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ABSTRACT The optimal Bayes classifier chooses the most likely class

In this paper, class-specific classifiers for audio, visua audio- given the observed dag, that is

visual speech recognition systems are developed and cechpéth
traditional Bayes classifiers. We use state-of-the-artufeaex-
traction methods and develop traditional and class-spediissi-
fiers for speech recognition, showing the benefits of a dassific ~ wherep represents the probability density functiquaf() andH; the
method on each modality for speaker dependent and independehypothesis that clagsis true. Making use of the Bayes rule, we can
set-ups. Experiments with a reference audio-visual dataBaow  rewrite the classifier as

a general increase in the systems performance by the irtiodu

of class-specific techniques on both visual and audio-Viswalal- aran;@(p(X\Hj)p(Hj)

ities. i

Hj[X
argHrj@xp( i1X)

decomposing the problem in two: estimatingH;) from the
1. INTRODUCTION language model ang(X|H;) from a statistical model dfl;.

Visual information can improve the performance of audisdsh !N this paper we assume equally probable classes and focteon
Automatic Speech Recognition (ASR) systems, especially irffStimation ofp(X|Hj), that is, characterizing statistically under
the presence of noise [16]. The improvement is due to thé&ach of the hypotheses by peff. We will define phonemes, the
complementary nature of the audio and visual modalitiesisas! smallest unit of sound meaningful in terms of speech, aslasses

information heips discriminate sounds easily confusajgledr but ~ ©f interest and propose a design for isolated speech retmgni
distinguishable by eye. tasks. Such a system could be generalized considering the co

catenation of phonemes to form words or sentences, the ggamm

ASR systems are composed of a feature extraction and glles and a decoder considering the possible paths through a
classification block. In this paper, we investigate how tlgp tice of all the concatenated phonemes (the Viterbi decoderlly).

a class-specific classifier for ASR in both single and multaio L . .

systems, namely audio, visual and audio-visual systems.ustle In that ASR classification task, _thg dllmensmn of_ the feature
state-of-the-art feature extraction systems for the aadibvideo ~ SPace necessary to accurately distinguish all possiblsetais
signals and focus on the requirements of a class-specifisitir ~ usually large. At the same time, the complexity and the arotin
for speech recognition purposes. Our design allows diftere dat@ necessary to estimate thpsés grow exponentially with the
feature sets and dimensionality reducing transforms fonetass ~ dimension ofX. Therefore, we either loose information discarding
of interest, providing a more flexible system and avoidirg@brse ~ féatures in order to obtain accurate estimatep(@€|H;), which

of dimensionality [4]. We report experiments with the CUAVE might result in being unable to distinguish similar classgsvork
database [12] and show that the class-specific approactereutp in high-dimensional feature spaces and suffer the problems
forms the traditional one for visual and audio-visual redtign ~ €Stimating high dimensionaidfs. This is known as th€urse of
tasks. Previous studies on class-specific audio ASR have be&imensionality [4] and explains the necessity of a dimensionality

conducted [3], but none considered the visual domain orusiefi ~ educing transform and the interest of researchers in-spssific
of modalities. designs allowing the use of reduced feature sets for eads cla

while obtaining a Bayes classification system.

The paper is organized as follows. Section 2 presents ASR . ) L
as a classification task, justifying the necessity of a dsiemality | "€ class-specific method [1, 2, 7] is a Bayes classification
reduction transform and how the class-specific method fewes SyStem reformulated to use class-dependent featureseritifiets
problem. In section 3, we apply that method with the statiéti & set of statisticgj = T (X) that is b(_ast to statl_stlcally describe
models used in ASR and in section 4 we describe the experanent&ach classi; and explains how to project the estimate(d; |H;) to

set-up, whose results are reported in section 5. Finallglosions ~ the original feature spaqge(X|H;). o _
are drawn in section 6. The pdf projection theorem [1] states that any probability density

functiong(z) defined on a feature spazevherez= T(X), can be

5 CLASSIFICATION AND CLASS-SPECIFIC METHOD converted into @df h(X) defined onX using the formula

IN SPEECH RECOGNITION p(X|Ho)
: : h(X) =

ASR systems are designed to assign to each utterxndke p(zHo)
most probable word, phoneme or sentence within its vocapula

and grammar rules”. The problem can be formulated asva  where Hp is any statistical hypothesis for which(X|Hp) and
classification problem, that is, assigning a multidimenalsample  p(z|Hp) are known. In fact, the theorem states th@f) not only is
of dataX to one ofM possible classes. apdf and integrates to 1, but that it is a member of the clagsits
that generatey(z) through transformatio (X). The optimality
and other properties @f(X) are presented and can de found in [6].

9(2) =3(X) 9(2), @)

This work is supported by the Swiss National Science Fouoat
through the IM2 NCCR The pdf projection operatorJ(X), called the J-function, is
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thus a function of the raw datX, the feature transformation T leading to featuregz and each of theZ| to determine the
T(X), and the reference hypothesily. It projects the estimated class-specific transfornig and the corresponding featurgs with
probabilities from the reduced feature gdb the original feature  zandz; of the same dimension.

spaceX, enabling the use of different features for each class of

interest. It is important to note that this function is notirated, 3.2 Hidden Markov Models

but a fixed function ofX, the transformT(X) and reference A gjngle-stream Hidden Markov Model (HMM) is the statistica
hypothesis, so it is not subject to trse of Dimensionality. To oqef traditionally used in audio ASR [15]. It has a hiddemtest
obtain a closed form for the J-function, the distributignX|Ho)  anq an observed variable associated to the feature stredmase
and p(zHo) need to be known either analytically, or by accuratehe state variable evolves through time as a first order Marko
approximation valid in the tail regions. These conditior®é ) cess assigning different statistical distributionshie observed
been met for some of the most useful feature transformaons —\5iahle. A typical audio-visual extension is the couplehiM
reference hypothesis [7]. In generédy can also be a function of 159 "10] where the audio and video streams are synchronize
the classifier's hypothesid;, however, in this work we will use a  5¢" model boundaries and the joint audio-visual likelihosdai

fgg“an;ﬁr(‘jf;grenwo and only adapt the transfornig(X) applied  geometrical combination of the audio and visual ones.

" . However, the use of HMMs for ASR suffers two main limi-
Compared to a traditional system, the class-specific approa ations. First, the Markovian assumption of the HMMs faits t
involves the use of a different transform for each class d®d t \54e the correlation in time of the original speech andnestiés
computation of the J-function in order to project the est#a f the features derivatives must appended to the originatied
probabilities of the HMMs to the common feature space. Theaaiyres. The second constraint is due to@uese of Dimension-
complexity of the system is not usually much increased, €sinc 4jity a5 the correct statistical description of the observetiifea
by correctly choosing the reference hypothesis and tramsfo i ji;st possible with a low dimensionality and the size ofihetor
the computations involved in the J-function can be simplifie o5 thus to reduced before being input to the HMM. Those steps
On its turn, the cost of using several transforms for theui®at ..o included in the transforms we apply to the original festand

stream instead of just one is negligible compared to the HMMayen into account in the class-specific approach, as weibleso
computations when dealing with linear transforms and acedu 51 detail in section 3.3.

number of classes.
3.3 Class-specific method with Hidden Markov Models

3. PROBABILITY ESTIMATION . . .
Let us denotex the original feature stream from which to define
The structure of the classification system is the followigiven  the observed features an(t) its value at time. We first append
the original feature streanX we apply different transformd;  the time derivatives to the features and obtain a new strgam
for each .clgss and obtain the corresponding feataresWe use  defined ag/(t) = [x(t) x(t)] with larger dimensionality thar. The
then statistical models to computgHj|z;) for each class and, final featuresz are obtained through a dimensionality reduction
finally we evaluate the J-function on the original inp&tand  technique ory, in our case projecting each sample to the reduced
transformsT; under the reference hypothesis to project the obtaine¢ca spacer(t) = WTy(t).
probabilitiesp(Hj|z;) to the original feature spagq®H;|X), where
the traditional Bayes classifier is used. For each utterance of length, HMMs are used to estimate
) ) . ) the likelihood of all the possible utterances given the oles
Following that structure, in that section we first present th featuresz — [2(1)...2(T)]. We will see that, in fact, we can apply
dimensionality reducing transforms used in our system, emt 5 single linear transform to the original samples of theratiee
introduce Hidden Markov Models as the statistical toolsduse  x — [X(1)...x(T)] in order to obtain the previously defin&d
ASR to estimate the probabilitigs(H;|z;) in the reduced feature  approximating the time derivatives by finite differencess write

sets and we finally explain how to apply the selected transor v g g linear transforrB on the feature samples.
and derive an analytical expression for the J function wlibse

models.
(Xt+1)—xt—1) — Y=B'X

NI =

X(t) =

3.1 Dimensionality reduction and class-specific features
In order to reduce the dimensions of the samptesve apply  Atthe same time, PCA defines a fixed linear transform to beiegpl
a linear transform, so that the new featues W'X retain as  each time instant to the samples/pf(t) =WTy(t). Thus, correctly
much of the information as possible of the original space. Inapplying theN matrix T times we create a new matiixand rewrite
our case, we want to preserve variance of the original space, the whole as a linear transform.
class-subspaces, and the transform we thus consider isigidin
Component Analysis (PCA). PCA requires a training spate zZt)=WTy(t) - z=CTY=C"BTX=ATX
composed of enough samplEso characterize the original feature
space, to find the subspace whose basis vectors correspdinel to The matrixA defines a linear transform that combines PCA on the
maximum-variance directions i2". In practice, we use the same expanded features and time differencing of the originalestr.
training set as the one used to train the classifiers and tbarn
models for each class. A first transform to be considered for the class-specific ap-

proach is thusz = ATX, with different A matrices for each
To fairly compare the class-specific method with a traddion class. Nevertheless, the dimensionality reduction inspiieat the
approach, we define the same kind of transform for the whol&ubspace orthogonal to the columnsfowill be absent from the
training dataset?” and for the subsets associated to each of theoutput. If any data of certain class contains energy in thigogonal
classes?j C 2. Comparing the performance of the system with space and the features for another class allow this enerappear
features{z;}j_1._m in a class-specific design agaiﬂs—t:U'jVI:l zj, at the output, classification errors might take placg. Taochpwe
would just show the benefits of a class-specific approachagai 2dapt our linear transform appending a power estimate aéittu
the Curse of Dimensionality, but not how class-specific features introduced in the dimensionality reduction, that is, thergy lost
might outperform general ones for a given dimensionalitgl an On the orthogonal space o , , -
dimensionality reducing transform. To that purpose wetspli ~ First, we compute the error comparixgand its prediction based
training dataset into its classes, ugéto determine the transform on Z, that is X = A(ATA)flATX, and look at the energy of
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the error at each time step to form the final reduced features a of the database, but the system could naturally be extemndedte

[z(t) r(t)]and[Z R as general tasks if more training data was provided.
1 . . .
_ g _ . T T For the single-modality experiments, the phoneme models
rM) =Ky -xul — R=|[(ld A<A A) ADX are made of 3-state HMMs with their observed features desdri

. S . . by one and three Gaussian mixtures for the speaker depeawent
As we have already said, the J-function is a function of thgireal independent set-ups. In the audio-visual experiments,ualed
data sampleX that depends on the feature transformation andypm from the previous 3-state audio and visual HMMs is built,
the reference hypothesis. The choice of that hypothesiallysu \yhere the contribution of each stream to the combined likel
means choosing a simplaif for p(X|Ho) trying to simplify the i geometrically weighted witha, Av. During testing and for each
determination op([Z RJ|Ho). SNR level, the best fixed weights are chosen from the possible

combinations satisfyin Av = 1 and ranging fromip = 1 to
We choose as reference hypothesiseing independent identically ), — ¢ at 005 stepsf.y 9ty ang A

distributed samples of normal Gaussian noise unHgr so

that underHy both Z = ATX and the error are also samples of 5. EXPERIMENTAL RESULTS

Gaussian random variables with known mean and covariance. . i . ) ]
The choserR being the lost energy on the projectidn= ATX, A first set of audio and video-only experiments is performed i
assures the independencezfind R and allows the factorization order to choose the number of reduced features leading toetste
p([Z RJ|Ho) = p(Z|Ho)p(R|Hp). Under these circumstances, performance and whether or not a class-specific approaclaan e
when the energy of the errett) is added up i (t) for each time ~ Modality is useful. In fact, a class-specific approach hesasly
step, the result is a Chi-Square random variable WithP degrees ~ been used for audio-only ASR outperforming the traditicryatem
of freedom, withN and P denoting the size of the original and in @& speaker-dependent set-up [3]. We focus, however, on the
transformed feature samplet) and z(t) respectively. We have improvement we can obtain on the system’s performance bingdd
then a closed form for the J-function based on chi-squareti anthe visual modality. N
Gaussian distributions, which we will use to project theuesti N the results presented, 'pca’ stands for the traditionayes
set probability estimates obtained with our HMMs to the ioréd) classifier using PCA as dimensionality reduction transfemnd

feature space and build a Bayes classifier. ‘cs-pca’ for the class-specific one.  Similarly, 'spkr-dephd
'spkr-ind’ correspond to the speaker dependent and indigpen
4. EXPERIMENTAL SET-UP set-ups. In the audio-visual experiments, we also repatltse

) ) of an audio-only system in order to measure the improvement
We perform speechreading experiments on the CUAVE databasghtained by the visual modality.

[12]. We use the static portion of the 'individuals’ sectiohthe

database, consisting of 36 speakers repeating the digitsifites.  The results for the single modality experiments are present
We divide our experiments into speaker dependent and indepé  in tables 1 and 2. As expected, the performance of the audtersy
doing three-fold cross validation in every case, i.e tr&dndn two s superior than the video one, 96% against 90% of recognitio
thirds of the all data for each speaker and testing on theirémga  rates in speaker dependent set-up and 94% against 53% in the
in speaker dependent experiments and training on two tbirtt®  speaker-independent task. In both modalities, the clagvser,s}
speakers and testing on the rest for the speaker indepesetemp.  proves more challenging than the others, who perform sityila
Changing the training and testing splits of the data, we edidate |y speaker dependent experiments, the class-specific thetho
our results by three runs and ensure they do not depend on thgitperforms the traditional approach on both audio andaVisu
training or testing data. modalities, increasing the recognition rate around 2% énahdio

) and 10% in the video case. However, for the speaker indepénde
The audio features used are 13 mel-frequency cepstral coeffset-up, the class-specific design only improves the recegsi
cients with cepstral mean normalization and their first aatbed  performance of the visual modality system, while using thigioal
temporal derivatives. In testing, we artificially add babhbise to  audio features obtains better results than any PCA reduatedrs
the audio stream with Signal to Noise Ratios (SNR) rangiognfr  that case, the improvement of the class-specific approaalsds
clean to—10db, at 5db steps. The visual features are selected frofore limited, around 4% improvement in the recognition fatie

a pool of DCT coefficients on a 128x128 grayscale image of thejisual modality and none at all for the audio. Such a behadan
speaker’s mouth, normalized for size, centered and rotatecder

to reduce speaker variability. The 2-dimensinal DCT of thages Audio spkr dep spkrind

are then computed, from which we take the first 16x32 coefftsie Class sets | MFCC cs-pca pcaMFCC cs-pca  pca

and remove their even columns to exploit face symmetry [13]. TtV 983 100 989 983 967 86.7
! ) {v,w,r,s} 927 97.8 95.7 878 834 719

We define the phonemes as our classes of interest and pro- {ahehnuy| 971 100 100 956 950 919

pose different experiments in terms of complexity: 3 simple
experiments with only 4 phoneme classes and a final expetimen
with the 20 phonemes available in the database. The 3 subs . : :

of classes are chosen in order to test the method in differeﬁt%‘ble 1 Perce_ntage of_correc'gly recognized phonerr_](_as Inau-
conditions: distinguishing between consonants visualisti  dio only experiments with traditional and class-specifasel
guishable{n,r,t,v}, consonantgv,w,r,s} visually confusable within  sifiers. The original MFCC features and the extracted PCA

the reduced set [8] and a set including vowels and consonan®om all the classes are used in a traditional Bayes classifie

ah,eh,n,uy. The task examined is then isolated phoneme classi;, ,.: : P ;
f{ication, wr\l?ch s the core of continuious speech reFt):ogni hrere while the features obtained by class-specific PCA are used in

phoneme models are concatenated to recognize words oneeste the class-specific design.

taking into account vocabulary and grammar rules. Classifip

HMMs could also be defined at word level, but they would bebe explained by the fact that MFCC are features already dedig
limited to small vocabulary tasks while phoneme models bee t for human speech recognition, where speaker independeaxe h
natural choice for real-world systems. The number of phanemalready been taken into account in their definition, while th
classes depends on the language, 43 in english for instandehe  original visual features correspond to a standard reptaten
vocabulary associated to the speech recognition task,a23es$ in  of images, not aimed to the representation of the mouth amea f
the case of the digits. Our experiments are thus limited bysthe ~ ASR. In that sense, the results with the original visual Jees,
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Figure 1: Recogpnition in the speaker independent audioabissk for setgn,r,t,v}, {v,w,r,s} and{ah,eh,n,uy compared to
an audio-only recognizer. The audio-visual classifier hgeariginal MFCCs as audio features and PCA or cs-PCA for the
video modality.
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Figure 2: Recognition in the speaker dependent audio-Maskafor setgn,r.t,v}, {v,w,r,s} and{ah,eh,n,uyy compared to an
audio-only recognizer. The audio-visual classifier use R@G# cs-PCA features for the both the audio and video moegliti

Visual spkr dep spkr ind
Class sets | cs-pca  pcal cs-pca  pcaj We choose different approaches for each set-up when perfgrm
{n,rtv} 97.3 855 589 552 audio-visual experiments. In the audio-visual systems,com-
{vw.r.st 89.7 725| 46.7 39.0 bined the approaches obtaining the best results in singtéality
{ahehnuy | 913 822] 548 530 experiments because we wanted to compare the performance of

the best traditional classifier we could build against aszl=ecific
one. Therefore, we have used a class-specific design on both
Table 2: Percentage of correctly recognized phonemes imodalities in the speaker dependent experiments while en th
video only experiments with class-specific and traditionaﬁr?:fé‘:(aesfs'g%%%iﬂcd;fgtﬁsgUpésthes?g%lgﬁégl:gl% 2“?&&!?;‘0(1
' H - 1Tl Wi Ju | Vi
Bayes classifier for the corresponding cs-PCA and PCA feé{fhe results of the audio-visual experiments are presentédures
tures. 1 and 2 for the reduced classes sets, showing the advantalge of
class-specific approach also in a multimodal domain. Aseege
the reduced sefv,w,r,s} proves more challenging than the others,
. o L both due to its lower recognition rates in audio and visuatiato
i.e 512 DCT features plus their first time derivatives, lea®oor  ities. The results with the speaker-dependent and independ
recognition performances around 30%, which is little betb&n ot ns show different gains when using the class-specitbod
the 25% chance of correctly performing in a 4 class subsets Th compared to the traditional approach. In the speaker deménd
is due to both the curse of dimensionality and the non spegific {45k hoth modalities profit from the class-specific desigd a
of the features for ASR. More advanced visual features feBSp  improve the recognition rates between 2% and 10% depending o
recognition include speaker normalization techniques, [14]  he qudio SNR, while in the class-independent set-up oelyitieo
leading to more speaker invariant features. The classfpec moqality benefits from the class-specific design and inesse
method should also be useful in conjunction with Fhose fesdats, recognition between 0.5% and 4% for the different audio SNRs
as the speaker dependent results from our experiments show. |, the more realistic experiments when all the classes ansido
In our experiments, the dimension of the 'pca’ and 'cs-peatires  greq see table 3, we observe a clear gain on both the inatiqror
leading to best performance for each class and reduced 8es W of the visual modality and the class-specific approach, inttdd
chosen. For both speaker dependent and independent SBIeUPS {4 the speaker dependent set-up. Indeed, in those expésirinen
audio dimensionality ranged from 3 to 4 for 'cs-pca’ and fr8m yisyal modality always enhances the audio-only results tied
to 6 for ‘pca’, depending on the class sets. For the video iitgda  ¢|ass-specific method proves beneficial in both speakemdepe
the best performance correspond to PCA dimensions of 4 or gnq independent experiments. Even though the resulst witly n
in speaker dependent experiments and 3 for speaker indemend ,dio might seem poor, the classifier do better than the 5%oeha
ones. The dimensionality reduction obtained with PCA isdf@e ¢ recognition in a 20 class set.

considerable, specially in the visual modality, and doesshOW o the reduced class sets, the improvement of the clasifispe
much phoneme or speaker specificity.
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design is more important in the speaker-dependent tasweket and model order selectiofransactions on Sgnal Processing,

10% to 38% increase in the recognition rate for the diffe@®NR 2001.
levels, than in the speaker independent one, where thatdser [g] Lucey, Martin, and Sridharan. Confusability of phoname
ranges from 2% to 10%. grouped according to their viseme classes in noisy environ-
ments. INASSTA proceedings, 2004.
_spkr-dep _spkr-ind [9] Nefian, Liang, Pi, Liu, and Murphy. Dynamic bayesian net-
SNR audio | audio-visual audio | audio-visua works for audio-visual speech recognitiddURAS P Journal
cs-pca pcgcs-pca pcg MFCC| cs-pcapcg on Applied Sgnal Processing, 2002.
cleanf 97.7- 79.5 98.7 88.0 745 76.4 750 [10] Neti, Potamianos, Luettin, et al. Audio-visual speestogni-
25db | 89.5 63.0 96.2 77.2 63.6 | 67.0 64.9 tion. In Final Workshop Revort. Johns Hookins CLSP. 2000
20db | 82.5 52.9 93.7 71.4 54.8 | 60.4 56.4 1on. I Fnal brkshop REport, Jonns HopKINS L3, :
15db | 71.5 42.3 91.0 64.1 46.1 | 51.1 46.8 [11] G. Papandreou, A. Katsamanis, A. Katsamanis, V. Ritisk
10db | 56.0 31.8 87.8 581 354 | 41.7 35.8 and P. Maragos. Adaptive Multimodal Fusion by Un-
05db| 39.2 223 853 522 248 | 322 252 certainty Compensation with Application to Audio-Visual
00db | 24.7 144 835 47.9 159 | 26.1 17.1 Speech RecognitiorMultimodal Processing and Interaction,
-05db| 155 9.5| 82.8 44.7 11.4 | 229 129 pages 1-15, 2006.
-10db| 10.2 6.5| 82.8 44.3 88 | 21.9 10.7 [12] Patterson, Gurbuz, Tufekci, and Gowdy. Cuave: A newaud

visual database for multimodal human-computer interfaee r
Table 3: Percentage of correctly recognized phonemes con-  search. InCASSP proceedings, 2002.

sidering all classes. The audio-visual classifiers use M&=C(13] Potamianos and Scanlon. Exploiting lower face symynietr
for the audio features and PCA or cs-PCA for the video in appegg%%ce'based automatic speechreadirRy/3R proceed-
speaker independent experiments and PCA or cs-PCA for 1ngs, '

; ; PP 4] G. Potamianos, C. Neti, G. Gravier, A. Garg, and A. Senio
both the audio and video modalities in speaker dependeH Recent advances in the automatic recognition of audiolisua

experiments. speech Proceedings of the | EEE, pages 1306—1326, 2003.
[15] L. Rabiner. A tutorial on hidden Markov models and setelc
applications in speech recognitioReadings in speech recog-
6. CONCLUSIONS nition, 53(3):267-296, 1990.
[16] D. Stork and M. Hennecke Speechreading by humans and
machines: models, systems, and applications. Springer Ver-
lag, 1996.

In the present paper we demonstrate that a class-specifiocaabp
improves the performance of audio-visual ASR systems. Goetp
to previous work, we consider the effects of multiple matikedi on
class-specific methods and the effects of appending theatiggs

to the HMM features in order to comply with the Markovian as-
sumption of the HMMs used in ASR.

From our experiments, we conclude that for the speaker smep
dent set-up more work is to be done on the definition of general
video features, while the audio MFCC features already baitask.

In those situations, the performance of the audio-visustiesy, can

be boosted with a class-specific approach on the video ntgdali
specially improving the results in noisy conditions. On tiber
hand, in speaker dependent set-ups, both audio and videalinod
ities profit from the definition of different features for éaclass
through all noise levels. The apparent increased beneedfltss-
specic approach in the speaker-dependent experimengssagith

the results of previous work on a different data set [3] ang nea

sult from the reduced dimensionality needed to accuratelgeha
given phoneme spoken by a given speaker.
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