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ABSTRACT

In this paper, we consider the design of multiple descrip-
tions (MDs) using sparse decompositions. In a description
erasure channel only a subset of the transmitted descriptions
is received. The MD problem concerns the design of the de-
scriptions such that they individually approximate the source
and furthermore are able to refine each other. In this paper,
we form descriptions using convex optimization with /;-norm
minimization and Euclidean distortion constraints on the re-
constructions and show that with this method we can obtain
non-trivial descriptions. We give an algorithm based on re-
cently developed first-order method to the proposed convex
problem such that we can solve large-scale instances for im-
age sequences.

1. INTRODUCTION

Sparse decomposition is an important method in modern
signal processing and have been applied to different applica-
tion such as estimation and coding [1], linear prediction [2]
and blind source separation [3]. For estimation and encod-
ing the argument for sparse approaches has been to follow
natural statistics, see e.g., [4]. The advent of compressed
sensing [5, 6] have further added to the interest in sparse
decompositions since the recovery of the latent variables re-
quires a sparse acquisition method.

One method to acquire a sparse decomposition with a
dictionary is to solve a convex relaxation of the minimum
cardinality problem, that is the l1-compression problem

min.
s.t.

B8

|Dz— yll2 <5, W)
where D € RM*N is an overcomplete dictionary, § > 0 is
a selected reconstruction error level (distortion), (N > M),
z € RY is the latent variable and y € RM is the signal we
wish to decompose into a sparse representation. There are
several other sparse acquisition methods, including approxi-
mations of minimum cardinality and pursuit methods.

In this paper, we apply sparse decomposition to the
multiple-description (MD) problem [7]. The MD problem
is on encoding a source into multiple descriptions and each
description is then transmitted over a different channel. Un-
known to the encoder, a channel may break which correspond
to a description erasure such that only a subset of the trans-
mitted descriptions is received. The problem is to design the
descriptions such that the decoded descriptions approximate
the source for all possible subsets of descriptions.
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An important concept for the MD problem is the trade-
off associated with the description design; in order for the
descriptions to approximate the source, they should be sim-
ilar to the source, and consequently the descriptions need to
be similar to each other. But, if the descriptions are too sim-
ilar to each other, it is not possible to obtain any refinement
when the individual descriptions are combined.

Let J be the number of channels and let 77y = {1,...,J}.
Then Z; = {£|¢ C Js, £ # 0} describes the non-trivial sub-
sets of descriptions which can be received. Further, let
zj, Vj € Jj, denote the jth description and define z, =
{z; | j € £},V¢ € I;. At the decoder, the descriptions
ze, £ € Ty, are used to reconstruct an approximation of the
source y via the reconstruction functions ge(z¢). The ap-
proximations satisfy the distortion constraint d(ge(z¢),y) <
d¢, V€ € I;, with d(-,-) denoting a distortion measure. An
example with J = 2 is presented in Fig. 1.
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Figure 1: The MD (l;-compression) problem for J = 2.

In a statistical setting, the MD problem is to design
the descriptions zj;, Vj € Jj, such that the total rate
> jes, B(z;) is minimized and the fidelity constraints are
satisfied. ~This problem is only completely solved with
the squared error fidelity criterion, a memoryless Gaussian
sources and two descriptions [8]. Another direction is to form
descriptions in a deterministic setting. Algorithms specifi-
cally designed for video or image coding may be based on,
e.g., Wiener filters with prediction compensation [9], match-
ing pursuit [10,11] or compressed sensing [12,13].

The remaining part of the paper is organized as follows:
in Sec. 2 we present a method to obtain sparse decomposi-
tion using convex optimization with constraints on the dis-
tortion. Sec. 3 is on a first-order method for solving the
proposed convex problem. We provide simulations in Sec. 4
and discussions in Sec. 5.



2. CONVEX RELAXATION

In this work, we cast the MD problem into a similar form as
(1)." Let z; € RM*! Vj € 7, be the descriptions and z, =
Ujeczi € RI4M>1 "y ¢ T;, be the vector concatenation of
the descriptions used in the decoding when the subset ¢ C Jr
is received. We then form the linear reconstruction functions
9e(z¢) = Dyze, V2 € Iy, see also [12]. The dictionaries are
given as Dy = J;¢, De,; with D, € RM*VIM e € 7, and
Dy ; = peiDj, V0 €Iy,j € L. We choose:
e the reconstruction weight
Sicon %

pej = {
(l1ell=1) ;0 637

in order to weight the joint reconstruction relative to the
distortion bound on of the individual distortions, see [15],
e D; Vj € J; invertible, the reason for such will become
clear in Sec. 3,
e the Euclidean norm as the measure d(z,y) = ||z — y||2.
With these choices we obtain the standard multiple-
description l1-compression (SMDL1C) problem

1 if 0| =1

otherwise

min. Y AWz
Jj€Ty (2)
st. |[Deze —yll2 < e,  VETLy,

for 6, > 0, V¢ € Z;, and )\j > 0,W; > 0, Vi € Js5. The
problem (2) is a second-order cone program (SOCP) [16].

For Gaussian sources with the Euclidean fidelity crite-
rion, it has been shown that linear reconstruction functions
are sufficient for achieving the MD rate-distortion function,
see [17,18] and [19] for white and colored Gaussian sources,
respectively.

In (2) we have introduced W; = diag(w;),Vj € Zj,
to balance the cost of the coefficients with small and large
magnitude [20]. To find wj, the problem (2) is first solved
with w; = 1. Then w; is chosen approximately inversely
proportional to the solution z; of that problem, w;(i) «
/(1= (i)|+7), for the ith coordinate and with a small 7 > 0.
The problem (2) is then resolved with the new weighting w;.
This reweighting scheme can be iterated a number of times.
The parameter A; in (2) allows weighting of the /;-norms in

. . . IWyz4l .
order to achieve a desired ratio —LLHWj/zj/ T Vi, j € Js.

For the SMDLI1C problem there is always a solution.
Since Djz; = y has a solution then Dz, = Zjd Dy jz =
YjeePeiDizi =y e, pej =y, VL € I;. This implies that
there exist a strictly feasible point z with ||Deze —yll2 = 0 <

0¢, V€ € Zj, such that Slater’s condition for strong duality
holds [16].

3. A FIRST-ORDER METHOD

We are interested in solving the SMDL1C problem for image
sequences, that is, large instances involving more than 10°
variables. First-order methods have proved efficient for large
scale problems [21-23]. However, such methods requires pro-
jection onto the feasible set, which might prove inefficient be-
cause the projection on a set of coupled constraints requires
yet another iterative method such as alternating projection.
Also, if we apply alternating projection then we will only
obtain sub-optimal projection which might generate irregu-
larity in the first-order master method.

A problem with coupled constraints is when variable
components are coupled in different constraints. To exem-
plify the coupled constraints, note that in the case where we

I This work was presented in part for the case of J = 2 in [14].
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let J = 2, we see that the constraints for £ =1 or £ = 2 can
easily be fulfilled by simply thresholding the smallest coef-
ficients to zero in the transform domain D, independently.
This will, however, not guarantee the joint reconstruction
constraint || Dy 2y2{1,2y — Yll2 < (1,23 which then corre-
sponds to the coupling of the variables z; and z».

3.1 Dual Decomposition

Dual decomposition is a method to decompose coupled con-
straints if the objective function is decoupled [24,25]. A dual
problem of (2) can be represented as

max. — Z (55”15[”2 + yTtg)

(€T,

s.t. HU‘]”OO <A,VjeJs, te € RMXI, Vi e I,]\jj
t;=—|D;"Wu; + Y D;TDite|, Vi€ T,
Lec;(Zy)\J

with optimal objective g* and
(Z)y={L|teZ,jet}.

The equality constraints in (3) are simple because tg, V£ €
Ji, are isolated on the left hand side, while the remaining
variables t;, V¢ € Z7\J7, are on the right side. We could
then make a variable substitution of ¢, V¢ € J;, in the objec-
tive function. However, we choose the form (3) for clarity.
The problem (3) is then decoupled in the constraints but
coupled in the objective function which makes the problem
(3) appropriate for first-order methods. Note that if the dic-
tionaries Dj, Vj € Z; are not invertible we could not easily
make a variable substitution and instead needed to handle
the vector equality involving the matrix dictionaries explic-
itly. Indeed a difficult problem for large scale MD instances.

3.2 Primal recovery

Recovery of optimal primal variables from optimal dual vari-
ables can be accomplished if there is a unique solution to
the minimization of the Lagrangian, usually in the case of
a strictly convex Lagrangian [16, §5.5.5]. Define the primal
variables hy = Dyzg —y, V0 € Iy, and z; = Wjz;, Vj € Ty,
and the Lagrangian at optimal dual variables is then given
as

Lz, ht*u" k57) = > Nl + Y wi([[hellz — 60)

€Ty Lely

+ Z tZT(DeZe -y — he) -+ Z U;T(szj' — l’j) .

LETy J€Ty

However the Lagrangian associated to the problem is not
strictly convex in x due to the || - ||;-norm. Instead, lets
consider the Karush-Kuhn-Tucker (KKT) conditions for the
sub-differentiable problem (2) given as

ho(Dez; —y)k; —t; 20, VLeTI,

Ko([[Dezy —yll2 —6e) =0, VLEZ,
> Dijti+Wu;=0, VjeJy

Lec;(Zy)

|Dezi —yll2 <6, VEETL

)\jhl(sz;) — U; 50, VjeJds

with hq(2) = 0||z]|la. We can rewrite the above system using
¢ > 0, V¢ € Z; and obtain the equivalent KKT optimality
conditions

(It2ll2 = »2)

Z”tgﬁDZjDzzz‘: ri, Vi€ Ts (4.0)
Leci(Zy)

|[Dez; —yll2 < 6, VELETL

)\jhl(sz;) - u;k 50, VjeJs

(4)



where

= —Wjuj + ZH ZT

Lecy (IJ)

VieJs.

The equations (4.A) can solved with low complexity for in-
vertible dictionaries. However, the remaining equations are
sub-differentiable and feasibility equations and are too diffi-
culty to handle. Especially for large scale problems. Also,
for a sub-optimal dual solution it is not possible to find a
primal solutions that fulfills (4), because this implies that
the dual solution is in fact an optimal dual solution. That
is, for a sub-optimal dual solution we can only solve a subset
of the KKT system. _

Let z* € Z be asolution to (4) and let Z € Z be a solution
to the square system (4.A). Then the following proposition
shows that it is in fact possible to recover optimal primal
variables in certain cases.

Proposition 3.1. (Uniqueness) If the solution z to the lin-
ear system (4.2) is unique, then z* = Z for the SMDL1C
problem.

Proof. Since the SMDL1C problem has a solution and the
system (4.A) is a subsystem of (4) then § # Z C Z. If
|Z] =1 then |Z| = 1 such that z = z*. O

In the first-order method, from the dual sub-optimal it-
erates (t(i)7u(i)), the primal iterate z(¥) is obtained as the
solution to

Z th 2 5

ZECJ(I])

D zz =
Leci(Zy)

The algorithm is halted if it is a primal-dual e-solution

JED) =g <6 20 €@, (10,u) € Qu,

where @Qp and Q)q defines the primal and dual feasible set,
respectively. We select € = M Je, with ¢, = 1072 to scale
the accuracy € in the dimensionality of the primal variables.

3.3 Complexity

The objective of the dual problem (3) is differentiable on
lte]] > 0 and sub-differentiable on ||t¢|]2 = 0. The objective
in the dual problem (3) is hence not smooth. A smooth func-
tion is a function with Lipschitz continuous derivatives [26].
We could then apply an algorithm such as the sub-gradient
algorithm with complexity O(1/e2) where € is the accuracy
in function value. However, it was recently proposed to
make a smooth approximation and apply an optimal first-
order method to the smooth problem and obtain complexity
O(1) [27]. We can not efficiently apply the algorithm in [27],
since this requires projections on both the primal and dual
feasible set. We will instead show how to adapt the results
of [27], similar to [28], using only projection on the dual set
and still achieve complexity O(%). Consider

|z|l2 = max {vTx}
lvllz<1

and the approximation

max {v"z— &)} }
lvll2<1

{ lzllz = p/2, if lzll2 >

T .
5T T, otherwise ’
n

U, ()
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(%)
i i = .
]u; )+E Iite”ll= % HQDij, Ve Js.

where U, (-) is a Huber function with parameter p > 0. For
w = 0 we have Wo(z) = ||z||]2. The function ¥,(x) has for
w > 0 the (Lipschitz continuous) derivative

xT

Y Sl

The dual objective is

g0 == (dlitll> +y"te)

L€T,

and we can then form the smooth function g,

gu(t) = — Z (&‘I’u(tz) + yTtg) )

=

The Lipschitz constant of the gradient is L(V¥,) = % and

0 c
Ly =L(Vgu) = Z_Z+1 =—+|7,]. (5)
ez, M "

The smooth function has the approximation

gu(t) < g(t) < gu(t) +pC'. (6)

Hence, the parameter p both controls the level of smoothness
(5) and the approximation accuracy (6). Select p = ¢/(20)
and let the ith iteration t¥ of a first-order method have the
property
* (@) £
g/,L gl"(t ) S 2 )

where g,, is the optimal objective for the smooth problem.
Then we obtain

g —g(t") < gp+nC = gu(t?) < e
By using an optimal-first order algorithm for L-smooth prob-
lems with complexity O <\/g) [26], then ¢ can be ob-

tained in ¢ iterations, where

olf2)-of55) 50

4. SIMULATIONS

For the simulations we will present an example of obtaining
a sparse decomposition in the presented MD framework. As
the source we select the grayscale image sequence of “fore-
man” with height m = 288 pixels and width n = 352 pix-
els. We jointly process k = 8 consecutive frames [29] and
y is formed by stacking each image and scaled such that
y € [0;1)™, M = mnk. We select J = 3 and as dictionaries
D : the three dimensional cosine transform,
D5 : a two dimensional Symlet16 discrete wavelet transform
with 5 levels along the dimensions associated to m,n and
a one dimensional Haar discrete wavelet transform with
3 levels along the dimension associated to k,
D3 : the three dimensional sine transform.

Let the peak signal-to-noise ratio (PSNR) measure be de-
fined by

1
M
As distortion constraints we select PSNR(d;) = 30, V|¢| = 1,

PSNR(d,) = 33, V|¢| = 2 and PSNR(d,) = 37, |£| = 3 with
£ € Z;. Further we choose equal weights \; = 1, Vj € J.



If the primal variables where obtained from an algo-
rithm using projection [21] or a method employing a soft-
thresholding operator [22], a sub-optimal solution will con-
tain coefficients which are exactly zero. The primal variables
are in this approach obtained as the solution to a linear sys-
tem arising from sub-optimal dual variables and hence there
might be many small coefficients which are not exactly zero.
To handle this, the distortion requirement are changed by
0¢ = 0¢ — |l|lo, V¢ € Iz, with 0 > 0 when the SMDL1C
problem is solved and the smallest coefficients are afterwards
thresholded to zero using the slack introduced by |¢|c while
ensuring the original distortion constraints d¢. Let z(r) be an
e-solution after r reweight iterations of the SMDL1C prob-
lem and set 2 = z(7).

4.1 Example

Define a frame extraction function s(y,4) which extract the
ith frame from the image sequence stacked in y. In Fig. 2
we show a few examples of the decoded 6th frame for the
subset £ = {1}, £ = {2,3} and £ = {1,2,3}. This example is
a large scale problem with 10 - 10° primal-dual variables.

4.2 Reweighting

In Fig. 3 we report the relative cardinality of z(r) as a func-
tion of the number of applied reweight iterations r. We ob-
serve in Fig. 3 that the cardinality is significantly decreased
for r € {0, -+, 3}, whereupon the decrease is less distinct.

S(D{l}f{l}, 6)
(30.0, 30.0)

S(D{1,2,3}3{1,2,3}7 6)
(37.2, 37.0)

s(y, 6)

S(D{2,3}5{2,3}7 6)
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2 0.14
~ [ ]
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N
£ o012
N
—
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Figure 3: Example of reweighting an image sequence of “fore-
man” (grayscale, 288x352) by jointly processing k=8 frames.

4.3 Threshold Comparison

For comparison we will obtain sparse decompositions in each
basis independently using thresholding. We define the oper-
ation z = T'(D, y,~) as thresholding the coeflicients with the
smallest magnitude in the basis D from the source y such
that PSNR(||Dz—yl|2) & v. We report the relative cardinal-
ities card(z)/M and PSNR measures obtained by SMDL1C
in Tab. 1 and by independent thresholding for each basis in
Tab. 2. When using SMDL1C we observe that from [¢] = 1
to |¢] = 2 the descriptions obtain a refinement in the range
3.2 — 4.8dB. For independent thresholding the refinement
is smaller, in the range 0.7 — 1.2dB. This show that the
obtained refinement by the SMDL1C method is non-trivial.

The PSNR measures for thresholding to same cardinality
as using SMDLI1C are reported in Tab 3. The descriptions
are formed independently and refinement is there not guar-
anteed, which we can observe when the reconstructions at
level |¢| = 2 are combined to reconstruction at level |¢| = 3.

card(z;)/M H PSNR(||Deze — yl|2)

j=1 ¢=A{1} | £={1,2}

0.019 30.0 34.4

j=2 e={2} | ¢={1,3} | £t={1,2,3}
0.025 30.0 33.2 37.2
j=3 ¢={3} | ¢t={2,3}

0.037 30.0 34.8

Table 1: Cardinality and reconstruction PSNR for SMDL1C
(z«2), with card(z)/M = 0.081.

card(z;)/M H PSNR(||Deze — yl|2)

j=1 e={1} | £={1,2}

0.012 30.0 30.9

j=2 (={2} | £={1,3} | £=1{1,2,3}
0.006 30.0 30.7 31.3
i=3 (=3} | t=1{2,3}

0.019 30.0 31.2

erererer

(34.8,33.0)

Table 2: Cardinalities and reconstruction PSNRs for thresh-

olding (2 U, 7, T(Dj,y,30)), with card(z)/M = 0.037.

B

Figure 2: Example using “foreman” (grayscale, 288 x 352).
The images show the 6th frame of the decoded images for
¢ = {1}, ¢ = {2,3} and ¢ = {1,2,3}. Above the figures
are the actual distortion and the distortion bounds reported
using the format (PSNR(|| D¢z, — yl|2), PSNR(d¢)).

card(z;)/M H PSNR(||Deze — yl|2)

j=1 ¢=A{1} | £={1,2}

0.019 31.2 34.8

j=2 e={2} | ¢={1,3} | £t={1,2,3}
0.025 34.7 32.5 34.5
j=3 ¢={3} | £=1{2,3}

0.037 32.1 35.1

Table 3: Cardinalities and reconstruction PSNRs for thresh-
olding to same cardinality as using SMDLI1C.



The cardinalities for thresholding at PSNR 37.2dB are
given in Tab. 4. By comparing Tab. 1 and 4, we see that
the cardinalities of SMDL1C are smaller than that of simple
tresholding at 37.2dB. Also, by comparing Tab. 1 and 2, we
see that the cardinalities of SMDL1C are larger than that of
simple tresholding at 30.0dB. These bounds are to be ex-
pected for non-trivial descriptions. We also note that if we
used the dictionary with the smallest cardinality to achieve
the requested PSNR (5 = 2), it is not possible to duplicate
this description at the highest PSNR before the total cardi-
nality exceeds that of 2. This exemplifies that it is not pos-
sible to simply transmit the coefficients T'(D2,y,37.2) over
all channels and obtain a comparable cardinality as obtained
by the SMDL1C problem.

[j=t]i=2]j=3
card(z;)/M | 0.107 | 0.048 | 0.122

Table 4: Cardinalities using thresholding at the highest ob-
tained PSNR by SMDL1C (z<—J T(Dj,y,37.2)).

FISVA
DISCUSSIONS

We presented a multiple description formulation using con-
vex relaxation. In the case of large-scale problems we have
proposed a first-order method for the dual problem. The
simulations showed that the proposed multiple description
formulation renders non-trivial descriptions with respect to
both the cardinality and the refinement.

5.
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