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ABSTRACT

An asynchronous hybrid brain-computer interface (BCI) sys-
tem combining the P300 and steady-state visually evoked
potentials (SSVEP) paradigms is introduced. A P300 base
system is used for information transfer, and is augmented to
include SSVEP for control state detection. The proposed
system has been validated through off-line and online ex-
periments. It is shown to achieve fast and accurate control
state detection without significantly compromising the per-
formance. For the two subjects who participated in the online
experiments, the system achieved an average data transfer
rate of 20.13 bits/min, with control state classification accu-
racy of more than 97%.

1. INTRODUCTION

Brain-computer interface (BCI) is a system which can be
used for direct communication with a computer system, with-
out reliance on the neuromuscular pathways. The brain activ-
ity patterns are detected and translated into control signals for
a computer or a prosthetic device. The typical patterns in the
electroencephalogram (EEG, the electrical activity of brain
measured on scalp) exploited by BCI systems are evoked
potentials (EPs), event related potentials (ERP), motor im-
agery, various band rhythms etc [1] etc. Two widely used
potentials in BCI research, found in EEG are P300 ERP and
steady-state visually evoked potentials (SSVEP). P300 can
be detected as a positive peak predominant at centro-parietal
region, about 300ms after the presentation of a rare, task-
relevant stimulus [2]. Its amplitude and latency varies be-
tween individuals and even within the same individual over
time, and also depending on the type of stimulus [3]. SSVEP
is another widely used potential, produced by the brain in
response to repetitive periodic visual stimulus. When the
subject focuses on a visual stimulus steadily flickering at a
certain frequency in the range of 3-75 Hz, the brain produces
a detectable signal of the same frequency and its harmon-
ics [4]. By presenting several stimuli, each flickering at dif-
ferent frequencies, researchers have developed robust BCI
systems capable of reaching very high average information
transfer speed of up to 68 bits/minute [5].

A very desirable feature of a practical BCI is the capabil-
ity for asynchronous operation. The BCI system should be
able to detect if the user is intending to input a command at
all, instead of expecting the user to issue one command at ev-
ery fixed interval throughout the period of operation. Hence,
asynchronous BCI has become an active field of research and
encouraging results have been reported [6]. However, very
few P300-based asynchronous systems have been reported.
Zhang et al. developed an asynchronous P300 speller which
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is able to communicate at an average of 15 bits/min, and a
false positive rate of 0.7 events/min [7]. They achieved asyn-
chronous control by setting a threshold for the likelihood de-
rived from a probabilistic model of P300 classifier scores.
However, given the high inter and intra-subject variability
of P300 response, the model parameters may not hold for
extended periods of time, and maintaining accuracy with-
out frequent re-training/updating model parameters would
be challenging. An alternate method to develop an asyn-
chronous system is proposed in this paper. The idea is to
use different EPs for control state detection and information
transfer. In this paper, we propose a P300 based system, with
SSVEP providing the control state information.

The base system described here utilizes the P300 ERP.
The advantages of P300 is its suitability for a wide spectrum
of users including disabled patients [8], relaxed requirement
of visual attention and relative ease of detection, and reason-
ably good information transfer rates. Though SSVEP based
systems are generally faster than P300 based systems, they
suffer from several drawbacks such as the requirement of
accurate control of eye-muscles [9], precise and fast hard-
ware, and unsuitability for people with epilepsy. Moreover,
if low frequency stimuli are used, prolonged use of the sys-
tem is very tiring whereas high frequency SSVEP response
is weaker and harder to detect accurately. Here, instead of
basing the complete system on SSVEP, we utilize it just for
control state detection, with P300 as the main BCI paradigm.
Following the terminology used in [7], the EEG data associ-
ated with the flashing of one button, and that associated with
one complete cycle of flashings are called epoch and round
respectively in this paper. Also, the state in which the user
is actively giving an input is called control state, and non-
control state otherwise. The proposed method and the ex-
perimental setup is described in section 2. Section 3 details
the data analysis and section 4 describes results for off-line
and online experiments. The paper is concluded with some
remarks in section 5.

2. HYBRID P300-SSVEP SYSTEM

SSVEP is an ideal candidate to be used in conjunction with
the P300 ERP, for several reasons. Both are well documented
to be reliably evoked in virtually everyone without any need
of prior training. Unlike a pure SSVEP based system, P300
BCI does not require precise control over eye muscles, mak-
ing it suitable for severely disabled patients. The visual stim-
ulus required to elicit SSVEP can be added to the existing
P300 stimuli with relative ease, as both are usually evoked
by a visual stimuli (P300 can also be evoked by other stim-
uli, but visual P300 is dominant in BCI research). Our exper-
iments show that both the signals can be elicited at the same
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Figure 1: The screen will flicker from white to black rapidly.
The row/column flashes are carried out just as in a standard
P300 speller

time in an individual, without greatly compromising the de-
tection accuracy of either.

The experimental setup makes use of a 24 channel ampli-
fier from ANT-Neuro, with a sampling rate of 256Hz. EEG
from 9 channels of the standard 10-20 system [10] - Cz, Cl1,
C2, Pz, P1, P2, Oz, O1 and O2, were recorded. The data
recording is controlled from a multi-threaded program imple-
mented in Visual C++ through the ActiveX control. Another
thread handles the interface, which is the speller paradigm
[11] implemented using SFML - a multimedia library pro-
viding accelerated graphics using OpenGL as back-end. The
speller consists of 36 characters, arranged as a 6 X6 matrix
with characters A-Z and 0-9. The rows and columns are high-
lighted in a random order such that all rows and columns are
highlighted once in every round. When the user is concen-
trating on one particular character, a P300 is elicited when
either the row or column containing the character is flashed.
Precise timing is ensured by recording all time stamps from
the same timer. The processing is done in real time using
MATLAB. A third thread waits for decisions and passes it to
the display interface. In our system, the whole display is set
to flicker at the desired frequency to elicit the SSVEP while
the normal highlighting of rows and columns is done as usual
for the P300 based interface. Figure 1 shows the two alter-
nating states. When the user is gazing at the screen, it can
be assumed that he/she wishes to input a command, which
will manifest as the elicitation of SSVEP. With such an inter-
face, the user would be able to naturally elicit both potentials
without having to pay a split attention. Thus the ability to
evaluate both the control state and the actual decision at all
times is a significant advantage.

Since only one frequency is used in the SSVEP detection,
the precise attention requirement of SSVEP is eliminated.
Hence, the task is reduced to the detection of any SSVEP
near the frequency of interest, as opposed to precisely de-
tecting one among several frequencies. Thus, the need for a
dedicated hardware capable of creating very precise stimuli
of various frequencies is also eliminated; cheap and simple
displays would be sufficient. By choosing the frequency to
be outside the usual range for P300 (i.e. above 12Hz), the
two signals could be separated by simple bandpass filtering
and thus there would be no reduction of accuracy in the clas-
sification process.

Preliminary experiments were conducted to explore the
best flicker frequency to use in the subsequent experiments
and in the online experiments. A stimulus frequency (fy)
of around 18Hz was chosen due to the following reasons:
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Figure 2: The peak picking algorithm. The objective func-
tion is ratio of power in the band enclosed by the thick lines
as against the power in the band enclosed by the thin lines.

(i) a frequency lower than 15Hz interferes with P300 signal,
adversely affecting the classification accuracy, (ii) there is
a trade off between user comfort (higher frequency is pre-
ferred) and SSVEP amplitude and hence detection accuracy
(lower frequency is better), and (iii) higher frequency is very
demanding on hardware.

3. DATA ANALYSIS
3.1 SSVEP Detection

SSVERP is usually very precise about the stimulus frequency.
Gao et al. reported the possibility of distinguishing two stim-
ulus with frequency difference of just 0.2Hz [5]. Detection of
SSVEP is usually done by a simple thresholding of the am-
plitude of signal’s FFT. More advanced methods like canon-
ical correlation analysis (CCA) have been proposed and are
shown to give excellent SSVEP classification [12]. Various
techniques for enhanced detection of SSVEP can be found
in [13-15].

Unlike the techniques mentioned above, the detection
task in our system is less demanding on frequency preci-
sion, as the presence or absence of SSVEP is all that is re-
quired to be estimated. Therefore, in this control state de-
tection scheme, all other peaks not located around the target
frequency can be safely assumed to be due to noise and ig-
nored. Simple thresholding of band-power would not work
due to high variability of EEG signals and the presence of a
salient peak at the target frequency needs to be ascertained.
Hence, the mean power in a wider range of frequencies is
used as a benchmark for comparison. Figure 2 shows a sam-
ple FFT result of an epoch in which the user used the hybrid
system with the screen flickering at around 18Hz. The rela-
tive mean power spectral density (PSD) of frequency bins in
the narrow range f;; + f,, Hz as compared to the mean PSD in
the wider range fy; & f,, Hz is the metric chosen for detection.
Thus, an objective function can be defined as

S futt = S put i
(S(O) s £

where [S(f)]f,+f, is the mean PSD in the narrow range and

(f)] -+, is the mean PSD in the wider range. In our exper-
iments, f; is chosen to be 0.3Hz, and f,, is chosen to be 2Hz.
The value of J(fy) could then be compared with a threshold

J(fsz) = (1)



to detect SSVEP, which in turn indicates user’s desire to in-
put a command. The frequency sensitivity of the algorithm
could be tuned by setting the ranges. The threshold controls
the balance between true positive rate (TPR) and false posi-
tive rate (FPR), the setting of which depends on the specific
application. Channel selection was done based on the in-
spection of power spectral densities of the data from various
channels at the frequency of interest.

3.2 P300 Classification

The collected data is bandpass (zero-phase) filtered between
0.5 Hz and 12 Hz using a Butterworth filter of order 3. To
reduce the feature size, it is down-sampled to 32Hz, and data
for a duration of 0.7 seconds from the start of the stimulus is
considered to belong to that particular epoch. Reliable detec-
tion of P300 usually requires several rounds. The optimum
number of rounds to be chosen is a trade-off between classifi-
cation accuracy and the information transfer rate (ITR, com-
puted based on the suggestion by Wolpaw et al. [16,17]), and
varies from person to person. The number of rounds used for
the detection of a character is fixed to be 5, as it was found to
be giving a near-perfect accuracy in our preliminary experi-
ments.

3.3 FLDA

In FLDA, the data is projected to a lower dimension such
that the projected means of the classes are far apart, while
the spread of projected data is small. This can be realized by
optimizing a cost function related to within-class matrix (S,,)
and between-class matrix (S;), which are defined as
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where x;; j=1,2,... ,n' are training data vectors, Xj € ¢k
denotes all x; belonging to the k™ class, my is the mean of
samples belonging to the k' class, m is the global mean, n¢
is the number of classes (n“=2 in our classification, denot-
ing either the presence or the absence of P300), and n{, is the
number of samples in the k' class. Given the pattern ma-
trix X = [x1,X2,...,X,] and the corresponding label vector
¥y = [V1,Y2,.--,Yn|, the problem is to find a projection vec-
tor w = [wi,w2,...,wy]” such that the projection y = w’ X
maximizes the criterion function

_ det(w'S,w)
~ det(wTS,w)’

Ip(w) “

The solution [18] is to choose w satisfying the eigen
equation

S, 'Syw =Aw, (%)

if S;,! exists, A being the only non-zero eigenvalue of S, 'S,.
Once w is estimated, the classifier design is complete and the
output for a single feature vector is

yj :waj. 6)

In each round, the scores for all rows and columns are
calculated using Eq.(6). The estimated target is the symbol
at the intersection of the row and the column having the max-
imum of the averaged scores.

4. RESULTS AND DISCUSSION
4.1 Off-line Experiments

To evaluate the performance of the proposed scheme, off-line
experiments were conducted on three healthy subjects aged
22-27 (two males and one female). For training a P300 clas-
sifier, EEG for 300 rounds of stimuli were recorded, with the
target character highlighted during the session. Each sub-
ject performed an experiment of 40 characters with an inter-
stimulus interval (IST) of 200ms. Subjects are in control state
for the first 10 characters (with 5 rounds per character), and
in non-control state for the next 10 characters and so on. In
control state, the subject is instructed to count the number
of times the target character is highlighted. The subject is
instructed to do a mental task (multiplication) and to relax
with eyes closed for alternate non-control states. The P300
detection accuracy was comparable to that obtained in nor-
mal experiments - out of the 20 characters that the subject
focused on, 20, 19 and 18 characters were correctly classi-
fied for the subjects 1, 2 and 3 respectively. The spectrum of
the first 20 characters for subject 1 is shown in Fig. 3, which
clearly shows that with a full block of data, distinguishing
between control and non-control states can be easily done.
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Figure 3: FFT of the first 20 characters for subject 1. The
characters 1-10 are in control state

From the experimental data it was found that the data
from just one round is not always sufficient for reliable con-
trol state detection. However, it is not necessary to follow
P300’s trial demarcation rigidly in this case, and it is pos-
sible to obtain more data per round without lengthening ISI
and sacrificing bit rates simply by allowing some overlap of
data between rounds. It is justified if we assume that the user
would have been focusing on the screen for at least a few sec-
onds before the onset of the stimulus. By extending the data
for a round to include the data from 2 seconds before the start
of the P300 stimulus, the classification accuracy was found to
be better. A sample result obtained by evaluating the objec-
tive function using Eq.(1) for each round with the extension
as mentioned above is given in Fig.4. The vertical (dashed)
lines indicate a change in control state, and as expected, the
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non-control rounds have values around zero. The horizontal
dashed line is the threshold setting used. If the goal is to max-
imize the classification accuracy, the threshold can be found
using exhaustive search of a portion of the data. For exam-
ple, the optimum threshold obtained for subject 1 is 0.58 and
188 out of 200 rounds were successfully classified (94%).

T (fa)

Round Number

(a) subject 1
Figure 4: J(fy ) for the subject 1

To evaluate the performance of the system for various
thresholds, the area under curve (AUC) of the receiver-
operating characteristic (ROC) was computed. The ROC is
given in Fig.5, and the AUCs are summarized in Table.l.
Given that AUC for a random classification is 0.5, the detec-
tion capability of the system is very good. The classification
accuracy (CA) of the speller, the corresponding ITR as well
as control state detection accuracies (CD) for the subjects are
also given therein. Voting of classifier labels within a block
was used for the calculation of CD. For example, if blocks of
5 rounds are considered for the detection of one character; as
long as at least 3 rounds are determined to be in control state,
the character is deemed valid.

4.2 Online Experiments

The online experiment is implemented as semi-
asynchronous. The BCI system is still operated in a
discrete, predefined blocks of rounds. In this experiment, 5
rounds per block and an ISI of 200ms were used. The signal
data was overlapped for the purpose of SSVEP detection.
Once stimuli for one block is finished, the system will halt
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Figure 6: J(fy ) for the subject 1 in the online experiment

Table 2: Detection results for the online experiment. CS
and NCS are the average SSVEP detections for blocks of 5
rounds, when the subject is in control state and non-control
state respectively. CD is the block-wise correct detection of
control state.

Subject CS  NCS CD CA ITR (bits/min)
Sub 1 488 0.12 9630  86.11 17.89
Sub 2 478 0.15 9815 97.22 22.36
Average 4.83 0.135 97.225 91.665 20.13

until a decision has been made, and a new block will start.
In addition to detecting target character using P300 in each
round, the presence of SSVEP is checked for to validate the
detection. As long as SSVEP is detected in at least 3 out of
5 rounds, the subject is deemed to be in control state. P300
classification is employed only when control state has been
established.

The two best performing subjects (subjects 1 and 2) from
the off-line experiments participated in the online experi-
ments. These subjects performed three runs of 18 charac-
ters each. Each character is determined once 5 rounds have
been presented, and the character is determined to be null
if control state is not detected. In each run, the subject fo-
cused on the first 6 characters, gazed away for the next 6,
and focused again on the last 6. Thus, there would be 54
blocks of 5 rounds each, 36 of which are in control state.
The threshold value was set to be 0.5. J(fy) for the subject
1 in the experiment can be found in Fig.6. In blocks of 5, the
average detections for control states and non-controls states
were 4.88 and 0.12 respectively for subject 1 and 4.78 and
0.15 respectively for subject 2. The corresponding control
state detection accuracies were 96.30 and 98.15 respectively;
which shows that the control state detection using SSVEP is
very robust. It was noted that the accuracy is lower when
focusing on the last column of the display, likely due to the
reduced visual attention to SSVEP. Based on the P300 detec-
tion accuracy, the system is capable of information transfer
at 17.89 bits/min and 22.36 bits/min respectively for the sub-
jects if he/she is continuously in control state. The results
are summarized in Table. 2. This is comparable to the results
obtained without the SSVEP and it was observed that the ad-
dition of SSVEP for control state detection does not affect
the accuracy of P300 classification significantly.
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Table 1: Detection results for the off-line experiment

done.

(1]

(2]

(3]

(4]

(5]

(6]

Rounds/char 2 3 5
Subject AUC | CA ITR CD CA ITR CD CA ITR CD
(%)  (bits/min) (%) (%)  (bits/min) (%) (%)  (bits/min) (%)
Sub 1 0.958 65 25.24 85 95 33.86 95 100 23.86 97.5
Sub 2 0.928 90 47.87 72.5 95 33.86 97.5 95 21.36 95
Sub 3 0.751 60 22.21 50 70 20.12 65 90 19.32 80
Average 0.879 | 71.67 31.77 69.17 | 86.67 29.28 85.83 | 95.00 21.51 90.83
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