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ABSTRACT
This paper is about recognition of different gait conditions
from body-worn sensor data. Our sensor, located at sub-
ject’s shank, is a combination of a 3-D accelerometer and
a 3-D magnetometer. Stride detection method relies on the
use of the sole magnetometer readings. Feature extraction
combines both modalities in an original manner and spatial,
temporal, and angular parameters are extracted for subse-
quent classification. Hidden Markov models are employed to
identify the types of gait being performed. Different feature
modelizations are typically considered with the use of Gaus-
sian mixture laws. This paper analyses which stride feature
sets are the most significant and what could be the minimal
number of training sequences for best classification scores.
Classification performances above 90% are demonstrated.

1. INTRODUCTION

Inertial MEMs-based technology is well suited for long-
term ambulatory monitoring of physical activity [5]. In-
deed accelerometers and gyroscopes are highly-integrated
chips that can be embedded into low-power body-worn sen-
sor nodes with on-board memory capability. Several biomed-
ical applications have been designed with this unique capa-
bility of remote (from the hospital) monitoring of physical
activity [6]. In this framework, unsupervised gait analysis is
particularly valuable since gait is a good indicator of health
status. Several articles have been published on the topic of
gait classification from video cameras or from body-worn
sensors, where gait features are either based on temporal,
spatial or angular gait parameters [1], [3], [7].

The motivation of this work is the assessment of gait ac-
tivity in hemiplegic patients during ecological conditions. In
this context, walking activity will be primarily evaluated us-
ing step counting but it is also required to have a better un-
derstanding of the type of walking that is being performed.
The ultimate goal of the project is to quantify the benefits of
rehabilitation therapy for these subjects.

The main contributions of this paper are two-fold with
the gait analysis being performed with a rather uncommon
type of sensor in this context: 3-D accelerometer+3-D mag-
netometer and a robust hidden Markov model gait classifica-
tion. Indeed, using anisotropic magnetoresistive sensors, it is
possible to sense the relative orientation of the sensor in the
surrounding Earth’s magnetic field (MF) and resolve the MF
in the sensor (or body) frame. The sensor is located at the
patient’s shank, although other locations may be envisaged
(See Fig.1). The proposed approach is carried out in two dis-
tinct steps with first the identification of stride events along
with their characterization [10] and second the stride clas-
sification, i.e. the determination of the associated gait class
using hidden Markov models [8].

2. STRIDE DELINEATION AND FEATURE
EXTRACTION

2.1 Stride detection
The gait cycle in human locomotion is divided into two es-
sential phases with a stance and a swing phase in the approx-
imate 60%-40% ratio [9]. In the sequel, each stride will be
time delineated between two successive heel impacts of the
same equipped leg.

Figure 1: Frame Definition during gait in sagittal plane

As shown in Fig.1, denote (u1,u2) the body frame with
u1 the axis along the cranio-caudal direction and u2 along the
antero-posterior direction. Let (Z,ξ ) be the inertial frame
with Z the axis along the (inertial) vertical direction and ξ
along the gait direction. Finally, denote by p1 the unit vector
that supports the projected MF vector in the sagittal plane,
from which we build the orthonormal (p1, p2) frame.

The proposed stride detection is based on the processing
of shank sagittal magnetometer readings. The Earth’s MF
vector, projected in the sagittal plane, is expressed in the in-
ertial (Z-ξ ) frame with components :(

hZ
hξ

)
=

(
sinκ

cosθ1 cosκ

)
= ρ1

(
cosφ1
sinφ1

)
(1)

where κ represents the MF dip angle ( ∼ 60◦ in France).
We now assume that the (u1,u2) frame is simply rotated by
the angle θ2 with respect to the (Z,ξ ) frame. Let denote hu1
and hu2 the Earth’s MF components resolved in body frame
(u1,u2), it holds :(

hu1
hu2

)
=

(
cosθ2 sinθ2
−sinθ2 cosθ2

)(
hZ
hξ

)
= ρ1

(
cos(φ1 −θ2)
sin(φ1 −θ2)

)
(2)
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By differentiating the phase angle φ2 = (φ1 −θ2), it is
thus possible to obtain a pseudo shank angular velocity from
magnetometer readings. As shown in Fig.2, large angular
velocity peaks are particularly visible in the derived signal
φ̇2(t) and do correspond to mid-swing (MSW) events during
gait [1]. These events can easily be detected using threshold-
crossing methods and they serve as robust step identifiers.
Furthermore, as already observed in [1] on gyroscope sig-
nals, local minima respectively before and after mid-swing
event can be identified as toe-off (TO) and heel-strike (HS)
events [9]. The whole procedure is now detailed in Algo-
rithm 1.

Algorithm 1 Gait event detection
Input: (hu1 ,hu2) Earth’s MF components in body frame,
Input: thω Angular velocity threshold (rad/s)
Output: TOn, MSW n, HSn+1 Gait event ticks.

1: Low-pass filter magnetometer components :
(hu1 ,hu2)→

(
h̃u1 , h̃u2

)
2: Cartesian to polar decomposition :

(
h̃u1 , h̃u2

)
→ φ2

3: First-order derivation : φ2 → φ̇2
4: Threshold-crossing detection : (−φ̇2 ≥ thω) →

mswTick.
5: Local minima detection before, resp. after, mid-swing

events : MSW n → TOn, HSn+1.

Figure 2: Gait event detection : Temporal definition of heel-
strike (HS), foot-flat (or mid-stance) (FF), toe-off (TO) and
midswing events (MSW).

2.2 Feature extraction

Without loss of generality, suppose that we have identi-
fied both the beginning and end of a stride. The n-th
stride is thus delineated by the following time sequence
[HSn,FFn,TOn,MSW n,HSn+1] from which temporal gait
parameters are easily deduced, See Fig.2. Swing duration
is thus given by TSW = HSn+1 −TOn.
We propose in Algorithm 2 a simple yet effective method to
evaluate vertical and horizontal displacement during a stride.
For a given stride, we first project acceleration in the mag-

netic inertial frame (p1, p2) .(
ap1
ap2

)
=

(
cosφ2 sinφ2
−sinφ2 cosφ2

)(
au1
au2

)
(3)

Then we perform a simple integration on the centered ac-
celeration to derive an average velocity along those (fixed)
directions. The time interval that is used for integration is
limited to the swing phase.( ⟨

vp1

⟩⟨
vp2

⟩ )=

( ∫
TSW

ac
p1
(t)∫

TSW
ac

p2
(t)

)
(4)

Displacement is finally estimated through :(
dZ
dξ

)
= TSW

(
cosφ1 −sinφ1
sinφ1 cosφ1

)( ⟨
vp1

⟩⟨
vp2

⟩ ) (5)

In this work, the heading-dependent φ1 angle is estimated
during stance phase, when the shank is slowly varying and
the measured acceleration is mainly due to gravity field. It is
estimated from the components (ap1,ap2)≃ (gp1,gp2) using
again a Cartesian to polar decomposition.

Algorithm 2 Stride displacement estimation for the n-th
stride
Input: (au1 ,au2) Acceleration in body frame (m.s−2)
Input: φ1 Stride-fixed angle between (Z, p1) axes (rad)
Input: φ2 Stride-varying angle between (u1, p1) axes (rad)
Input: TOn,HSn+1 Gait swing time events for n-th stride
Output: (dZ ,dξ ) Vertical and horizontal displacement (m)

1: Project and center accelerometer components in (p1, p2)
frame, Eq.(3).

2: Integrate acceleration during swing phase, Eq.(4).
(ap1 ,ap2)→

(⟨
vp1

⟩
,
⟨
vp2

⟩)
3: Project distance in (Z,ξ ) frame, Eq.(5).

The proposed feature vector Yn includes for the n-th stride the
following characteristics:
• Stride duration (s) : TStride
• Stance duration (s) : TST
• Swing duration (s) : TSW
• Angular velocity at foot-flat (rad/s) : ωFF
• Angular velocity at midswing (rad/s) : ωMSW
• Vertical displacement (m) : dZ
• Horizontal displacement (m) : dξ

3. FROM STRIDE FEATURES TO GAIT
CLASSIFICATION

The second part of this algorithm consists in analysing a set
of stride features to identify the gait class being performed.
Our study focus on the following types of gait :

Class ω1: level walking
Class ω2: upslope walking
Class ω3: downslope walking
Class ω4: upstairs walking
Class ω5: downstairs walking

930



−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

d
Z

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

dξ

−5 0 5 10
0

0.2

0.4

0.6

0.8

ω
FF

−0.05 0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

ω
MSW

 

 

Walk on flat floor
Walk on up floor
Walk on down floor
Walk on up stairs
Walk on down stairs

Figure 3: Probability density estimate of some stride features
with respect to gait class

A rough estimation of the probability densities of the ex-
tracted features Yn has therefore been performed and results
for some of them are shown on Fig. 3. As it can be observed,
the solution of the problem is not straightforward.

To tackle the gait classification issue, an algorithm based
on hidden Markov models (HMMs) [2] has hence been de-
signed. Let us recall that a HMM is a bivariate stochastic
process defined by :
• A process Xn which is a Markov process and in general

not observed. In the gait classification context, the ran-
dom state variable X takes values in {ω1, · · · ,ω5} so that
each value corresponds to a gait class. This process is
fully defined with the transition densities ai, j = p(Xn =
ω j|Xn−1 = ωi) which do not depend on the time index n,
and the 5 initialisation probabilities πi = p(X0 = ωi).

• A second process Yn which is observed. The random vec-
tor variable Yn is independent of Ym, m ̸= n, conditionally
to Xn. It is fully defined by the probability density func-
tion (pdf) of p(Yn|Xn = ωi), ∀i. In the gait classification
context, Yn is a random vector which elements are stride
features, and its state-conditional pdf is defined as a mix-
ture of Gaussian laws which does not depend on the time
index n.
If the hidden process Xn is omitted, the proposed method

can be reformulated as the definition of gait-dependent pdfs.
The gait classification is performed as the evaluation, at each
time index, of the pdf which best fits the observation Yn, i.e.
ω∗

i = argmaxi p(Yn|Xn = ωi). With the hidden Markov pro-
cess Xn, this decision can be enforced with constraints on the
hidden process transition probabilities. For a given tempo-
ral sequence of features Y0:N−1 = {Y0, · · · ,YN−1}, the classi-
fication is now equivalent to compute the unobserved state
sequence X0:N−1 which maximises the following likelihood :

X∗
0:N−1 = arg max

X0:N−1
p(X0:N−1,Y0:N−1) (6)

= arg max
X0:N−1

p(X0)p(Y0|X0)ΠN−1
n=1 p(Yn|Xn)p(Xn|Xn−1)

This kind of estimation is well known and can be performed
thanks to a Viterbi algorithm (see for example [8]).

Now that the algorithm formalism has been introduced
with the classification process, it remains to describe the el-
ements of the vector Yn and its pdf. In Section 3.1, different
definitions of the vector Yn and their pdfs are discussed. Sec-
tion 3.2 is devoted to the learning process to estimate these
densities using standard supervised learning techniques.

3.1 The observation vector Yn and its modelisation
In order to evaluate which stride features, described in Sec-
tion 2, are the most relevant, several subsets have been con-
sidered for the observation vector Yn. For instance, the first
set is defined as

{
dZ ,dξ

}
, which means that the vector Yn is

equal to : Yn = [dZn ,dξn ]
T . Different feature sets have been

analysed :
• Set #1:

{
dZ ,dξ

}
(displacement estimates)

• Set #2: {ωFF ,ωMSW} (angular speed estimates)
• Set #3: {TStride,TST ,TSW} (time estimates)
• Set #4: Set #1 ∪ Set #2
• Set #5: Set #1 ∪ Set #3
• Set #6: Set #2 ∪ Set #3
• Set #7: Set #1 ∪ Set #2 ∪ Set #3

It is also necessary to define a parametric pdf for the vec-
tor Yn which parameters depend on the hidden state.
Two models have been numerically tested and compared.
The first model p(Yn|Xn = ωi) is defined by :

p(Yn|Xn = ωi) N (µi,Σi) (7)

where N (µi,Σi) is a normal law of mean vector µi and Σi
the covariance matrix (with ad-hoc sizes). For each hidden
state value, p(Yn|Xn = ωi) is defined through the pair (µi,Σi).
The second model for the state-conditional pdf of the vector
Yn is a mixture of 2 Gaussian laws defined as :

p(Yn|Xn = ωi) αi,1N (µi,1,Σi,1)+αi,2N (µi,2,Σi,2) (8)

where, αi,1 and αi,2 are weight coefficients in [0,1] such that
αi,1 +αi,2 = 1 to ensure that

∫
p(Yn|Xn = ωi)dYn = 1.

It can be expected from the general second model to give
better classification results that the first one. Nevertheless,
the determination of its parameters is much more involved
than for the first model, with an unknown gain on classifica-
tion performances. This gain will be numerically evaluated
in Section 4.2.

3.2 Probability densities estimation of Yn

The learning process consists in estimating the parameters
of the probabilistic model for each hidden state. This is
mathematically equivalent to estimate for each class ωi, the
different parameters Θi = (µi,Σi) for model #1 and Θi =
(αi, j,µi, j,Σi, j) j=1,2 for model #2.

Because the hidden states are assumed known in our
supervised training context, the algorithm for training the
HMM output distributions is just the standard set of equa-
tions for training GMMs. It is reviewed next for self-
consistency.

For the first model, the parameters estimation is straight-
forward with the use of the maximum likelihood (ML) esti-
mator. Denote S(n) the known (gait) state at time index n,
obtained during the supervised learning stage. For gait class
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ωi, it holds

µi =
∑N−1

n=0 1(S(n) = ωi)Yn

∑N−1
n=0 1(S(n) = ωi)

(9)

Σi =
∑N−1

n=0 1(S(n) = ωi)YnY T
n

∑N−1
n=0 1(S(n) = ωi)

−µT
i µi

where 1(S(n) = ωi) = 1 if S(n) = ωi and 0 otherwise.
The parameters estimation of the second model is more

involved with the use of the expectation maximisation (EM)
algorithm [4].

3.2.1 Expectation maximisation

Consider N samples R0:N−1 defined as independent realiza-
tion of a mixture of two normal distributions.
The logarithm of its pdf equals

l(Θ) =
N−1

∑
n=0

log p(Rn|Θ) ∝
N−1

∑
n=0

log

(
2

∑
j=1

α jτn( j)

)

withτn( j) = |Σ j|−1/2 exp(−1
2
(Rn −µ j)

T Σ−1
j (Rn −µ j)) (10)

The problem is to estimate the set of parameters of this law
Θ̂ = {α1,µ1,Σ1,α2,µ2,Σ2} which maximises l(Θ). Because
of the sum term in the logarithm, this problem is not straight-
forward and the EM algorithm is used to tackle this issue
[4]. Therefore a new unobserved variable Zn, is introduced
such as: p(Rn|Zn = j) ∝ τn( j) and p(Zn = j) = α j. The joint
likelihood of a sequences Rn,Zn has the following form:

l(R0:N−1,Z0:N−1) ∝
N−1

∑
n=0

2

∑
j=1
1(Zn = j) logτn( j)

As the process Zn is not observed, l(R0:N−1,Z0:N−1)
can not be directly maximised. The EM idea is
to maximise instead the expectation of this function :
EZ|Rl(R0:N−1,Z0:N−1). To be computed, this expectation
needs to know the set of parameters Θ which is unavailable.
Hence the idea of EM algorithm is to fix a first set of param-
eters, and make it iteratively evolve to the correct one.
Denote Θ(k) the set of parameters at k-th iteration and τ(k)n ( j)
the associated pdf using Eq.(10).
The two steps are the following ones:
1. Compute for the set of parameters Θ(k):

Q(Θ|Θ(k)) =EZ|Θ(k) l(R0:N−1,Z0:N−1)

2. Estimate the set Θ(k+1) which maximises Q(Θ|Θ(k)).
After some calculations, this leads to update formulae:

α(k+1)
j =

∑N−1
n=0 τ(k)n ( j)

∑N−1
n=0 ∑2

j=1 τ(k)n ( j)

µ(k+1)
j =

∑N−1
n=0 τ(k)n ( j)Yn

∑N−1
n=0 τ(k)n ( j)

Σ(k+1)
j =

∑N−1
n=0 τ(k)n ( j)YnY T

n

∑N−1
n=0 τ(k)n ( j)

−µ(k+1)
j

(
µ(k+1)

j

)T

3.2.2 EM for the second model parameters estimation

In gait recognition problem, the parameters of the mixture
of Gaussian laws have to be estimated for the different gait
types. The above results directly apply taking in account into
the sum only the terms corresponding to the gait of interest.
One iteration of the learning process is summarized in the
Algorithm 3 for the second model.

Algorithm 3 k-th iteration of learning algorithm

1: Compute, ∀(i, j), τ(k)n (i, j):

τ(k)n (i, j) =
exp
(
− 1

2 (Yn −µ(k)
i, j )

T
(

Σ(k)
i, j

)−1
(Yn −µ(k)

i, j )

)
|Σ(k)

i, j |1/2

2: Compute, ∀(i, j), λ (k)
n (i, j) = 1(S(n) = ωi)τ

(k)
n (i, j)

3: Update formulas:∀(i, j) ∈ {1, · · · ,5}∪{1,2}

α(k+1)
i, j =

∑N−1
n=0 λ (k)

n (i, j)

∑N−1
n=0 ∑2

j=1 λ (k)
n (i, j)

µ(k+1)
i, j =

∑N−1
n=0 λ (k)

n (i, j)Yn

∑N−1
n=0 λ (k)

n (i, j)

Σ(k+1)
i, j =

∑N−1
n=0 λ (k)

n (i, j)YnY T
n

∑N−1
n=0 λ (k)

n (i, j)
−µ(k+1)

i, j

(
µ(k+1)

i, j

)T

Note that the EM algorithm is sensitive to its initialisa-
tion set of parameters. This point is not detailed in this paper
because of the lack of space. Note also that Baum Welch al-
gorithms are usually used to train hidden Markov models [8].
It has not been used in this context since we do not want the
model to be adapted to the performed path through the tran-
sition probability of the process Xn. Furthermore, concern-
ing the learning of the probabilities p(Yn|Xn = ωi), the Baum
Welch algorithm is also an EM algorithm where the unob-
served variable is the hidden state. In this context, the hid-
den state is known on the training sequences S(n), so Baum
Welch is also not adequate to learn these probabilities.

4. RESULTS

To enforce a stable classification along time, the probabil-
ity to remain into a given state ai,i is set to 0.99 ∀i, and the
transition probabilities ∀ j ̸= i, ai, j = 0.01/4, cf. Section. 3.

4.1 Performance evaluation method

9 sequences have been provided by the CHU of Saint-
Etienne. They correspond to recordings obtained for 9 differ-
ent users walking a pre-defined path scenario that comprises
different gait classes. Denote by U the number of training se-
quences and denote by V the number of test sequences. The
performance of the algorithm for the #v-test sequence is ob-
tained by comparing the temporal sequence of gait classes re-
turned by the HMM algorithm {X∗

v }0:Nv−1 and the reference
sequence Sv(n), annotated by the medical team for this test
sequence. It is important here to note that although the model
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learning is done by concatenating the U sequences into a sin-
gle one, the classification performance is assessed on the V
distinct stride sequences. Our performance criterion will be
the good detection rate defined by:

J =
1
V

V

∑
v=1

1
Nv

Nv−1

∑
n=0

1(Sv(n) = {X∗
v }n)

For a perfect classification, J = 1.

4.2 Choice of observation vector and its modelisation
The objective of the first numerical simulation is to estimate
numerically the impact of the chosen feature set and also the
best vector model for Yn. The learning process has therefore
been performed on the 9 sequences (one common model for
the 9 persons), and validated afterwards on the same 9 se-
quences. The results are shown on Table 1. For the model #1,
7 features are required to have a good detection rate higher
than 90%. For the model #2, despite a more involved learn-
ing process, a good classification rate higher than 90% is
reached for most of the features set. Note also that for this
last model, the feature sets #1, #5 and #7 gives the 3 best
classification rates.

Model #1 Model #2
Feature Set #1 87.13 % 92.21 %
Feature Set #2 63.83 % 69.79 %
Feature Set #3 70.92 % 91.46 %
Feature Set #4 89.81 % 91.66 %
Feature Set #5 82.18 % 95.53 %
Feature Set #6 89.79 % 93.82 %
Feature Set #7 93.66 % 98.66 %

Table 1: Good classification rate with respect to the observa-
tion set and its modelisation

4.3 Impact of training sequence length
The objective of the second numerical simulation is to eval-
uate the impact of the number of training sequences needed
for learning. In this context, the learning has hence been per-
formed on U sequences, and the validation is done on the
V = 9−U remaining sequences. For each possible value of
U ,
(

9
U
)

sets of training sequences can be used. The perfor-
mance criterion is thus an average of the criterion value J
estimated for each configuration of the training sequences.

Concerning the vector Yn, the model #2 has been used
with the set of features #1, #5 and #7. The results are pre-
sented on Fig.4. The set #1 has a good classification rate
which tends to 90% and can be learnt with only 1 sequence.
The set #5 can also be learned with a few training sequences
but seems to be very user sensitive since the performance
curve is not increasing. Finally, the set #7 leads to good clas-
sification rate if 4 training sequences at least are used to per-
form the training.

5. CONCLUSION

This paper demonstrates that combined 3-D magnetometer
and accelerometer can be used for good-performance HMM
gait classification. Comparison against the gait classification
performances of other relevant sensor types and other classi-
fication techniques is a topic of further research.
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Figure 4: Classification performances with respect to the
number of training sequences U
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