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ABSTRACT
In this paper, we provide a new theoretical analysis of the amount of
musical noise generated via generalized spectral subtraction based
on higher-order statistics. Power spectral subtraction is the most
commonly used spectral subtraction method, and in our previous
study a musical noise assessment theory limited to the power spec-
tral domain was proposed. Therefore, in this paper, we propose a
generalization of our previous theory on spectral subtraction for ar-
bitrary exponent parameters. We can thus compare the amount of
musical noise between any exponent domains from the results of
our analysis. We also clarify that less musical noise is generated
when we choose the lower exponent spectral domain; this implies
that there is no theoretical justification for using power/amplitude
spectral subtraction.

1. INTRODUCTION

Over the past decade, the number of applications of speech com-
munication systems, such as TV conference systems and mobile
phones, has increased. These systems, however, always suffer from
a problem of deterioration of speech quality under adverse noise
conditions. Therefore, in speech signal processing, noise reduction
is a problem requiring urgent attention.

Spectral subtraction is a commonly used noise reduction
method that has high noise reduction performance [1]. However,
in this method, artificial distortion, so-called musical noise, arises
owing to nonlinear signal processing, leading to a serious deterio-
ration of sound quality. Moreover, no objective metric to measure
how much musical noise is generated has been proposed in previous
studies. Thus, it has been difficult to evaluate the amount of musical
noise generated and to optimize the internal parameters of a system.

Generally speaking, conventional spectral subtraction methods
have a parameter that determines in which domain the exponent is
applied in the spectral subtraction process, e.g., power spectral do-
main [2], amplitude spectral domain [1], or others [3, 4, 5, 6]. We
investigated in which domain the exponent has been used in con-
ventional spectral subtraction methods via Google Scholar, and we
found that spectral subtraction is most commonly performed in the
power spectral domain with an exponent value of 2 (see Fig. 1).
However, to the best of our knowledge, there have been no studies
on the theoretical advantages of spectral subtraction, in the power
spectral domain and no theoretical analysis of the amount of musi-
cal noise in domains with different values of the exponent parame-
ter.

Recently, one of the authors has reported that the amount of
generated musical noise is strongly correlated with the difference
between the higher-order statistics of the power spectra before and
after nonlinear signal processing [7, 8, 9]. On the basis of the find-
ings, an objective metric to measure how much musical noise is
generated through nonlinear signal processing has been developed.
Hence, using this metric, we were able to analyze the amount of
musical noise generated via spectral subtraction only in the power
spectral domain. However, it still remains as an open problem that
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Figure 1: Value of exponent used in conventional spectral subtrac-
tion methods. This investigation was conducted via Google Scholar
by surveying 50 highly ranked articles retrieved by the keywords
“spectral subtraction.”

there is no theoretical analysis for the amount of musical noise gen-
erated in a general setting, where the exponent value may differ
from the value of 2 in the power spectral domain.

Therefore, in this paper, we provide a new theoretical analysis
of the amount of musical noise generated, which is a generaliza-
tion of our previous theory on spectral subtraction in the case of
an arbitrary exponent parameter. We can thus compare the amount
of musical noise between any exponent domains from the results
of our analysis. We also clarify from mathematical analysis and
evaluation experiments that less musical noise is generated when
we choose a spectral domain with a lower exponent; this implies
a lack of theoretical justification for using the conventional meth-
ods of power/amplitude spectral domain subtraction. Note that the
main contribution of this paper is not the development of new algo-
rithms but the proposal of a versatile method of theoretical analysis
for generalized spectral subtraction. This is the world’s first mathe-
matical leap in the analysis as far as we know.

2. RELATED WORKS

2.1 Formulation of Generalized Spectral Subtraction
We apply short-time Fourier analysis to the observed signal which
is a mixture of target speech and noise, and then obtain the time-
frequency signal. We formulate generalized spectral subtraction [3,
4] in the time-frequency domain as follows:

Ŝ( f ,τ) =
2n
√
|X( f ,τ)|2n −β ·Eτ [|N̂( f ,τ)|2n]e jarg(X( f ,τ))

(where |X( f ,τ)|2n −β ·Eτ [|N̂( f ,τ)|2n] > 0),
0 (otherwise),

(1)
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Figure 2: Block diagram of generalized spectral subtraction.

where Ŝ( f ,τ) is the enhanced target speech signal，X( f ,τ) is the
observed signal, and N̂( f ,τ) is the estimated noise signal. Also, f
denotes the frequency subband, τ is the frame index, Eτ [·] is the
expectation operator of · over τ , β is the subtraction coefficient,
and n is the exponent parameter. The case of n = 1 corresponds
to power spectral subtraction, and the case of n = 1/2 corresponds
to amplitude spectral subtraction. A block diagram of generalized
spectral subtraction is shown in Fig. 2.

2.2 Mathematical Metric of Musical Noise Generation via
Higher-Order Statistics [7]
We speculate that the amount of musical noise is highly correlated
with the number of isolated power spectral components and their
level of isolation. In this paper, we call these isolated components
tonal components. Since such tonal components have relatively
high power, they are strongly related to the weight of the skirt of
their probability density function (p.d.f.). Therefore, quantifying
the skirt of the p.d.f. makes it possible to measure the number of
tonal components. Thus, we adopt kurtosis, one of the most com-
monly used higher-order statistics, to evaluate the percentage of
tonal components among the total components. A larger kurtosis
value indicates a signal with a heavy skirt, meaning that the signal
has many tonal components. Kurtosis is defined as

kurt =
µ4

µ2
2
, (2)

where “kurt” is the kurtosis and µm is the mth-order moment, given
by

µm =
∫ ∞

0
xmP(x)dx, (3)

where P(x) is the p.d.f. of a power spectral component x. Note
that µm is not a central moment but a raw moment. Thus, (2) is
not kurtosis in the mathematically strict definition but a modified
version; we still refer to (2) as kurtosis in this paper.

In this study, we apply such a kurtosis-based analysis to a noise-
only time-frequency period of subject signals for the assessment
of musical noise, even though these signals contain target-speech-
dominant periods. Thus, this analysis should be conducted during,
for example, periods of silence during speech. This is because we
aim to quantify the tonal components arising in the noise-only part,
which is the main cause of musical noise perception, and not in the
target-speech-dominant part.

Although kurtosis can be used to measure the number of tonal
components, note that the kurtosis itself is not sufficient to measure
the amount of musical noise. This is obvious since the kurtosis of
some unprocessed noise signals, such as an interfering speech sig-
nal, is also high, but we do not recognize speech as musical noise.
Hence, we turn our attention to the change in kurtosis between be-
fore and after signal processing to identify only the musical-noise
components. Thus, we adopt the kurtosis ratio as a measure to as-
sess musical noise [7]. This measure is defined as

kurtosis ratio =
kurtproc

kurtorg
, (4)
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where kurtproc is the kurtosis of the processed signal and kurtorg
is the kurtosis of the observed signal. This measure increases as
the amount of generated musical noise increases. In Ref. [7], it was
reported that the kurtosis ratio is strongly correlated with the human
perception of musical noise.

3. THEORETICAL ANALYSIS OF GENERALIZED
SPECTRAL SUBTRACTION

3.1 Analysis Strategy
In this section, we analyze the amount of noise reduction and mu-
sical noise generated through generalized spectral subtraction using
kurtosis. In the analysis, we first model a noise signal by a gamma
distribution and formulate the resultant p.d.f. after generalized spec-
tral subtraction (see Sect. 3.2). Then, kurtosis is obtained from the
2nd- and 4th-order moments, and the amount of noise reduction is
calculated from the 1st-order moment (see Sect. 3.3). Finally, we
compare the kurtosis values upon changing the exponent parameter
(n in (1)) under the same amount of noise reduction (see Sect. 3.4).

3.2 Process of Deforming P.d.f. of Input Noise Signal via Gen-
eralized Spectral Subtraction

3.2.1 Modeling of Input Signal

The p.d.f. is deformed via multiple processes in generalized spectral
subtraction (see Fig. 3). These processes are as follows: the nth-
exponentiation operation, subtraction in the spectral domain, and
the extraction of the nth root. In this section, we formulate the p.d.f.
in each process.

We assume that the input signal x in the power spectral domain
can be modeled by the gamma distribution as [10]

P(x) =
xα−1exp(− x

θ )
Γ(α)θ α , (5)

where α is the shape parameter corresponding to the type of noise
(e.g., α =1 is Gaussian and α <1 is super-Gaussian), θ is the scale
parameter of the gamma distribution, and Γ(α) is the gamma func-
tion, defined as

Γ(α) =
∫ ∞

0
tα−1 exp(−t)dt. (6)

Full details of the three processes involved in the deformation of
the p.d.f. are described in the following sections.

3.2.2 Exponentiation Operation

The original p.d.f. P(x) is first deformed by the exponentiation op-
eration (see Fig. 3(b)). We can calculate the resultant p.d.f. P(y)
by considering a change of variables of the p.d.f. Suppose that a
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change of variables, y = g(x), is applied to convert an integral in
terms of the variable x to an integral in terms of the variable y. The
converted p.d.f. P(y) can be written as

P(y) = P(g−1(y))|J|, (7)

where |J| is the Jacobian of the transformation, defined by

|J| =
∣∣∣∣∂g−1

∂y

∣∣∣∣ . (8)

We apply (7) to (5). Since x is the power spectral domain signal, y
is expressed as y = xn, i.e., the Jacobian is

|J| =
∣∣∣∣∂x
∂y

∣∣∣∣ =
∣∣∣∣ 1
nxn−1

∣∣∣∣ =
∣∣∣∣ 1
ny(n−1)/n

∣∣∣∣ . (9)

Consequently,

P(y) = P(x)|J| =
yα/n−1exp(− y1/n

θ )
nΓ(α)θ α . (10)

3.2.3 Subtraction Process in Exponent Spectral Domain

Next, the amount of subtraction in the generalized spectral subtrac-
tion is estimated. This corresponds to the estimated noise spectrum
multiplied by the oversubtraction parameter β , where the estimated
noise spectrum is the mean of noise, E[y]. E[y] is given by

E[y] =
∫ ∞

0
yP(y) =

∫ ∞

0

yα/nexp(− y1/n

θ )
nΓ(α)θ α dy. (11)

Here, we let t = y1/n/θ , then dy = nθ(θ t)n−1dt, and the range of
the integral does not change. Consequently,

E[y] =
θ n

Γ(α)

∫ ∞

0
tα+n−1exp(−t)dt, (12)

and, from Γ(α)=
∫ ∞

0 tα−1exp(−t)dt, the amount of estimated noise
is

E[y] =
θ nΓ(α +n)

Γ(α)
. (13)

As a result of the subtraction process, the p.d.f. in the exponent
spectral domain undergoes a lateral shift in the zero-power direc-
tion. As a result, a negative power component with a nonzero prob-
ability arises. To avoid this, the negative component is replaced
with zero (see Fig. 3(c)). Thus, the resultant p.d.f. after subtraction
is

Pgss(y)

=


1

nθ α Γ(α) (y+βθ nΓ(α +n)/Γ(α))α/n−1

exp
(
− (y+βθ nΓ(α+n)/Γ(α))1/n

θ

)
(y > 0),

1
nθ α Γ(α)

∫ βθ nΓ(α+n)/Γ(α)
0 yα/n−1exp(− y1/n

θ ) (y = 0).
(14)

3.2.4 Extraction of nth Root

We apply the extraction of the nth root to Pgss(y), given by (14),
and reconstruct the p.d.f. in the power spectral domain, Pgss(x). In
a similar way to in Sect. 3.2.2, we let x = y1/n and apply a change
of variables, where the Jacobian is

|J| = |∂y
∂x

| = n
y(1−n)/n

=
n

x1−n . (15)

Consequently, the resultant p.d.f. after generalized spectral subtrac-
tion, Pgss(x), is given by

Pgss(x) = Pgss(y)|J|

=


1

θ α Γ(α) xn−1(xn +βθ nΓ(α +n)/Γ(α))α/n−1

exp
(
− (xn+βθ nΓ(α+n)/Γ(α))1/n

θ

)
(x > 0),

1
θ α Γ(α)

∫ βθ nΓ(α+n)/Γ(α)
0 xα−1exp(− x

θ ) (x = 0).
(16)

3.3 Estimation of Amount of Musical Noise and Noise Reduc-
tion

3.3.1 The mth-order moment of Pgss(x)

The mth-order moment of Pgss(x) is given by

µm =
∫ ∞

0
xmPgss(x)dx

=
1

θ α Γ(α)

∫ ∞

0
xm+n−1(xn +βθ nΓ(α +n)/Γ(α))α/n−1

exp

(
− (xn +βθ nΓ(α +n)/Γ(α))1/n

θ

)
dx. (17)

Let t = (xn +βθ nΓ(α +n)/Γ(α))1/n/θ , then dy = nθ(θ t)n−1dt,
and the range of the integral changes from [0,∞] to [(βΓ(α +
n)/Γ(α))1/n,∞]. Thus, µm is given by

µm =
θ m

Γ(α)

∫ ∞{
β Γ(α+n)

Γ(α)

}1/n

{
tn −β

Γ(α +n)
Γ(α)

}m/n
tα−1exp(−t)dt.

(18)

Using the binomial theorem under the condition that m/n is a
natural number, we can rewrite {tn −βΓ(α +n)/Γ(α)}m/n in (18)
as {

tn −β
Γ(α +n)

Γ(α)

}m/n

=
m/n

∑
l=0

{
−β

Γ(α +n)
Γ(α)

}l Γ(m/n+1)
Γ(l +1)Γ(m/n− l +1)

tn(m/n−l). (19)

Consequently, the mth-order moment of Pgss(x) is given by

µm =
θ m

Γ(α)

m/n

∑
l=0

{
−β

Γ(α +n)
Γ(α)

}l Γ(m/n+1)
Γ(l +1)Γ(m/n− l +1)∫ ∞{

β Γ(α+n)
Γ(α)

}1/n tα+m−ln−1exp(−t)dt

=
θ m

Γ(α)

m/n

∑
l=0

{
−β

Γ(α +n)
Γ(α)

}l Γ(m/n+1)
Γ(l +1)Γ(m/n− l +1)

Γ(α +m− ln,(βΓ(α +n)/Γ(α))1/n), (20)

where Γ(α ,z) is the upper incomplete gamma function defined as

Γ(α,z) =
∫ ∞

z
tα−1 exp(−t)dt. (21)

3.3.2 Analysis of Amount of Musical Noise

Using (20), we can obtain the kurtosis after generalized spectral
subtraction as

kurtgss =
µ4

µ2
2

= Γ(α)
M (α,β ,4/n)
M 2(α,β ,2/n)

, (22)

996



where

M (α,β ,m/n) =
m/n

∑
l=0

{
−β

Γ(α +n)
Γ(α)

}l Γ(m/n+1)
Γ(l +1)Γ(m/n− l +1)

Γ(α +m− ln,(βΓ(α +n)/Γ(α))1/n). (23)

By substituting β = 0 into (22), we can estimate the kurtosis before
processing. Thus, we can calculate the resultant kurtosis ratio as

kurtosis ratio =
M (α ,β ,4/n)/M 2(α ,β ,2/n)
M (α,0,4/n)/M 2(α ,0,2/n)

. (24)

3.3.3 Analysis of Amount of Noise Reduction

We analyze the amount of noise reduction via generalized spectral
subtraction. Hereafter we define the noise reduction rate (NRR) as
a measure of the noise reduction performance, which is defined as
the output signal-to-noise ratio (SNR) in dB minus the input SNR
in dB [11]．The NRR is

NRR = 10log10
E[s2

out]/E[n2
out]

E[s2
in]/E[n2

in]
, (25)

where sin and sout are the input and output speech signals, respec-
tively, and nin and nout are the input and output noise signals, re-
spectively. Here, the denominator in (25) is the input SNR and the
numerator is the output SNR. If we assume that the amount of noise
reduction is much larger than that of speech distortion in spectral
subtraction, i.e., E[s2

out] ' E[s2
in], then

NRR = 10log10
E[n2

in]
E[n2

out]
. (26)

Since, E[n2
in] = µ1 when β = 0 in (20) and E[n2

out] = µ1 for a the
specific (nonzero) β ,

NRR = 10log10
M (α,0,1/n)
M (α,β ,1/n)

. (27)

In summary, we can derive theoretical estimates for the amount
of musical noise and NRR using (24) and (27). This greatly simpli-
fies the analysis because both equations are expressed analytically
in a form that does not include any integrals.

3.4 Comparison of Amount of Musical Noise under Same NRR
Condition
According to the previous analysis, we can compare the amount
of musical noise between different exponent parameters under the
same amount of noise reduction. Figure 4 shows the theoretical be-
havior of the kurtosis ratio and NRR for various parameter values.
In this figure, the shape parameter α is set to 0.1 and 1.0, NRR
is varied from 0 to 12 dB, and the exponent parameter n is set to
1.0, 0.5, 0.25, and 0.125, where the oversubtraction parameter β is
adjusted so that the target speech NRR is achieved. Note that we
plot the logarithm of the kurtosis ratio because the kurtosis expo-
nentially increases with β [7]. We call this the log kurtosis ratio
hereafter.

Figure 4 shows that a small amount of musical noise is gener-
ated when a the lower exponent parameter is used, regardless of the
type of noise and NRR. This figure also indicates that for higher val-
ues of NRR, there is a larger difference of between the kurtosis ratio
for different values of the exponent parameter. This implies that hu-
mans perceive a greater variation at a higher NRR. In addition, it
is revealed that this variation is less perceptible for super-Gaussian
noise.
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Figure 4: Relation between NRR and log kurtosis ratio.

Table 1: Conditions of evaluation
NRR [dB] 4, 8, 12
Value of exponent 2.0, 1.0, 0.5, 0.25
Objective evaluation measure (1) log kurtosis ratio

(2) cepstral distortion
Subjective evaluation measure preference score of

7 examinees

4. EVALUATION EXPERIMENT AND RESULT

4.1 Experimental Conditions
We conducted objective and subjective evaluation experiments to
confirm the validity of the theoretical analysis described in the pre-
vious section. Noisy observation signals were generated by adding
noise signals to target speech signals with an SNR of 0 dB. The
target speech signals were the utterances of four speakers (4 sen-
tences), and the noise signals were white Gaussian noise and speech
noise, where the speech noise was recorded human speech emitted
from 36 loudspeakers. The length of each signal was 7 s, and each
signal was sampled at 16 kHz. The FFT size is 1024, and the frame
shift length is 256. The shape parameter of the white Gaussian noise
was 0.96 and that of the speech noise was 0.21. We conducted our
experiments regarding on Gaussian and super-Gaussian noise.

In these experiments, we assumed that the noise prototype, i.e.,
the average of |N̂( f ,τ)|2, was perfectly estimated. In addition, the
log kurtosis ratio and NRR were calculated from the observed and
processed signals. Other experimental conditions are listed in Ta-
ble 1.

4.2 Objective Evaluation
We first conducted an objective experiment and evaluated the sound
quality of processed signals on the basis of cepstral distortion and
log kurtosis ratio. Here, we calculated the log kurtosis ratio from the
noise-only period, and the cepstral distortion from the target speech
components. The small value of cepstral distortion indicates that
the sound quality of the target speech part is high.

The result of the experiment is depicted in Fig. 5. The figure
shows that the log kurtosis ratio decreases as the exponent parame-
ter becomes smaller and that the difference between the log kurtosis
ratio of distinct exponent parameters is increased if the input noise
is Gaussian. These results are consistent with the results of theoret-
ical analysis provided in Sect. 3.4. In addition, cepstral distortion
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decreases when the exponent parameter is set to a small value. Con-
sequently, in all cases, we can achieve high sound quality upon set-
ting a lower exponent parameter in generalized spectral subtraction.

4.3 Subjective Evaluation
We next conducted a subjective evaluation. In the evaluation,
we presented three equi-NRR signals processed by the power-,
amplitude-, and root-domain spectral subtraction in random order
to 7 examinees, who selected which signal they considered to con-
tain least musical noise.

The result of the experiment is shown in Fig. 6. It was found
that musical noise is less perceptible when a lower exponent pa-
rameter is used. This result is also consistent with our theoretical
analysis, thus confirming the validity of the proposed method of
theoretical analysis.

4.4 Remark
Although the most commonly used method of noise reduction is
power/amplitude spectral domain subtraction, our results clarify

that there is no theoretical justification for using the correspond-
ing exponent values (= 2 or 1); instead, we recommend that the
exponent parameter should be as small as possible to minimize the
amount of musical noise generated. Note that there are no side ef-
fects in the utilization of a small exponent parameter because we
confirmed the decrease in both kurtosis ratio and cepstral distortion
in Fig. 5. This finding is expected to be of interest to all researchers
using the spectral subtraction technique. A very slight modifica-
tion of the current software code will enable us to realize better
quality noise reduction without performing any additional pre/post-
processing to mitigate musical noise.

5. CONCLUSION

In this study, we performed a theoretical analysis of the amount of
musical noise generated via generalized spectral subtraction based
on higher-order statistics. Also, we conducted objective and subjec-
tive comparisons of the amount of musical noise for distinct expo-
nent spectral domains under the same noise reduction performance.
It was clarified from mathematical analysis and evaluation experi-
ments that in a spectral domain with a lower exponent, less musical
noise is generated.
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