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ABSTRACT

In this paper, class-specific classifiers for audio, visual and audio-
visual speech recognition systems are developed and compared with
traditional Bayes classifiers. We use state-of-the-art feature ex-
traction methods and develop traditional and class-specific classi-
fiers for speech recognition, showing the benefits of a class-specific
method on each modality for speaker dependent and independent
set-ups. Experiments with a reference audio-visual database show
a general increase in the systems performance by the introduction
of class-specific techniques on both visual and audio-visual modal-
ities.

1. INTRODUCTION

Visual information can improve the performance of audio-based
Automatic Speech Recognition (ASR) systems, especially in
the presence of noise [16]. The improvement is due to the
complementary nature of the audio and visual modalities, asvisual
information helps discriminate sounds easily confusable by ear but
distinguishable by eye.

ASR systems are composed of a feature extraction and a
classification block. In this paper, we investigate how to apply
a class-specific classifier for ASR in both single and multimodal
systems, namely audio, visual and audio-visual systems. Weuse
state-of-the-art feature extraction systems for the audioand video
signals and focus on the requirements of a class-specific classifier
for speech recognition purposes. Our design allows different
feature sets and dimensionality reducing transforms for each class
of interest, providing a more flexible system and avoiding theCurse
of dimensionality [4]. We report experiments with the CUAVE
database [12] and show that the class-specific approach outper-
forms the traditional one for visual and audio-visual recognition
tasks. Previous studies on class-specific audio ASR have been
conducted [3], but none considered the visual domain or the fusion
of modalities.

The paper is organized as follows. Section 2 presents ASR
as a classification task, justifying the necessity of a dimensionality
reduction transform and how the class-specific method facesthe
problem. In section 3, we apply that method with the statistical
models used in ASR and in section 4 we describe the experimental
set-up, whose results are reported in section 5. Finally conclusions
are drawn in section 6.

2. CLASSIFICATION AND CLASS-SPECIFIC METHOD
IN SPEECH RECOGNITION

ASR systems are designed to assign to each utteranceX the
most probable word, phoneme or sentence within its vocabulary
and grammar rulesL . The problem can be formulated as aM
classification problem, that is, assigning a multidimensional sample
of dataX to one ofM possible classes.
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The optimal Bayes classifier chooses the most likely class
given the observed dataX , that is

arg max
H j∈L

p(H j|X)

wherep represents the probability density function (pdf ) andH j the
hypothesis that classj is true. Making use of the Bayes rule, we can
rewrite the classifier as

arg max
H j∈L

p(X |H j)p(H j)

decomposing the problem in two: estimatingp(H j) from the
language model andp(X |H j) from a statistical model ofH j.
In this paper we assume equally probable classes and focus onthe
estimation ofp(X |H j), that is, characterizing statisticallyX under
each of the hypotheses by itspdf. We will define phonemes, the
smallest unit of sound meaningful in terms of speech, as our classes
of interest and propose a design for isolated speech recognition
tasks. Such a system could be generalized considering the con-
catenation of phonemes to form words or sentences, the grammar
rules and a decoder considering the possible paths through alat-
tice of all the concatenated phonemes (the Viterbi decoder,usually).

In that ASR classification task, the dimension of the feature
space necessary to accurately distinguish all possible classes is
usually large. At the same time, the complexity and the amount of
data necessary to estimate thosepdf s grow exponentially with the
dimension ofX . Therefore, we either loose information discarding
features in order to obtain accurate estimates ofp(X |H j), which
might result in being unable to distinguish similar classes, or work
in high-dimensional feature spaces and suffer the problemsof
estimating high dimensionalpdf s. This is known as theCurse of
Dimensionality [4] and explains the necessity of a dimensionality
reducing transform and the interest of researchers in class-specific
designs allowing the use of reduced feature sets for each class
while obtaining a Bayes classification system.

The class-specific method [1, 2, 7] is a Bayes classification
system reformulated to use class-dependent features. It identifies
a set of statisticsz j = Tj(X) that is “best” to statistically describe
each classH j and explains how to project the estimatedp(z j|H j) to
the original feature spacep(X |H j).
The pdf projection theorem [1] states that any probability density
function g(z) defined on a feature spacez wherez = T (X), can be
converted into apdf h(X) defined onX using the formula

h(X) =
p(X |H0)

p(z|H0)
g(z) = J(X) g(z), (1)

where H0 is any statistical hypothesis for whichp(X |H0) and
p(z|H0) are known. In fact, the theorem states thath(X) not only is
apdf and integrates to 1, but that it is a member of the class ofpdf s
that generateg(z) through transformationT (X). The optimality
and other properties ofh(X) are presented and can de found in [6].

The pdf projection operatorJ(X), called the J-function, is
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thus a function of the raw dataX , the feature transformation
T (X), and the reference hypothesisH0. It projects the estimated
probabilities from the reduced feature setz to the original feature
spaceX , enabling the use of different features for each class of
interest. It is important to note that this function is not estimated,
but a fixed function ofX , the transformT (X) and reference
hypothesis, so it is not subject to theCurse of Dimensionality. To
obtain a closed form for the J-function, the distributionsp(X |H0)
and p(z|H0) need to be known either analytically, or by accurate
approximation valid in the tail regions. These conditions have
been met for some of the most useful feature transformationsand
reference hypothesis [7]. In general,H0 can also be a function of
the classifier’s hypothesisH j, however, in this work we will use a
common referenceH0 and only adapt the transformsTj(X) applied
to each class.

Compared to a traditional system, the class-specific approach
involves the use of a different transform for each class and the
computation of the J-function in order to project the estimated
probabilities of the HMMs to the common feature space. The
complexity of the system is not usually much increased, since
by correctly choosing the reference hypothesis and transforms,
the computations involved in the J-function can be simplified.
On its turn, the cost of using several transforms for the feature
stream instead of just one is negligible compared to the HMM
computations when dealing with linear transforms and a reduced
number of classes.

3. PROBABILITY ESTIMATION

The structure of the classification system is the following:given
the original feature streamX we apply different transformsTj
for each class and obtain the corresponding featuresz j. We use
then statistical models to computep(H j|z j) for each class and,
finally we evaluate the J-function on the original inputX and
transformsTj under the reference hypothesis to project the obtained
probabilitiesp(H j|z j) to the original feature spacep(H j|X), where
the traditional Bayes classifier is used.

Following that structure, in that section we first present the
dimensionality reducing transforms used in our system, we then
introduce Hidden Markov Models as the statistical tools used in
ASR to estimate the probabilitiesp(H j|z j) in the reduced feature
sets and we finally explain how to apply the selected transforms
and derive an analytical expression for the J function with those
models.

3.1 Dimensionality reduction and class-specific features

In order to reduce the dimensions of the samplesX we apply
a linear transform, so that the new featuresz = W T X retain as
much of the information as possible of the original space. In
our case, we want to preserve variance of the original space,or
class-subspaces, and the transform we thus consider is Principal
Component Analysis (PCA). PCA requires a training spaceX ,
composed of enough samplesX to characterize the original feature
space, to find the subspace whose basis vectors correspond tothe
maximum-variance directions inX . In practice, we use the same
training set as the one used to train the classifiers and learnthe
models for each class.

To fairly compare the class-specific method with a traditional
approach, we define the same kind of transform for the whole
training datasetX and for the subsets associated to each of the
classesX j ⊂ X . Comparing the performance of the system with
features{z j} j=1...M in a class-specific design against ˜z =

⋃M
j=1 z j,

would just show the benefits of a class-specific approach against
the Curse of Dimensionality, but not how class-specific features
might outperform general ones for a given dimensionality and
dimensionality reducing transform. To that purpose we split our
training dataset into its classes, useX to determine the transform

T leading to featuresz and each of theX j to determine the
class-specific transformsTj and the corresponding featuresz j, with
z andz j of the same dimension.

3.2 Hidden Markov Models

A single-stream Hidden Markov Model (HMM) is the statistical
model traditionally used in audio ASR [15]. It has a hidden state
and an observed variable associated to the feature streams,where
the state variable evolves through time as a first order Markov
process assigning different statistical distributions tothe observed
variable. A typical audio-visual extension is the coupled HMM
[5, 9, 10], where the audio and video streams are synchronized
at model boundaries and the joint audio-visual likelihood is a
geometrical combination of the audio and visual ones.

However, the use of HMMs for ASR suffers two main limi-
tations. First, the Markovian assumption of the HMMs fails to
model the correlation in time of the original speech and estimates
of the features derivatives must appended to the original observed
features. The second constraint is due to theCurse of Dimension-
ality, as the correct statistical description of the observed features
is just possible with a low dimensionality and the size of thevector
has thus to reduced before being input to the HMM. Those steps
are included in the transforms we apply to the original features and
taken into account in the class-specific approach, as we describe in
more detail in section 3.3.

3.3 Class-specific method with Hidden Markov Models

Let us denotex the original feature stream from which to define
the observed features andx(t) its value at timet. We first append
the time derivatives to the features and obtain a new streamy
defined asy(t) = [x(t) ẋ(t)] with larger dimensionality thanx. The
final featuresz are obtained through a dimensionality reduction
technique ony, in our case projecting each sample to the reduced
PCA spacez(t) =W T y(t).

For each utterance of lengthT , HMMs are used to estimate
the likelihood of all the possible utterances given the observed
featuresZ = [z(1) . . . z(T )]. We will see that, in fact, we can apply
a single linear transform to the original samples of the utterance
X = [x(1) . . .x(T )] in order to obtain the previously definedZ.
Approximating the time derivatives by finite differences, we write
Y as a linear transformB on the feature samples.

ẋ(t) =
1
2
(x(t +1)−x(t −1)) → Y = BT X

At the same time, PCA defines a fixed linear transform to be applied
each time instant to the samples ofy, z(t) =W T y(t). Thus, correctly
applying theW matrixT times we create a new matrixC and rewrite
the whole as a linear transform.

z(t) =W T y(t) → Z =CTY =CT BT X = AT X

The matrixA defines a linear transform that combines PCA on the
expanded features and time differencing of the original stream.

A first transform to be considered for the class-specific ap-
proach is thusZ = AT X , with different A matrices for each
class. Nevertheless, the dimensionality reduction implies that the
subspace orthogonal to the columns ofA will be absent from the
output. If any data of certain class contains energy in the orthogonal
space and the features for another class allow this energy toappear
at the output, classification errors might take place. To avoid it, we
adapt our linear transform appending a power estimate of theerror
introduced in the dimensionality reduction, that is, the energy lost
on the orthogonal space toA.
First, we compute the error comparingX and its prediction based

on Z, that is X̂ = A
(

AT A
)−1

AT X , and look at the energy of
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the error at each time step to form the final reduced features are
[z(t) r(t)] and[Z R] as

r(t) = |x(t)− x̂(t)| → R = |(Id−A
(

AT A
)−1

AT )X |

As we have already said, the J-function is a function of the original
data sampleX that depends on the feature transformation and
the reference hypothesis. The choice of that hypothesis usually
means choosing a simplepdf for p(X |H0) trying to simplify the
determination ofp([Z R]|H0).

We choose as reference hypothesisX being independent identically
distributed samples of normal Gaussian noise underH0, so
that underH0 both Z = AT X and the error are also samples of
Gaussian random variables with known mean and covariance.
The chosenR being the lost energy on the projectionZ = AT X ,
assures the independence ofZ and R and allows the factorization
p([Z R]|H0) = p(Z|H0)p(R|H0). Under these circumstances,
when the energy of the errore(t) is added up inr(t) for each time
step, the result is a Chi-Square random variable withN −P degrees
of freedom, withN and P denoting the size of the original and
transformed feature samplesx(t) and z(t) respectively. We have
then a closed form for the J-function based on chi-squared and
Gaussian distributions, which we will use to project the reduced
set probability estimates obtained with our HMMs to the original
feature space and build a Bayes classifier.

4. EXPERIMENTAL SET-UP

We perform speechreading experiments on the CUAVE database
[12]. We use the static portion of the ’individuals’ sectionof the
database, consisting of 36 speakers repeating the digits five times.
We divide our experiments into speaker dependent and independent
doing three-fold cross validation in every case, i.e training on two
thirds of the all data for each speaker and testing on the remaining
in speaker dependent experiments and training on two thirdsof the
speakers and testing on the rest for the speaker independentset-up.
Changing the training and testing splits of the data, we can validate
our results by three runs and ensure they do not depend on the
training or testing data.

The audio features used are 13 mel-frequency cepstral coeffi-
cients with cepstral mean normalization and their first and second
temporal derivatives. In testing, we artificially add babble noise to
the audio stream with Signal to Noise Ratios (SNR) ranging from
clean to−10db, at 5db steps. The visual features are selected from
a pool of DCT coefficients on a 128x128 grayscale image of the
speaker’s mouth, normalized for size, centered and rotatedin order
to reduce speaker variability. The 2-dimensinal DCT of the images
are then computed, from which we take the first 16x32 coefficients
and remove their even columns to exploit face symmetry [13].

We define the phonemes as our classes of interest and pro-
pose different experiments in terms of complexity: 3 simpler
experiments with only 4 phoneme classes and a final experiment
with the 20 phonemes available in the database. The 3 subsets
of classes are chosen in order to test the method in different
conditions: distinguishing between consonants visually distin-
guishable{n,r,t,v}, consonants{v,w,r,s} visually confusable within
the reduced set [8] and a set including vowels and consonants
{ah,eh,n,uw}. The task examined is then isolated phoneme classi-
fication, which is the core of continuous speech recognition, where
phoneme models are concatenated to recognize words or sentences
taking into account vocabulary and grammar rules. Class-specific
HMMs could also be defined at word level, but they would be
limited to small vocabulary tasks while phoneme models are the
natural choice for real-world systems. The number of phoneme
classes depends on the language, 43 in english for instance,and the
vocabulary associated to the speech recognition task, 20 classes in
the case of the digits. Our experiments are thus limited by the size

of the database, but the system could naturally be extended to more
general tasks if more training data was provided.

For the single-modality experiments, the phoneme models
are made of 3-state HMMs with their observed features described
by one and three Gaussian mixtures for the speaker dependentand
independent set-ups. In the audio-visual experiments, a coupled
HMM from the previous 3-state audio and visual HMMs is built,
where the contribution of each stream to the combined likelihood
is geometrically weighted withλA,λV . During testing and for each
SNR level, the best fixed weights are chosen from the possible
combinations satisfyingλA +λV = 1 and ranging fromλA = 1 to
λA = 0 at 0.05 steps.

5. EXPERIMENTAL RESULTS

A first set of audio and video-only experiments is performed in
order to choose the number of reduced features leading to thebest
performance and whether or not a class-specific approach on each
modality is useful. In fact, a class-specific approach has already
been used for audio-only ASR outperforming the traditionalsystem
in a speaker-dependent set-up [3]. We focus, however, on the
improvement we can obtain on the system’s performance by adding
the visual modality.
In the results presented, ’pca’ stands for the traditional Bayes
classifier using PCA as dimensionality reduction transformand
’cs-pca’ for the class-specific one. Similarly, ’spkr-dep’and
’spkr-ind’ correspond to the speaker dependent and independent
set-ups. In the audio-visual experiments, we also report results
of an audio-only system in order to measure the improvement
obtained by the visual modality.

The results for the single modality experiments are presented
in tables 1 and 2. As expected, the performance of the audio system
is superior than the video one, 96% against 90% of recognition
rates in speaker dependent set-up and 94% against 53% in the
speaker-independent task. In both modalities, the class set {v,w,r,s}
proves more challenging than the others, who perform similarly.
In speaker dependent experiments, the class-specific method
outperforms the traditional approach on both audio and visual
modalities, increasing the recognition rate around 2% in the audio
and 10% in the video case. However, for the speaker independent
set-up, the class-specific design only improves the recognizer’s
performance of the visual modality system, while using the original
audio features obtains better results than any PCA reduced set. In
that case, the improvement of the class-specific approach isalso
more limited, around 4% improvement in the recognition ratein the
visual modality and none at all for the audio. Such a behaviour can

Audio spkr dep spkr ind
Class sets MFCC cs-pca pcaMFCC cs-pca pca

{n,r,t,v} 98.3 100 98.9 98.3 96.7 86.7
{v,w,r,s} 92.7 97.8 95.7 87.8 83.4 71.9
{ah,eh,n,uw} 97.1 100 100 95.6 95.0 91.9

Table 1: Percentage of correctly recognized phonemes in au-
dio only experiments with traditional and class-specific clas-
sifiers. The original MFCC features and the extracted PCA
from all the classes are used in a traditional Bayes classifier,
while the features obtained by class-specific PCA are used in
the class-specific design.

be explained by the fact that MFCC are features already designed
for human speech recognition, where speaker independence has
already been taken into account in their definition, while the
original visual features correspond to a standard representation
of images, not aimed to the representation of the mouth area for
ASR. In that sense, the results with the original visual features,
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Figure 1: Recognition in the speaker independent audio-visual task for sets{n,r,t,v}, {v,w,r,s} and{ah,eh,n,uw} compared to
an audio-only recognizer. The audio-visual classifier use the original MFCCs as audio features and PCA or cs-PCA for the
video modality.
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Figure 2: Recognition in the speaker dependent audio-visual task for sets{n,r,t,v}, {v,w,r,s} and{ah,eh,n,uw} compared to an
audio-only recognizer. The audio-visual classifier use PCAand cs-PCA features for the both the audio and video modalities.

Visual spkr dep spkr ind
Class sets cs-pca pca cs-pca pca

{n,r,t,v} 97.3 85.5 58.9 55.2
{v,w,r,s} 89.7 72.5 46.7 39.0
{ah,eh,n,uw} 91.3 82.2 54.8 53.0

Table 2: Percentage of correctly recognized phonemes in
video only experiments with class-specific and traditional
Bayes classifier for the corresponding cs-PCA and PCA fea-
tures.

i.e 512 DCT features plus their first time derivatives, lead to poor
recognition performances around 30%, which is little better than
the 25% chance of correctly performing in a 4 class subset. This
is due to both the curse of dimensionality and the non specificity
of the features for ASR. More advanced visual features for speech
recognition include speaker normalization techniques [14, 11]
leading to more speaker invariant features. The class-specific
method should also be useful in conjunction with those feature sets,
as the speaker dependent results from our experiments show.
In our experiments, the dimension of the ’pca’ and ’cs-pca’ features
leading to best performance for each class and reduced sets were
chosen. For both speaker dependent and independent set-upsthe
audio dimensionality ranged from 3 to 4 for ’cs-pca’ and from3
to 6 for ’pca’, depending on the class sets. For the video modality,
the best performance correspond to PCA dimensions of 4 or 5
in speaker dependent experiments and 3 for speaker independent
ones. The dimensionality reduction obtained with PCA is therefore
considerable, specially in the visual modality, and does not show
much phoneme or speaker specificity.

We choose different approaches for each set-up when performing
audio-visual experiments. In the audio-visual systems, wecom-
bined the approaches obtaining the best results in single-modality
experiments because we wanted to compare the performance of
the best traditional classifier we could build against a class-specific
one. Therefore, we have used a class-specific design on both
modalities in the speaker dependent experiments while on the
speaker independent set-up, the original audio stream was kept and
the class-specific method was just applied to the video stream.
The results of the audio-visual experiments are presented in figures
1 and 2 for the reduced classes sets, showing the advantage ofthe
class-specific approach also in a multimodal domain. As expected,
the reduced set{v,w,r,s} proves more challenging than the others,
both due to its lower recognition rates in audio and visual modal-
ities. The results with the speaker-dependent and independent
set-ups show different gains when using the class-specific method
compared to the traditional approach. In the speaker dependent
task, both modalities profit from the class-specific design and
improve the recognition rates between 2% and 10% depending on
the audio SNR, while in the class-independent set-up only the video
modality benefits from the class-specific design and increases the
recognition between 0.5% and 4% for the different audio SNRs
In the more realistic experiments when all the classes are consid-
ered, see table 3, we observe a clear gain on both the incorporation
of the visual modality and the class-specific approach, not limited
to the speaker dependent set-up. Indeed, in those experiments the
visual modality always enhances the audio-only results andthe
class-specific method proves beneficial in both speaker dependent
and independent experiments. Even though the resulst with noisy
audio might seem poor, the classifier do better than the 5% chance
of recognition in a 20 class set.
For the reduced class sets, the improvement of the class-specific
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design is more important in the speaker-dependent task, between
10% to 38% increase in the recognition rate for the differentSNR
levels, than in the speaker independent one, where that increase
ranges from 2% to 10%.

spkr-dep spkr-ind
SNR audio audio-visual audio audio-visual

cs-pca pca cs-pca pca MFCC cs-pca pca
clean 97.7 79.5 98.7 88.0 74.5 76.4 75.0
25db 89.5 63.0 96.2 77.2 63.6 67.0 64.9
20db 82.5 52.9 93.7 71.4 54.8 60.4 56.4
15db 71.5 42.3 91.0 64.1 46.1 51.1 46.8
10db 56.0 31.8 87.8 58.1 35.4 41.7 35.8
05db 39.2 22.3 85.3 52.2 24.8 32.2 25.2
00db 24.7 14.4 83.5 47.8 15.9 26.1 17.1
-05db 15.5 9.5 82.8 44.7 11.4 22.9 12.9
-10db 10.2 6.5 82.8 44.3 8.8 21.9 10.7

Table 3: Percentage of correctly recognized phonemes con-
sidering all classes. The audio-visual classifiers use MFCCs
for the audio features and PCA or cs-PCA for the video in
speaker independent experiments and PCA or cs-PCA for
both the audio and video modalities in speaker dependent
experiments.

6. CONCLUSIONS

In the present paper we demonstrate that a class-specific approach
improves the performance of audio-visual ASR systems. Compared
to previous work, we consider the effects of multiple modalities on
class-specific methods and the effects of appending the derivatives
to the HMM features in order to comply with the Markovian as-
sumption of the HMMs used in ASR.
From our experiments, we conclude that for the speaker indepen-
dent set-up more work is to be done on the definition of general
video features, while the audio MFCC features already suit the task.
In those situations, the performance of the audio-visual system, can
be boosted with a class-specific approach on the video modality,
specially improving the results in noisy conditions. On theother
hand, in speaker dependent set-ups, both audio and video modal-
ities profit from the definition of different features for each class
through all noise levels. The apparent increased benet of the class-
specic approach in the speaker-dependent experiments agrees with
the results of previous work on a different data set [3] and may re-
sult from the reduced dimensionality needed to accurately model a
given phoneme spoken by a given speaker.
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