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ABSTRACT

Standard covariance matrix estimation procedures can be
very affected by either the presence of outliers in the data or
some mismatch in their statistical model. In the Spherically
Invariant Random Vectors (SIRV) framework, this paper
proposes the statistical analysis of the Normalized Sample
Covariance Matrix (NSCM) and the Fixed Point (FP)
estimates in disturbances context. The main contribution of
this paper is to theoretically derive the bias of the NSCM
and the FP arising from disturbances in the data used to
build these estimates. The superiority of these two estimates
is then highlighted in Gaussian or SIRV noise corrupted by
strong deterministic disturbances. This robustness can be
helpful for applications such as adaptive radar detection or
sources localization methods.

1. INTRODUCTION

Many signal processing applications require the estimation
of the data covariance matrix. This is the case for instance
for source localization techniques such as conventional
beamforming and high resolution methods (CAPON,
MUSIC, ESPRIT,...) [1, 2, 3]. Adaptive radar and sonar
detection methods also depend on the noise covariance ma-
trix estimate [4]. In these cases, the estimation accuracy has
a strong influence on the resulting performance. However,
standard estimation process can be very affected by either
the presence of outliers in the data or some mismatch on
their statistical model.

In the conventional Gaussian framework, the well-known
Sample Covariance Matrix (SCM) [5] is the Maximum
Likelihood Estimate (MLE) and is therefore widely used
for its good statistical properties : unbiasedness, efficiency,
asymptotic Gaussianity,... Unfortunately, this estimatemay
perform poorly when the noise is not Gaussian anymore.
One of the most general and elegant non-Gaussian noise
model is provided by the so-called Spherically Invariant
Random Vectors (SIRV). Indeed, these models encompass
a large number of non-Gaussian distributions, including the
Gaussian one. Within this modeling, it has been shown that
the Normalized Sample Covariance Matrix (NSCM) and
the Fixed Point (FP) are appropriate in terms of statistical
performance [6, 7]. Moreover we will show in this paper
that the NSCM and FP are also less sensitive to disturbances
(outliers) than the SCM.
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More precisely, one of the contributions of this paper
is to derive the theoretical bias of the NSCM and the FP
arising from disturbances. The paper is organized as follows
: section 2 formulates the problem while section 3 provides
the main results. In section 4, simulations validate the
theoretical analysis and illustrate the robustness of these
estimates. Finally, section 5 concludes this work.

2. PROBLEM STATEMENT

A SIRV is a non-homogeneous Gaussian process with ran-
dom power. More precisely, a SIRV [8] is the product of
the square root of a positive random variableτ (texture), and
an m-dimensional independent complex Gaussian vectorx
(speckle) with zero mean, covariance matrixM = E(xxH)
normalized according to Tr(M) = m :

c =
√

τ x . (1)

Nowadays, SIRVs are increasingly used to model impulsive
noise. In most applications, the speckle covariance matrixis
of great importance (e.g adaptative detection in radar/sonar)
and must be estimated if unknown. For that purpose,N
independent snapshotsy1, ...,yN are usually available.
Ideally, theseN data should share the same distribution asc
in (1).

However, in many situations, it may happen that some
of these data, let us say theK first y1, ...,yK , are outliers
with a different distribution thanc. Thus,y1, ...,yN may be
split into two sets :

{
yk = pk for 1≤ k ≤ K;
yn = cn =

√
τnxn for K < n ≤ N; (2)

wherecn, τn andxn share the same distribution asc, τ andx.

In this paper, the outlierspk will be assumed to be ran-
dom vectors with arbitrary distributions, and our purpose is
to study the robustness of two speckle covariance matrix es-
timates : the NSCM and the FP. The NSCM, originally intro-
duced in [9, 10], is defined by :

M̂NSCM =
m
N

N

∑
n=1

yny
H
n

‖ yn ‖2 . (3)

Its statistical properties have been derived in [6] in an
ideal outlier-free context : (3) is a biased estimate ofM,
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unlessM is the identity matrix.

The FP estimate [11, 12, 13], defined as the unique
solution of the following equation

M̂FP =
m
N

N

∑
n=1

yny
H
n

yH
n M̂−1

FPyn

, (4)

is obtained in practice, by an appropriate convergent
algorithm [11]. It exhibits good statistical performance
(consistency, unbiasedness and asymptotic gaussianity) [6]
in the outlier-free case.

3. MAIN RESULTS

Let M̂ denote a speckle covariance matrix estimate (NSCM,
FP, ...). The goal of this section is to derive its robustness
to outliers within the framework (2). For that purpose, the
additionnal bias∆ due to the presence of outliers is defined
as

∆ = E(M̂|Koutliers)−E(M̂| no outlier). (5)

In the sequel, we will simply writeE(M̂) for E(M̂|K out-
liers). Two results will be provided for each estimate : a
general expression of∆, and a more specific one valid only
for a particular type of outliers :

pk = mk +ck, (6)

wheremk is deterministic and much stronger than the SIRV
component : ‖ mk ‖>>‖ ck ‖. Expression (6) accounts
for the so-called ”data contamination” case, often met in
some adaptative detection problems. In the sequel, it will be
referred to as the ”data contamination model” for outliers.

Theorem 3.1
Let us denoteMNSCM = E(M̂NSCM|no outliers). The addi-
tional bias (5) due to outliers is given by :

∆NSCM = −K
N

MNSCM+
m
N

K

∑
k=1

E

[
pk p

H
k

‖pk‖2

]
. (7)

For the data contamination model (6), the termE

[
pk p

H
k

‖pk‖2

]
in

(7) is given by :

E

[
pk p

H
k

‖pk‖2

]
=

(
1−m

E[τ]

‖mk‖2 + E[τ]
mH

k Mmk

‖mk‖4

)
mkm

H
k

‖mk‖2

+
E[τ]

‖mk‖2

(
I− mkm

H
k

‖mk‖2

)
M

(
I− mkm

H
k

‖mk‖2

)
. (8)

Remark 1
When‖mk‖ → ∞ (very strong data contamination),∆NSCM
simplifies to :

∆NSCM = −K
N

MNSCM+
m
N

K

∑
k=1

mk m
H
k

‖mk‖2 . (9)

Proof 3.1
See Appendix A.

Now let us turn to the FP estimate.

Theorem 3.2
For N >> K, the additionnal bias (6) due to outliers is given
by

∆FP =
m+1

N

(
K

∑
k=1

E

[
pkp

H
k

pH
k M−1pk

]
− K

m
M

)
(10)

In the data contamination model (6), the term

E

[
pkp

H
k

pH
k M−1pk

]
in (10) is given by

E

[
pkp

H
k

pH
k M−1pk

]
=

(
1−m

E[τ]

mH
k M−1mk

+

E[τ]
‖mk‖

(mH
k M−1mk)2

)
mkm

H
k

mH
k M−1mk

+
E[τ]

mH
k M−1mk

×
(
M− mkm

H
k

mH
k M−1mk

)(
M− mkm

H
k

mH
k M−1mk

)
. (11)

Remark 2
When‖mk‖→ ∞ (very strong data contamination),∆FP re-
duces to

∆FP =
m+1

N

(
K

∑
n=1

mkm
H
k

mH
k M−1mk

− K
m

M

)
. (12)

Proof 3.2
See Appendix B.

Expressions (7) and (10) show that both the NSCM and
the FP are robust estimates since their additional biases do
not depend on the outliers norm but solely on the quantities
pk

‖pk‖
.

This is in contrast with the widely used SCM which is
already known to be a poor estimate in impulsive noise. Fur-
thermore, when outliers are present and in a SIRV context,
the resulting bias is trivially shown to be equal to

∆SCM =
1
N

K

∑
n=1

E
[
pkp

H
k

]
− K

N
E[τ]M, (13)

which is obviously very sensitive to strong outliers.

4. SIMULATIONS

To illustrate previous theorems and analyze the robustness
of studied estimates (SCM, NSCM, FP), we compare our
theoretical values of∆ with those obtained by simulations.
In all casesM = I, m = 3, N = 50 andK = 1.
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Figure 1: Frobenius norm of∆ for the SCM, NSCM and FP
versus disturbances power for a Gaussian noise.
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Figure 2: Frobenius norm of∆ for the SCM, NSCM and FP
versus disturbances power for a K-distributed noise.

In figures 1 and 2 we study the validity of the general
expressions (7) and (10), for a single distubance of the form
p = αd whereα is a random Gaussian variableN (0,σ2

α)
and d a fixed unit norm steering vector. Plots give the
Frobenius norm‖.‖F (in dB) of ∆SCM, ∆NSCM and∆FP as
a function of 20log(σα). Figure 1 addresses the Gaussian
noise case (τn = 1 in equation (2)), while in figure 2 the
noise is K-distributed (τn follows a Gamma distribution).
The K-distribution parameterν is equal to 0.1 which results
in a highly impulsive noise.
These simulations prove the validity of the general expres-
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Figure 3: Frobenius norm of∆ for the SCM, NSCM and FP
versus disturbances power for a Gaussian noise: data con-
tamination model.
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Figure 4: Frobenius norm of∆ for the SCM, NSCM and
FP versus disturbances power for a K-distributed noise: data
contamination model.

sions (7) and (10) of the bias. Furthermore, they show the
insensitivity of the NSCM and the FP with respect to the
outliers strength, while the SCM’s performance is strongly
degraded when the outliers power increases.

In the next two simulations (figures 3 and 4), we inves-
tigate the domain of validity of the approximate expressions
(9) and (12) in the data contamination case (6). In figure
3 the noise is Gaussian while in figure 4, it follows a
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K-distribution. As expected, for large‖m1‖, experimental
results are close to the approximate expressions. Indeed,
theoretical results have been derived under the assumption
that‖m1‖ >> ‖c1‖ (cf Remarks 1 and 2).
On the other hand, in figure 3, for low disturbance power,
the NSCM and the FP are slightly better than the SCM.
However, in figure 4 it is not the case. We also notice a better
overall adequacy between experimental and approximate
curves for the FP and for the NSCM estimates. We can
roughly explain that behavior in the case of highly impulsive
noise. Indeed, in this context, one has‖m1‖ >> ‖c1‖
with high probability, even for weak disturbances. Thus the
approximate expressions remain valid in a wider domain for
‖m1‖ than in the Gaussian case.

5. CONCLUSION

In this paper we have investigated the robustness of two
covariance matrix estimates, the NSCM and the FP, when
part of the data are outliers. In this context, we have derived
theoretical formulas of the bias for an arbitrary distribution
of the disturbances. In the data contamination case which
is met in some applications, we have established simple
approximate bias expressions.
These theoretical investigations have been validated by
simulations results, and they demonstrate the superiority
of the NSCM and the FP over the standard SCM, in terms
of robustness. The results are of particular interest in
applications such as adaptive radar and source localization
methods.

A. PROOF OF THEOREM 3.1

(7) is trivial, therefore we provide only the proof of theorem

3.1 in the data contamination case. Let us rewriteE

[
pk p

H
k

‖pk‖2

]

as

E

[
pk p

H
k

‖pk‖2

]
= E

[
(ck +mk)(ck +mk)

H

‖ck +mk‖2

]
,

and setεk =
ck

‖mk‖
. For large‖mk‖, a second order expan-

sion with respect to theεks leads to :

E

[
pk p

H
k

‖pk‖2

]
=

(
1−m

E[τ]

‖mk‖2 + E[τ]
mH

k Mmk

‖mk‖4

)
mkm

H
k

‖mk‖2

+
E[τ]

‖mk‖2

(
I− mkm

H
k

‖mk‖2

)
M

(
I− mkm

H
k

‖mk‖2

)
.

(14)

This concludes the proof.

B. PROOF OF THEOREM 3.2

Within the framework (2), the FP estimate (4) can be written

M̂FP =
m
N

N

∑
n=K+1

cn cH
n

cH
n M̂−1

FPcn

+
m
N

K

∑
k=1

pk p
H
k

pH
k M̂−1

FP pk

=
m
N

N

∑
n=K+1

xn cH
n

xH
n M̂−1

FPxn

+
m
N

K

∑
k=1

pk p
H
k

pH
k M̂−1

FP pk

(15)

By settingR̂ = M−1/2M̂FPM
−1/2 one obtains:

R̂ =
m
N

N

∑
n=K+1

zn zH
n

zH
n R̂−1zn

+
m
N

K

∑
k=1

qk q
H
k

qH
k R̂−1qk

, (16)

where
• zn = M−1/2xn is complex gaussian distributed with zero

mean and covariance matrixI
• qk = M−1/2pk.

Previous equation (16) admits a unique solution such that
Tr(R̂) = m. WhenN tends to+∞ and for fixedK, equation
(16) tends to

A = mE

[
zzH

zH A−1z

]
. (17)

wherez ∼ CN (0,I).
It has been proved in [6] that the unique solution of (17)
which satisfies Tr(A) = m is A = I.

Consequently, whenN tends to +∞, R̂ solution of
equation (16) tends toI, solution of equation (17). This
establishes the consistency ofR̂. Thus, for largeN, one has

R̂ = I+ ∆R where‖∆R‖ << ‖I‖.

Assuming that∆R is small enough to ensure the validity
of a first-order expansion, (16) can be written

I+ ∆R =
m
N

N

∑
n=K+1

zn zH
n

zH
n (I−∆R)zn

+
m
N

K

∑
k=1

qk q
H
k

qH
k (I−∆R)qk

≈ P+
m
N

N

∑
n=K+1

zn zH
n

‖zn‖2

(
1+

zH
n ∆Rzn

‖zn‖2

)

+
m
N

K

∑
k=1

qH
k ∆Rqk

‖qk‖4 qkq
H
k

(18)

whereP =
m

N

K

∑
k=1

qk q
H
k

‖qk‖2.

SinceK << N and‖∆R‖<< 1, the last term in the above
equation may be neglected leading to :

I+ ∆R = P+
N −K

N
R̂NSCM +

m
N

N

∑
n=K+1

znz
H
n

‖zn‖2

zH
n ∆Rzn

‖zn‖2

whereR̂NSCM =
m

N −K

N

∑
n=K+1

zn zH
n

‖zn‖2 .

Now, let us define

• δ = vec(∆R̂), i = vec(I),tn =
zn

‖zn‖
,
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• δ NSCM = vec(R̂NSCM −I)= vec(∆RNSCM), where vec(.)
denotes the operator which reshapes them×n matrix el-
ements into amn column vector.
Then, one obtains

i+ δ = p+
N −K

N

(
i+ δNSCM +

m
N −K

N

∑
n=K+1

(t∗n ⊗ tn)(t
∗
n ⊗ tn)

Hδ

)
(19)

where∗ denotes the conjugate operator and⊗ the Kronecker
product.

By noticing that Tr(∆R) = 0 implies iHδ = 0, the pro-
jection of equation (19) onto the orthogonal subspace ofi
gives :

δ = Π⊥
i p+

N −K
N

Π⊥
i δ NSCM +

(m
N

Π⊥
i

N

∑
n=K+1

(t∗n ⊗ tn)(t
∗
n ⊗ tn)

HΠ⊥
i δ

)
,

whereΠ⊥
i = I− 1

m
iiH and where the equalityΠ⊥

i δ = δ has

been used.

This is equivalent to

α̂δ = Π⊥
i p+

N −K
N

Π⊥
i δ NSCM. (20)

whereα̂ = I−
(

m
N

Π⊥
i

N

∑
n=K+1

(t∗n ⊗ tn)(t
∗
n ⊗ tn)

HΠ⊥
i

)
.

It may be shown that

α̂ P−−−→
N→∞

α = (I− 1
m+1

Π⊥
i ),

where
P−→ denotes the convergence in probability.

Therefore, α̂ may be replaced byα in (20) without
affecting the asymptotic distribution ofδ . By noticing that

αδ =
m

m+1
δ ,

(20) leads to

δ =
m+1

m
Π⊥

i p+
m+1

m
N −K

N
δ NSCM ,

where the identityiHδ NSCM = 0 has been used.

Using the unvec operator (the vec inverse operator ),
one obtains

∆R =
m+1

m

(
P− Tr(P)

m
I

)
+

m+1
m

N −K
N

∆RNSCM .

Since ∆FP = E[M̂FP − M] = E[M1/2∆RM1/2] and

E[R̂NSCM] = I, the previous equation leads to theorem 3.2
which concludes the proof.

Starting from this general result, the additive bias
obtained in the data contamination model can easily be
calculated, using a similar method as in the NSCM case.
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