Indeed, accord-
ing to [6], the maximal number of components of a q−th or-
der real tensor with indices (i1, ..., iq) such that i1 ≤ ... ≤ iq
and 1 ≤ ik ≤ N is

D(q, N) = Cq
N+q−1 =

(N + q − 1)!

q! (N − 1)!
. (13)

This is equivalent to identify the number of q−sets (i1, ..., iq)
such that (i1 ≤ ... ≤ iq) and (1 ≤ ik ≤ N). Applying
this result for N = 2, we obtain the maximal number of
components of C2q,m, given by D(q, 2) = q + 1.

3.3 Concept of 2q-th order k–IQ-rank source

The results of section 3.2 show that depending on the 2qth-
order correlation between the real and imaginary parts of
a given complex envelope m(t) = u1(t) + ju2(t), the latter
generates a rank k which may be comprised between 1 and
(q+1) in the 2q−th order covariance matrix C2q,m of m(t) =
[ u1(t) u2(t) ]T . As the components of m(t) are the I and
Q components of m(t), we qualify such a source as a 2q−th
order k − IQ−rank source.

A particular family of 2q-th order k − IQ−rank source
corresponds to the family of k−rectilinear sources with (1 ≤
k ≤ q + 1), whose complex envelope m(t) corresponds to a
mixture of k statistically independent rectilinear sources i
(1 ≤ i ≤ k). Indeed, for such a source, assuming that the
complex envelope of the ith rectilinear source is proportional
to the real signal vi(t), the complex envelope m(t) can be
written as

m(t) =
k∑

i=1

vi(t) exp (jΦi) = h (Φ)H v(t) (14)

where the signals vi(t) are real and statistically inde-
pendent, Φi is the phase of the ith source and where
h (Φ)H = [ exp (jΦ1) · · · exp (jΦk) ] and v(t)T =
[ v1(t) · · · vk(t) ].

Note that the complex envelope m(t) of an arbitrary
source can be written as (14) with k = 2 where v1(t) = u1(t),
v2(t) = u2(t), Φ1 = 0, Φ2 = π/2 and where u1(t) and u2(t)
are not necessarily statistically independent. In this context

m(t) = v(t)

(hIQ)H = h
(
[ 0 π/2 ]

T
)H (15)

A particular example of k-rectilinear source is the Phase
Shift Keying (PSK) modulated source with 2k states, called
2k−PSK source. A k−rectilinear source such that k ≥
q + 1 is a 2q-th order (q + 1) − IQ−rank source. A
2q−th order circular source [2], [11] m(t), for which <
cum[m(t)ε1 , · · · , m(t)εl , m(t)εl+1 , · · · , m(t)ε2q ] > is zero for
l 6= q , where εi = 1 for (1 ≤ i ≤ l) and εi = −1 for
(l+1 ≤ i ≤ 2q) with the convention m1 = m and m−1 = m∗,
is a 2q-th order (q +1)− IQ−rank source. As a consequence
of this result, a 2q-th order k−IQ−rank source with k < q+1
is necessarily a 2q−th order noncircular source.

For example a BPSK source or a ASK source, which
are rectilinear sources, are 2q-th order 1 − IQ−rank source

and 2q−th order noncircular sources whatever the value q.
A QPSK source, which is a 2−rectilinear source (or a bi-

rectilinear source), is a 2nd order 2 − IQ−rank and circu-
lar source and a 2q−th order 2 − IQ−rank and noncircular
source for q > 1. A source m(t) for which u1(t) = real(m(t))
and u2(t) = imag(m(t)) are statistically independent is a
2−rectilinear source, as shown by (15), and is then necessar-

ily 2q−th order noncircular for q > 1 and is also 2nd order
noncircular if E[u1(t)

2] 6= E[u2(t)
2].

3.4 Alternative expression of C2q,x̃

In order to estimate the angle Θi of the source with a MU-
SIC approach from C2q,x̃, the purpose of this section is to
analyze the signal subspace structure of the matrix C2q,x̃.
This analysis is difficult for arbitrary sources and will be
presented elsewhere. In this paper, we limit the analysis to
mixtures of either ki−rectilinear sources with ki ≤ q +1 or
general 2q−th order (q + 1)− IQ−rank source.

3.4.1 Case of P ki-rectilinear sources with ki ≤ q + 1

In the presence of ki−rectilinear statistically independent
sources such that ki ≤ q + 1 for (1 ≤ i ≤ P ) the signal
mi(t) is given by (14) where m(t), k, v(t) are replaced by
mi(t), ki, vi(t) respectively. Under this assumption, it is
straighforward to verify that C2q,x̃ can be written as

C2q,x̃ =
P∑

i=1

ki∑
l=1

c2q,vilb (Θi, Φil)
⊗q (

b (Θi, Φil)
⊗q)H

+C2q,ñ

(16)
where c2q,vil is the time average of the 2q−th order cumulant
of the lth component of vi(t) and

b (Θ, Φ) =

[
a (Θ) exp (jΦ)
a (Θ)∗ exp (−jΦ)

]
. (17)

Expression (16) shows that vectors b (Θi, Φil)
⊗q for (1 ≤

l ≤ ki)(1 ≤ i ≤ P ) span the signal subspace of C2q,x̃, whose
rank r is such that

P ≤ r =

P∑
i=1

ki ≤ P (q + 1)

provided that vectors b (Θi, Φil)
⊗q are linearly independent.

3.4.2 Case of P 2q−th order-(q + 1)− IQ−rank source

In the presence of P statistically independent sources, we
deduce from (3) that C2q,x̃ is given by (8) where A (Θi) =
[ b (Θi, 0) b (Θi, π/2) ]. Using (9) (10) and (12), we de-
duce that the signal subspace of C2q,x̃ is spanned by the
columns of matrices (A(Θi)

⊗q) × Γq
2q,q+1 for 1 ≤ i ≤ P .

In the presence of P sources which are 2q−th order-
(q + 1) − IQ−rank, it is possible to show that the signal
subspace of C2q,x̃ is spanned by particular linear combina-

tions of the columns of A (Θi)
⊗q which contain [b (Θi, 0)⊗q

and b (Θi, π/2)⊗q] for (1 ≤ i ≤ P ) because the rank of
Γq

2q,q+1 is q + 1.

A consequence of the results of this section 3.4 is that
for each source i of an arbitrary mixture of statistically
independent 2q−th order-(q + 1) − IQ−rank source and
k−rectilinear sources such that ki ≤ q + 1 , vector of the
kind b (Θi, Φil)

⊗q belong to the signal subspace for each
source i.
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4. THE NC-2Q-MUSIC ALGORITHMS

4.1 The NC1-2q-MUSIC algorithm

As vectors of the kind b(Θi, Φij)
⊗q for (1 ≤ i ≤ P ) belong to

the signal subspace of C2q,x̃ for arbitrary mixtures of 2q−th
order-(q + 1) − IQ−rank and ki−rectilinear sources such
that ki ≤ q +1, we conjecture about the fact that this result
remains true whatever the kind of sources in the mixture
(this conjecture seems to be verified by simulations). In this
context, the directions Θi and the phases, Φij , can be es-
timated with a MUSIC like algorithm [5], giving rise to the
NC1− 2q−MUSIC algorithm defined by

(
Θ̂i, Φ̂ij

)
= min

(Θ,Φ)
(J (Θ, Φ)) (18)

J (Θ, Φ) =

(
b (Θ,Φ)⊗q)H

Π2q b (Θ,Φ)⊗q

(
b (Θ,Φ)⊗q)H

b (Θ,Φ)⊗q
(19)

where Θ is the vector of AOA of a source (azimuth and site),
Φ is a scalar phase term and Π2q is the orthogonal projector
on the noise subspace of C2q,x̃ defined by

Π2q =

(2N)q∑

k=K+1

ei (ei)
H

where ei are the eigenvectors of C2q,x̃ associated to the
smallest eigen values and K is the rank of C2q,x̃. The imple-
mentation of this algorithm requires a search on the phases
and AOA parameters, which may be associated with a high
complexity.

4.2 The NC2-2q-MUSIC algorithm

In order to reduce the computation cost of NC1-2q-MUSIC
algorithm, we may prefer to estimate the phases directly
from de AOA of the sources and to use an algorithm,
called NC2− 2q−MUSIC algorithm, which only implements
a search procedure in AOAs. It can be shown that the 2qth

order steering vector b (Θ,Φ)⊗q can be rewrite as

b (Θ, Φ)⊗q = Uq (Θ) eq (Φ) (20)
{

Uq (Θ) =
[

b (Θ)q,0 · · · b (Θ)q,q
]

eq (Φ) =
[

zq zq−2 · · · z−q
]T

where z = exp (jΦ) and

b (Θ)q,k = Uq,k

(
a (Θ)⊗q−k ⊗ (a (Θ)∗)⊗k

)
(21)

where Uq,k are (2N)q × (q + 1) permutation matrices. Ac-
cording to [7], the criterion of (18) can be reduced to

Θ̂i = min
(Θ,Φ)

(Jopt (Θ)) (22)

Jopt (Θ) =
det (Qq,1 (Θ))

det (Qq,2 (Θ))
(23)

where

Qq,1 (Θ) = (Uq (Θ))H Π2q Uq (Θ)

Qq,2 (Θ) = (Uq (Θ))H Uq (Θ)

The criterion is then reduced to an AOA optimization.

4.3 Identifiability

We evaluate in this section the maximal number of sources
that can be processed by the NC1 − 2q−MUSIC algorithm.
This maximal number is obtained when all the sources are
rectilinear. In this case, the HO Virtual Array (VA) the-
ory presented in [4] for the 2q−th order circular statistics
of x(t) can be easily extended to the 2q−th order circular
statistics of x̃(t) and will be presented elsewhere. Using this
extension and noting NNC

2q the number of different virtual
sensors (VSs) of the VA for the NC 2qth-order array pro-
cessing problem, it can be shown that

NNC
2q =

q∑
l=0

N l
2q

where N l
2q is the number of different VSs of the VA associ-

ated with the circular 2qth-order array processing problem
for the lth arrangement [4]. In practical applications, this
number depends on the structure of the array manifold. In
particular, when the array manifold has no particular struc-
ture, which is the case when there is a strong coupling be-
tween the array and the metallic support on which the array
is installed (plane. . . ) it is possible to show that

NNC
2q ≤ NNC

2q,max (US) =
q∑

l=0

D(q − l, N)×D(l, N)

where US means UnStructured and D(q, N) is defined by
(13). When the array manifold has a particular structure,
without mutual coupling and coupling between the array and
the metallic support, the upper bound NNC

2q,max (S), where S

means structured, becomes lower than NNC
2q,max (US).

In all cases, the maximal number of sources which may
be processed by the NC1− 2q−MUSIC algorithm is Pmax =
NNC

2q −1 rectilinear sources. For k−rectilinear sources such

that k ≤ q + 1, we obtain Pmax = (NNC
2q − 1)/k.

5. SIMULATIONS

We illustrate in this section the performance of the NC2 −
2q−MUSIC algorithm for q = 2. To this aim we consider a
mixture of P = 2 statistically independent sources, having
the same power and impinging on a uniform circular array
of N = 3 sensors with a radius R = 0.2λ, where λ is the
wavelenght. The angles of arrival of the two sources are
Θ1= (θ1 = 60◦, ∆1 = 0◦) and Θ2= (θ2 = 90◦, ∆2 = 0◦)
whereas their phases are such that Φ1 = 0◦ and Φ2 = 45◦

respectively. The signals are n − PSK signals with the
same square pulse shaped filter and with a symbol duration
Ts = 2Te where Te is the sample period. The first source
is a BPSK(n = 2) source, whereas the second source is ei-
ther a BPSK, a QPSK(n = 4) or a 8-PSK(n = 8) source.
Under these assumptions Figures 5 and 2 show respectively
the variations of the probability of acceptable estimate and
the Root Mean Square error (RMSE) of the AOA estimate
of the source 2 and 1 respectively as a function of the SNR
of the sources when either the classical 4 −MUSIC or the
NC2−4−MUSIC algorithm is used. Let us recall that the
probability of acceptable estimate for the source p is defined

by Pp = Pr(Jopt(θ̂p) < η) where η = 0.1 is a threshold that
remove the outliers, whereas the RMSE RMSp for the source

p is defined by (RMSp)2 = E[(θ̂p − θp)2|Jopt

(
θ̂p

)
< η]. For

the simulations, the 4th order statistics are estimated from
K = 1000 snapshots x(tk) for (1 ≤ k ≤ K) and the num-
ber of realizations is L = 200. Note the capability of the
NC2 − 4 − MUSIC algorithm to estimate the AOA of all
the sources in the mixture, even nonrectilinear sources, and
the better performances of this algorithm with respect to
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4−MUSIC for both 4th-order noncircular sources (BPSK,
QPSK) and circular (8-PSK) sources.
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Figure 1: Performances of a source (BPSK, QPSK or 8-PSK)
of direction θ2 = 90◦ and phase Φ2 = 45◦ in presence of a
BPSK of direction θ1 = 60◦ and phase Φ1 = 0◦. Comparison
between the classical and non-circular MUSIC-4 algorithms.

6. CONCLUSIONS

In this paper, two noncircular 2qth order extensions of the
2q−MUSIC algorithm have been presented for q ≥ 1 with-
out any assumption about the noncircularity properties of
the sources not limited to PSK sources. For a given array
of sensors and a given value of q, these NC extensions allow
to process much more sources than the 2q−MUSIC algo-
rithm and improve the performance of AOA estimation for
2qth-order NC sources, not necessarily rectilinear. To our
knowledge, the proposed algorithms are the first algorithm
which can both take benefit of the potential noncircularity
of the sources and accommodate with circular sources and
this is true for arbitrary value of q.
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