18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

ROBUSTNESS ANALY SISOF COVARIANCE MATRIX ESTIMATES

M. Mahot'?3, P. Forster3, J. P. Ovarlez!? and F. Pascal?,

1 SONDRA, Supelec 2 ONERA, DEMR/TSI 3 SATIE, ENS Cachan, CNRS, UniverSud
3 rue Joliot-Curie Chemin de la Huniere, 61, Av. du Pdt Wilson,
91190 Gif-sur-Yvette, France 91761 Palaiseau Cedex, France F-94230 Cachan, France

phone: + 33 1 6985 1817,
melanie.mahot@supelec.fr

ABSTRACT

Standard covariance matrix estimation procedures can
very affected by either the presence of outliers in the data

gdore precisely, one of the contributions of this paper
Js to derive the theoretical bias of the NSCM and the FP

some mismatch in their statistical model. In the Sphercall arising from disturbances. The paper is organized as fsllow

Invariant Random Vectors (SIRV) framework, this paper: section 2 formulates the problem while section 3 provides
proposes the statistical analysis of the Normalized Sampi'€ Main results. In section 4, simulations validate the
Covariance Matrix (NSCM) and the Fixed Point (FP)t eoretical analysis and illustrate the robustness ofethes
estimates in disturbances context. The main contributfon ¢S Stimates. Finally, section 5 concludes this work.
this paper is to theoretically derive the bias of the NSCM
and the FP arising from disturbances in the data used to
build these estimates. The superiority of these two estisnat 2. PROBLEM STATEMENT
is then highlighted in Gaussian or SIRV noise corrupted bys SIRV is a non-homogeneous Gaussian process with ran-
strong deterministic disturbances. This robustness can hom power. More precisely, a SIRV [8] is the product of
helpful for applications such as adaptive radar detection othe square root of a positive random variabigexture), and
sources localization methods. an m-dimensional independent complex Gaussian vegtor
(speckle) with zero mean, covariance matid = E (xx")

normalized according to TM) = m:
1. INTRODUCTION

. . L . L c=+Tx. Q)
Many signal processing applications require the estimatio

of the data covariance matrix. This is the case for instaﬂCﬂowadayS, SIRVs are increasing|y used to model impu|sive
for source localization techniques such as conventionaipise. In most applications, the speckle covariance mistrix
beamforming and high resolution methods (CAPON,of great importance (e.g adaptative detection in radaatyon
MUSIC, ESPRIT,...) [1, 2, 3]. Adaptive radar and sonarand must be estimated if unknown. For that purpdse,
detection methods also depend on the noise covariance M@Adependent snapshotgy,...,yn are usually available.

trix estimate [4]. In these cases, the estimation accurasy h |deally, theseN data should share the same distributior as
a strong influence on the resulting performance. Howevejp (1).

standard estimation process can be very affected by either

the presence of outliers in the data or some mismatch oRowever, in many situations, it may happen that some
their statistical model. of these data, let us say thefirst ya,...,yk, are outliers

) ) with a different distribution thar. Thus,yy,...,yn may be
In the conventional Gaussian framework, the well-knownspjit into two sets :

Sample Covariance Matrix (SCM) [5] is the Maximum

Likelihood Estimate (MLE) and is therefore widely used Yk = Pk for 1< k<K;

for its good statistical properties : unbiasedness, effiie { yn=cn=1Tpxn forK<n<N; @
asymptotic Gaussianity,... Unfortunately, this estimatgy o

perform poorly when the noise is not Gaussian anymoreyherec,, 1, andx, share the same distribution@sr andx.

One of the most general and elegant non-Gaussian noise

model is prOVided by the so-called Spherically Invariant In th|s paper, the Out"erpk will be assumed to be ran-
Random Vectors (SIRV). Indeed, these models encompaggym vectors with arbitrary distributions, and our purpase i

a large number of non-Gaussian distributions, includiregy th o study the robustness of two speckle covariance matrix es-

Gaussian one. Within this modeling, it has been shown thaimates : the NSCM and the FP. The NSCM, originally intro-
the Normalized Sample Covariance Matrix (NSCM) andqyced in [9, 10], is defined by :

the Fixed Point (FP) are appropriate in terms of statistical

performance [6, 7]. Moreover we will show in this paper - mN yoyH
that the NSCM and FP are also less sensitive to disturbances Mnscm = N z i (3)
(outliers) than the SCM. Sl yn

The authors would like to thank the Direction Générale'dentement  ItS statistical properties have been derived in [6] in an
(DGA) to fund this project. ideal outlier-free context : (3) is a biased estimateMdf
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unlessM is the identity matrix.

Proof 3.1
See Appendix A.

The FP estimate [11, 12, 13], defined as the unique

solution of the following equation

N H
r m yny
Mpp == n

— 4)
N n:lyﬁ Mpé}’n

. . . . . y
is obtained in practice, by an appropriate convergent
It exhibits good statistical performance

algorithm [11].
(consistency, unbiasedness and asymptotic gaussiafjty
in the outlier-free case.

3. MAIN RESULTS

Let M denote a speckle covariance matrix estimate (NSCM,
The goal of this section is to derive its robustness

FP, ...).

to outliers within the framework (2). For that purpose, the
additionnal biasA due to the presence of outliers is defined

as . e

A = E(M|Koutlierg — E(M]| no outliep. (5)
In the sequel, we will simply WritE(ﬁ) for E(ﬁ| K out-
liers). Two results will be provided for each estimate :

Now let us turn to the FP estimate.

Theorem 3.2
ForN >> K, the additionnal bias (6) due to outliers is given
b

general expression @k, and a more specific one valid only

for a particular type of outliers :

(6)

Pk = mg + ¢,

wheremy is deterministic and much stronger than the SIRV
Expression (6) accounts

component : || my ||>>|| ¢ ||
for the so-called "data contamination” case, often met
some adaptative detection problems. In the sequel, it will
referred to as the "data contamination model” for outliers.

Theorem 3.1 .
Let us denotdMngm = E(Mnscw|no outliers. The addi-
tional bias (5) due to outliers is given by :

Pk Py
lpkl|?

pkPy
[EYE

()

K
Angm = —

m K
M — 3 E
N NscM+ N I(Zl [

For the data contamination model (6), the tét in

|

(7) is given by :

H
E[pkpkz}:
[Pkl
E[1] mEMmk) mymf]
1-m———:7 +E[1]
( [y |2 [my|* ) [lmy|?
E[T] ( mkmE) ( mkmE>
+ I— M(1- k) (g)
[y |2 [[my||2 [[my||?
Remark 1

When||my|| — oo (very strong data contaminatio\nscim
simplifies to :

K
ANTM = _NMNSCM+ 9

m+1[ X pkp'l;' K
U ar="0 (S E || im0
N k; piMpc] m
In the data contamination model (6), the term
H
PkPy } o
E|————/ in(10)is given by
L)EMlpk
. ppl ] 1 E[1]
M Ipy | T v Ty
Py Pk m my
e myn}! E[1]
(mM-1m)2 ) mM-1my  m{!M-1my
H H
M-———— | [M————F— . 11
a < mEMlmk>< mEMlmk) ()
Remark 2

When||mg|| — o (very strong data contaminatiod\gp re-
duces to

m+1( KX  mmf K
. Arp = ——M]. 12
g‘ FP N <nzl m{M-my m (12)
Proof 3.2
See Appendix B.

Expressions (7) and (10) show that both the NSCM and
the FP are robust estimates since their additional biases do
not depend on the outliers norm but solely on the quantities

Pk
[l okl

This is in contrast with the widely used SCM which is
already known to be a poor estimate in impulsive noise. Fur-
thermore, when outliers are present and in a SIRV context,
the resulting bias is trivially shown to be equal to

~

1 K
Agy = N E [prpil] — NE[T]M, (13)
n=1

which is obviously very sensitive to strong outliers.

4. SIMULATIONS

To illustrate previous theorems and analyze the robustness
of studied estimates (SCM, NSCM, FP), we compare our
theoretical values oA with those obtained by simulations.
Inall casesM =1, m=3,N =50 andK = 1.

647



80 10 T T

*  Simulated SCM
0 Simulated NSCM
Simulated FP
— Approximate expression: SCM
—— Approximate expression: NSCM
Approximate expression: FP

=}
S
T

*  Simulated SCM
0 Simulated NSCM
Simulated FP
— Theoretical SCM
— Theoretical NSCM
Theoretical FP

-10F

IS
S
T

)
=)
T

Frobenius Norm of delta, 20I09(||A||F)
Frobenius Norm of delta, 20Iog(||A||F)

X 000000000VU0T
X 0000°
-30F 00 4
30 — . 4
()
o 000°
OF 1 o o °o°° |
4 xx +g0
' o
L*i++000
()
-20r * 501 xxx 0o° 4
h._.;_’_’_-/ +8000
_ | | | | | -60 L L L L L
-10 -5 15 20

30 40 50
o
[

0 20 0 5 10,
Power contamination, 20l0g(c ) Power contamination, 10log((|m, %)

Figure 1: Frobenius norm @ for the SCM, NSCM and FP  Figure 3: Frobenius norm & for the SCM, NSCM and FP
versus disturbances power for a Gaussian noise. versus disturbances power for a Gaussian noise: data con-
tamination model.
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Figure 2: Frobenius norm @& for the SCM, NSCM and FP

versus disturbances power for a K-distributed noise. Figure 4: Frobenius norm o for the SCM, NSCM and

FP versus disturbances power for a K-distributed noisea dat
contamination model.

In figures 1 and 2 we study the validity of the general
expressions (7) and (10), for a single distubance of the forraions (7) and (10) of the bias. Furthermore, they show the
p = ad wherea is a random Gaussian variabl¢' (0,03)  insensitivity of the NSCM and the FP with respect to the
and d a fixed unit norm steering vector. Plots give theoutliers strength, while the SCM’s performance is strongly
Frobenius nornjl.||e (in dB) of Agxcm, Anscv andAgp as  degraded when the outliers power increases.
a function of 20og(gy). Figure 1 addresses the Gaussian
noise casety, = 1 in equation (2)), while in figure 2 the

noise is K-distributed 1, follows a Gamma distribution). In the next two simulations (figures 3 and 4), we inves-
The K-distribution parameter is equal to 01 which results tigate the domain of validity of the approximate expression
in a highly impulsive noise. (9) and (12) in the data contamination case (6). In figure

These simulations prove the validity of the general expres3 the noise is Gaussian while in figure 4, it follows a
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K-distribution. As expected, for larggmas||, experimental m N xpch

m pkPL
results are close to the approximate expressions. Indeed, + N Z Hl/\\/Ii‘l
theoretical results have been derived under the assumption k=1 P Vi Pk
that|ms|| >> ||c1|| (cf Remarks 1 and 2). (15)
On the other hand, in figure 3, for low disturbance power, R e
the NSCM and the FP are slightly better than the SCM. By settingR = M~ %?MgpM /2 one obtains:
However, in figure 4 it is not the case. We also notice a better

K

= 7/\_1
N &1 xH Mgpxn

overall adequacy between experimental and approximate R_ m N ZnzH +m§ QkQE (16)
curves for the FP and for the NSCM estimates. We can N ZH Rz, N,& qE R1qx

roughly explain that behavior in the case of highly imputsiv

noise. Indeed, in this context, one hgmi| >> |lc1|| where
with hlgh probability, even for weak disturbances. Thus the 4 Zn = M*l/zxn is Comp]ex gaussian distributed with zero
approximate expressions remain valid in a wider domain for mean and covariance matiix

|m4 || than in the Gaussian case. o q=M12p,.

5 CONCLUSION Pre\A/ious equation (16) admits a unique solution such that
. . ) Tr(R) = m. WhenN tends to+ and for fixedK, equation
In this paper we have investigated the robustness of twgj ) tends to
covariance matrix estimates, the NSCM and the FP, when zzH
part of the data are outliers. In this context, we have ddrive A=mE {ﬁ} ) a7
theoretical formulas of the bias for an arbitrary distribat z" A"z
of the disturbances. In the data contamination case Whiclnerez ~ %.47(0,1).

is met in some applications, we have established simplg has been proved in [6] that the unique solution of (17)
approximate bias expressions. , which satisfies TrA) = mis A = L.
These theoretical investigations have been validated by

simulations results, and they demonstrate the superioritgonsequently, whenN tends to +e, R solution of
0]‘: thebN?CM a”d_l_t:]‘e FP Ol\t/er the s';andat(d ?CMvt'n te{m%quation (16) tends td, solution of equation (17). This
of robustness. e results are of particular interest i : . 5

applications such as adaptive radar and source Iocalizatio%Stab“Shes the consistencylf Thus, for largeN, one has

methods. R =1I+AR where|AR| << ||

Assuming thaAR is small enough to ensure the validity

A. PROOF OF THEOREM 3.1 of a first-order expansion, (16) can be written

(7) is trivial, therefore we provide only the proof of theore

H m ZnZ
3.1in the data contamination case. Let us revite < I+AR == H -
s e N % 12h (I-AR)z,
K H
m
pepe | o [ (ck+my) (e +my)™ SN Ak Gk
5| =E 2 ; N & af (I-AR)qk
[kl ek + my|| =1k . H (18)
NP+T ZnZ, < Zn ARzn)
and sete, = —~ . For large|/my|, a second order expan- N %1 l1znl/2 1z
o my|| m K q7ARqx
sion with respect to theys leads to : +N z WQNE
K=t
H
PkPg
E [ } = K H
2 m
lhel ] M wherep = |(|1kQ|k2_
1-m 5+ E[1]—£ 4k) k B (14) & llal
N A
E[t] _ gy _ Igamy SinceK << N and|/AR|| << 1, the last term in the above
|| my]2 [|my[2 [my]2 ) equation may be neglected leading to :
This concludes the proof N-K= m J znz) zf ARz,
: I+AR =P+ ——RNg™m + — T
N, & allznll* zal
B. PROOF OF THEOREM 3.2 R m N, H
L. . . WhereRNg;M = n=n .
Within the framework (2), the FP estimate (4) can be written N—K %1 znll?
N H H Now, let us define
ﬁFP _m L . + m z Dk Pk Fo) dAf{) i qI),t Zn
=N = N2 o1 e d=Vve yi=vedI),th = ——,
N fi1ch Mgpen  N& pl M3 pi " lznl]
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o dngem = Vved Rygem — I) = veq ARy ), Where veg.)
denotes the operator which reshapesthen matrix el-
ements into an column vector.

Then, one obtains

. m
i+ongem +——

ito=pt K
“PTTN N—_K

N

n:ZJrl

where* denotes the conjugate operator anthe Kronecker
product.

(tﬁ@tn)(t:mn)'*é) (19)

By noticing that TfAR) = 0 impliesit'é = 0, the pro-

E[Rnsom] = I, the previous equation leads to theorem 3.2

whi

ch concludes the proof.

Starting from this general result, the additive bias

obtained in the data contamination model can easily be
calculated, using a similar method as in the NSCM case.

(1]

(2]

jection of equation (19) onto the orthogonal subspacé of

gives:
N—-K m
5=Ni'p+ TniléN&?M + (N ny
N
3 (ta®tn) (tn @ )" M5 |,
n=K-+1
1 .
wherelni- =1 - EiiH and where the equalityl;" 5 = 5 has
been used.

This is equivalent to
~ N —K
aé:n%p+Tn%5N$M. (20)

N

n+ Z
n=K+1

It may be shown that

m

heread =1—
W (N

(t’ﬁ@tn)(tﬁ(z‘@tn)“ﬂ%)-

—i%azﬂl
N—oo

1
- nt
m+1 " ),

a
where™> denotes the convergence in probability.

Therefore, @ may be replaced bya in (20) without
affecting the asymptotic distribution @ By noticing that

. m
T m417
(20) leads to
m+1 m—+1N-—-K
0= Ni'p+ ONSCM 5

N

where the identity? dygom = 0 has been used.

(3]

(4]

(5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

Using the unvec operator (the vec inverse operator ),

one obtains
1 Tr(P IN-K
AR =T (P— " )I)+m+
m m N

ARNgM .-

Since Agp = E[Mep — M] = E[MY2ARM?| and

(13]
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