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ABSTRACT
Use of multiple transmit waveforms to enable MIMO radar opera-
tion is a technology with strong application to HF over-the-horizon
(OTH) radar. We consider the problem of target detection when the
OTH radar is operating in an environment with a stable ionospheric
propagation path supporting high quality Doppler spectra from
backscattered signals and clutter, and a perturbed ionospheric prop-
agation path which contaminates the signal with spread-Doppler
clutter. In this case, efficient spread-clutter mitigation requires ele-
vation and azimuth beampattern control via 2-D arrays. In addition,
due to the propagation geometry, the beampattern control needs to
range-dependent for both transmit and receive antenna arrays, man-
dating the use of the MIMO radar architecture. We examine the
impact of antenna geometries on clutter mitigation performance.
We also provide performance analysis for a specific configuration
employing 1-D transmit and receive antennas which enables field
experiments that validate MIMO OTH radar operations.

1. INTRODUCTION

We consider high-frequency (HF) over-the-horizon (OTH, sky-
wave) multiple-input multiple-output (MIMO) radar, where both
the (separate) transmit and receive subsystems are arrayed, and the
transmitter is able to simultaneously transmit different waveforms
from each antenna [1, 2]. In the OTH context, spread clutter arises
when the radar signal propagates from a transmitter (Tx) to a sur-
face region and/or from the surface region back to a receiver (Rx)
via a highly perturbed ionospheric layer, such as the F2 layer. When
the radar range (group delay) of such a radar return coincides with
the group delay of the (“proper”) target return that is propagated via
a different stable ionospheric layer (such as the E or Es layer), the
target is masked by these “spread-clutter” returns. Perturbations in
the “unwanted” F2 layer are common, and cause the Doppler spec-
trum of these returns to be much broader than the Doppler spectrum
of the “cold-clutter” returns propagated together with a target via
the stable E or Es layer.

This means that for any given range-resolution cell (RC) on the
surface, we may observe a mixture of the “proper” radar returns
supported by stable two-way propagation (i.e. Tx→ RC→ Rx via
the E or Es layer, known as “E–E mode”) and the unwanted spread-
clutter returns supported by E–F, F–E and F–F modes.

In general, this mixture of four different propagation modes
comprises returns from different patches of the Earth’s surface (ter-
rain or ocean), so each patch has a different elevation direction-of-
departure (DoD) from the Tx and a different elevation direction-of-

arrival (DoA) to the Rx. This is because there is a substantial differ-
ence in the typical ionospheric heights of the E or Es layer (about
100km) and the F2 layer (about 350km). However, this difference
in elevation DoD for the same outgoing modes (E–E and E–F), or in
DoA for the same incoming modes (E–F and F–F) is negligible due
to the geometry of the overall path, and no practical antenna array
would have sufficient (projected) vertical dimension to directly use
its resolution capability to resolve these elevation angles. Only the
difference in elevation angle between the different modes that leave
the Tx (E–F and F–E), or between the different modes that arrive at
the Rx (E–E and E–F), can be considered sufficient to be resolved
given reasonable dimensions of the 2–D Tx and Rx arrays. The
existence of the “mixed” propagation modes E–F and F–E requires
both Tx and Rx adaptive array processing to successfully mitigate
all the three components of the spread clutter (E–F, F–E and F–F).

Another complication is that the elevation angles are range-
dependent. For a modern digital receive antenna array, this is not a
problem, since each radar range cell can be processed by an individ-
ually tailored beamformer. Yet for a conventional single-waveform
radar, range-dependent Tx beamforming is not feasible. This funda-
mental limitation motivates us to investigate the MIMO radar archi-
tecture, with its capability of forming “Tx beams” after the wave-
forms have been transmitted, backscattered and received, i.e. non-
causal (“after-the-event”) processing [3].

More specifically,a MIMO radar with K Tx elements simulta-
neously transmits a different and “orthogonal” (separable) wave-
form from each element. The “orthogonality” of the set of K wave-
forms allows us to separate each of the K radar returns upon receive.
The individual returns can then be linearly combined in a range-
dependent fashion, similarly to conventional radar processing.

In our previous studies [4, 5], we were concerned with the fun-
damental limitations on the maximum range depth and Doppler fre-
quency span that different scatterers (targets, clutter) can occupy in
order for the orthogonality requirement to be retained. We found
that if we observe a peak at the output of a filter matched to the jth

waveform, due to the presence of a point scatterer, there must be
no other signals created by different scatterers or waveforms. The
physical meaning of these conditions is as follows: the peak of a
signal backscattered by some point scatterer (at the output of a filter
matched to the jth waveform) has no contribution from other scat-
terers or other waveforms of the orthogonal set. It is only under
this condition that we can directly associate the output of the jth

matched filter with the signal transmitted from the jth Tx element.
This limitation is fundamental, and is analogous to the famous “vol-
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ume clearance” condition for the radar ambiguity function estab-
lished by Price and Hofstetter [6]. Supposing that this condition is
satisfied by the choice of a suitable waveform set, there is still the
problem of appropriate Tx and Rx array design in order to success-
fully mitigate clutter. In this paper, we provide an analysis of the
MIMO spread-clutter covariance matrix for various Tx and Rx an-
tenna array geometries, and demonstrate the existence of practical
2-D designs. We then explore the performance of a specific config-
uration of 1-D arrsy, where the Tx array and Rx array are “crossed”,
allowing for experimental validation of MIMO radar operation us-
ing existing antenna arrays.

2. SPREAD-CLUTTER POWER AT THE OUTPUT OF A
MIMO RECEIVER

Let u j(t) ( j = 1, . . . ,K, t ∈ {0,T}) be a set of “orthogonal” (sepa-
rable) waveforms transmitted by K Tx subsystems (sub-arrays, ele-
ments, beams, etc.), with identical patterns Gt(ϕ,θ |ϕT ,θT ), steered
in azimuth θT and elevation ϕT . Let {xTK ,yTK} (k = 1, . . . ,K)
be the coordinates of the phase centres of the K transmitting sub-
systems. Similarly, let {xRl ,yRl} (l = 1, . . . ,L) be the coordinates
of the L Rx subsystems with identical patterns GR(ϕ,θ |ϕ0,θ0),
steered in the target direction-of-arrival (DoA) {ϕ0,θ0}.

We consider conventional dimensions of Tx and Rx antenna
arrays, so that the manifold (steering) vectors are

EK(ϕ,θ)≡ exp
[

i
2π

λ
(uxTK + vyTK )

]
k = 1, . . . ,K, u≡ sinϕ cosθ , v≡ sinϕ sinθ (1)

for the transmitting array, and similarly for the receiving array

EL(ϕ,θ)≡ exp
[

i
2π

λ
(u′xRl + v′yRl )

]
l = 1, . . . ,L, u′ ≡ sinϕ

′ cosθ , v′ ≡ sinϕ
′ sinθ . (2)

Expressions (1) and (2) reflect our assumption on the same azimuth
for any point scatterer both for Tx and Rx arrays, with different
elevation angle possible.

Consider the K ×K ambiguity matrix of the K-variate wave-
form set

X (∆τ,∆ f ) =
{

x jk(∆τ,∆ f )
}

j,k=1,...,K where (3)

x jk(∆τ,∆ f )≡
∫ T+τ0

τ0

ū j(t−τ0)uk(t−τ)exp [i2π( f − f0)t]dt,

∆τ = τ− τ0, ∆ f = f − f0. (4)

Let WKL = {wkl} (l = 1, . . . ,L, k = 1, . . . ,K) be the KL-variate vec-
tor of MIMO processing, then the power at the output of MIMO
receiver for a target with the coordinates {ϕ0,θ0,∆τ = 0,∆ f = 0}
and white noise is

(σ2
t )out = σ

2
t |GT (ϕ0,θ0|ϕT ,θT )|2|GR(ϕ0,θ0|ϕ0,θ0)|2

×W H
KL

[
EL(ϕ0,θ0)EH

L (ϕ0,θ0)⊗X (0,0)

EK(ϕ0,θ0)EH
K (ϕ0,θ0)⊗X H(0,0)

]
WKL (5)

(σ2
n )out = σ

2
n W H

KL [IL⊗X (0,0)]WKL (6)

where σ2
t , σ2

n are the target, clutter and noise power with considered
propagation loss, and ⊗ is the symbol for the Kronecker product.

Then the total power of “spread clutter”, collected from the tar-
get range and Doppler resolution cell (for the F–E mode with uni-
form clutter distribution across the sector [−π,π]) in the absence
of the ambiguity function sidelobes in the area occupied by spread
clutter (see [5] for details) is

σ
F−E
c =

σ
2
c Γ0W H

KL

{∫
π

−π

|GR(ϕ0,θ |ϕ0,θ0)|2|GT (ϕF ,θ |ϕT ,θT )|2×

×
[
EL(ϕ0,θ)EH

L (ϕ0,θ)⊗X (0,0)

EK(ϕF ,θ)EH
K (ϕF ,θ)X

H(0,0)
]
dθ

}
WKL. (7)

Similar expressions for the E–F mode have DoD {ϕ0,θ} and DoA
{ϕF ,θ}, while for the F–F mode, both DoD and DoA are the same
{ϕF ,θ}. Equation (7) prompts us to seek the ideal antenna geom-
etry that retains the rank-one property of the covariance matrix in
(7) despite the integration, with all degrees of freedom allocated for
resolution in elevation. Indeed, for a target at the azimuth θ0 = 0,
an antenna array with

|GR(ϕ0,θ |ϕ0,θ0)|2|GT (ϕF ,θ |ϕT ,θT )|2

→ δ (sinϕ0 sinθ − sinϕ0 sinθ0) (8)

(i.e. that product of norms approaches a delta-function in azimuth),
and where

EK(ϕ,θ) =
{

exp
[
i 2π

λ
UxTk

]}
, k = 1, . . . ,K

EL(ϕ,θ) =
{

exp
[
i 2π

λ
U ′xRl

]}
, l = 1, . . . ,L

(9)

then the covariance matrix corresponding to the F–E mode in (7) is
the rank-one matrix

RF−E
KL = σ̂c

2|GT (ϕF ,θ0|ϕT ,θT )|2|GR(ϕ0,θ0|ϕ0,θ0)|2×[
EL(ϕ0,θ0)EH

L (ϕ0,θ0)⊗EK(ϕF ,θ0)EK(ϕF ,θ0)
]
.

(10)

This means that for a given look direction, say θ0 = 0, the optimum
antenna array geometry could be interpreted as Tx and Rx rectangu-
lar arrays with θ0 = 0 in the boresight, with the number of elements
NT or NR in each of the K (for Tx) or L (for Rx) linear arrays tend-
ing to infinity max{NT ,NR}→∞, so that (8) is satisfied. Practically
though, the rectangular arrays with K and L rows correspondingly,
may have only a limited number of sensors in a row (limited ULA
aperture), and have to cover a certain azimuthal sector. Moreover,
these 2-D antennas may have insufficient front-to-back ratio of its
elements, or intentionally be designed to cover front and back sec-
tors simultaneously.

Therefore, analysis of the actual spread clutter potential miti-
gation capability is required, with respect to the practical (limited)
antenna aperture and azimuthal coverage.

3. ANALYSIS OF SPREAD-CLUTTER MITIGATION FOR
PRACTICAL 2–D ANTENNA GEOMETRIES

Potential spread-clutter mitigation efficiency analysis has been per-
formed using expression (7) for the Tx and Rx beampatterns ap-
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proximated as

GT (ϕF ,θ |ϕT ,θT )|2 =

= G2
T exp

{
−bT [(sinϕF sinθ − sinϕT sinθT )]

2
}

(11)

GR(ϕ0,θ |ϕ0,θ0)|2 =

= G2
R exp

{
−bR [sinϕ0(sinθ − sinθT )]

2
}
.

(12)

Calculations have been performed for a typical E-mode HF OTHR
scenario

ϕ
E−E
0 (Zmin) = 79o, ϕ

E−E
0 (Zmax) = 87o,

ϕ
E−E
F (Zmin) = 51o, ϕ

E−E
F (Zmax) = 75o.

(13)

We consider the case where the elements have an ideal front-to-
back ratio which attenuates returns from the back hemisphere of the
array.

In order to obtain the required resolution in the maximum
range regime, the “in-depth” dimension of the Tx array is
chosen to be 70λ , being spanned by either (a) an 8-element
ULA with element spacing d2T /λ=10, or (b) an 8-element non-
redundant array (NRA) with unit spacing d2T /λ=2 and geometry
[0,7,10,16,18,30,31,35].

For the Rx antenna array, we consider L = 16 “rows” with ei-
ther (a) ULA with spacing d2R/λ = 5, or (b) NRA geometry with
the unit spacing d2R/λ = 3/7. Note that the traditional spacing
d2R/λ = 1/2 causes ambiguity in front-to-back resolution for ex-
treme end-fire directions, such as ϕ0 = 87o. We selected the geom-
etry of the Rx “vertical” L = 16-element array to be [0, 6, 19, 40,
58, 67, 78, 83, 109, 132, 133, 162, 165, 169, 177, 179].

It is simple to show that at the maximum range (φ0 = 87◦, φF =

75◦), the large uniform spacing in the Tx array does not create a
problem, but is inappropriate at the minimum range. Indeed, the
“to-be-rejected” direction φF = 75◦ is already outside the main peak
of the beampattern steered at the elevation angle φ0 = 87◦, but has
not yet reached the direction of the nearest grating lobe at φgl =

71.5◦. On the contrary, at the minimum range (φ0 = 79◦, φF =

51◦), even the d2R/λ = 5 uniform inter-row separation in the 16-
row Rx array is too large, since when the main peak is steered at
the target elevation φ0 = 79◦, the nearest grating lobe is observed
at φgl = 69◦, which is much closer than φF = 51◦. The introduced
NRA geometries address this problem, as the first grating lobe of
our 8-element NRA with the unit spacing d2T /λ = 2 is observed
at φgl = 43◦, when the array is steered at the target elevation at the
minimum distance φ0(rmin) = 79◦, since here φgl < φF .

Note that due to the chosen unit separation d2R/λ < 0.5, our Rx
array does not have grating lobes in the visible domain, even when
steered to the extreme end fire direction φ0 = 90◦. However both 8-
and 16-element NRA arrays have a significant sidelobe level, which
will affect the performance of adaptive spread-clutter mitigation.

In order to evaluate the additional penalty in spread-clutter mit-
igation efficiency that is introduced by a high sidelobe level of the
selected NRAs, we compare the ULA and NRA geometries at the
maximum range, where the uniform array geometry is still appro-
priate. A similar comparison at the minimum range, on the contrary,
demonstrates the improvements introduced by an NRA geometry.

3.1 Ideal Front-to-Back Ratio in Either or Both the Tx and Rx
Elements

In our calculations, the equivalent noise power is set to one
(σ2

n χuu(0,0) = 1) and the spread-clutter-to-noise ratio per mode is
30dB. Hence if the clutter is rejected with no signal-to-white-noise
ratio (SNR) losses, the maximum possible SNR at the output of our
MIMO receiver is SNRmax = 10logKL = 10log128 = 21.07dB.
The upper plot in Fig. 1 shows, for the uniform (“vertical”) Tx and
Rx array geometry and at the maximum range (φ0 = 87◦, φF = 75◦),
the output SNR for the optimum (clairvoyant) Wiener filter calcu-
lated for each of the three spread-clutter mode contributions (E–F,
F–E and F–F), and for the sum of all three covariance matrices. In
other words, in addition to all three modes together, we also illus-
trate the efficiency of each single-mode mitigation, as if only this
mode was present. Similarly, the lower plot presents the gain of
the optimum clairvoyant Wiener MIMO receiver with respect to the
conventional (white-noise) matched receiver (i.e. gain wrt CBF): In
order to evaluate the impact of “eigenspectrum smearing” (spread-
ing), for all three interference modes contributing, Fig. 1 also plots
the SNR and SNR gain with respect to the matched filter for the
rank-one contributions in (10) (curve labeled “3 modes no sm”).

Figure 1: Simulation results for the 2-D ULA at maximum range.

As expected, in the bore sight direction θ0 = 0, no difference
between this rank-one and the “full-rank” model (7) exists, but as
θ0 grows, the difference between the rank-one and full-rank covari-
ance matrices becomes evident. In fact, the SNR for the rank-one
model even increases slightly as θ0→ 30◦, while the full-rank SNR
obviously degrades. However, within the entire sector of our inter-
est (|θ0|< 30◦), the SNR losses with respect to the ultimate limit of
21.1dB remain extremely low: less than 1.2dB. Both the Tx and Rx
participate in mitigating F–F spread clutter, whereas only the Tx is
involved in reducing F–E mode clutter and only the Rx is involved
in reducing E–F mode clutter, so it is expected to see that the F–F
mode is better rejected than the E–F and F–E modes; with E–F be-
ing rejected better than F–E, since only 8 degrees of freedom of our
Tx MIMO array are used. Not surprisingly, the gain with respect to
the matched receiver (in Fig. 1(b)) remains above 30dB within the
entire coverage.
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Unfortunately for the horizontal 2D array, a uniform geometry
is inappropriate, as seen in [7]. There it was shown that as the grat-
ing lobes enter the azimuthal coverage, the optimum receiver has no
gain over the matched filter; this is typical behavior for interference
that impinges upon the maximum of a grating lobe. So as predicted,
a ULA geometry with extremely large inter-row separation (10λ in
Tx and 5λ in Rx), cannot be used if the entire range interval from
rmin to rmax is to be covered.

We now analyze the results of our example NRA geometry.
We start from the maximum range (φ0 = 87◦, φF = 75◦), where
we can quantify the losses associated with the very high sidelobe
level in our 8-element Tx NRA (−3.5dB) and 16-element Rx NRA
(−4.6dB). From Fig. 3, it is clear that rejection of the much higher
sidelobes of the NRA patterns causes additional SNR degradation
that is less than 1.6dB. Therefore, with respect to the ultimate limit
of 21.1dB that corresponds to the case with no spread clutter, we ob-
serve SNRs ranging from 20.1dB at θ0 = 0 to 18.9dB at θ0 =±30◦.

Figure 2: Simulation results for the 2-D NLA at maximum range.

At the same time, the SNR gain with respect to the matched
filter remains much higher than at Fig. 1 for the uniform geometry
(above 40dB). Given a quite poor NRA beampattern sidelobe level,
such a poor performance of the matched receiver and, correspond-
ingly, high gains of the optimal MIMO receiver, are not surprising.

Therefore, the suggested Tx and Rx NRA-based array geome-
tries with ideal front-to-back ratio have a very high potential ef-
ficiency of spread-clutter mitigation within the entire range depth
and azimuth coverage. In [7] we demonstrated that for ommidirec-
tional array elements, we have to ultimately consider seven modes
impinging upon a receive antenna from both front and back hemi-
spheres, instead of only three ones from the front hemisphere only.
Analysis in [7] showed that the SNR degradation is less than 2dB,
while the SNR gains with respect to the matched filter remain high
(∼40dB).

3.2 Experimental mode-selective OTH MIMO radar configu-
ration with one-dimensional Tx and Rx antennas

Experimental validation of mode-selective HF OTH MIMO radar
principles may obviously be considered within a relatively limited

coverage in range and azimuth. For end-fire linear Tx and linear
Rx antennas with relatively large apertures, such a limited coverage
may be introduced by exploiting the difference in coning angles of
differently oriented Tx and Rx linear arrays.

Let us consider a case when the end-fire direction of the Tx
array coincides with the broadside (boresight) direction of the Rx
linear array. Then, for relatively close in ranges with

ϕ
E−F
F � ϕ

E−E
0 , (14)

we can specify such an azimuth direction θ0 that due to the coning
equation

sinϕ
E−F
F sinθ

E−F
F = sinϕ

E−E
0 sinθ

E−E
0 (15)

the actual clutter patch on the ocean surface, contributing to spread
clutter delivered to the receiver array via the E-F propagation mode,
would be actually coming from the azimuth θ

E−F
F � θ

E−E
0 . There-

fore, if the aperture of the end-fire Tx array is large enough to
enable adaptive MIMO beampattern sidelobe rejection in direc-
tions (ϕF ,θ

E−F
0 ) (for F-E mode), (ϕF ,θ

F−F
0 ) (for F-F mode), and

(ϕE ,θ
E−F
F ) (for E-F mode), while retaining low gain degradation in

the target direction (ϕE ,θ
E−E
F ), then all three spread clutter compo-

nents may get rejected by means of adaptive Tx MIMO beamform-
ing only.

Naturally, a large Rx linear array aperture is required to retain
low “smearing” of the clutter covariance matrix. The obvious ap-
peal of such a configuration is that mode-selective adaptive MIMO
principles may be tested using existing HF OTHR receive antennas
rather than construction of new 2-D receiver array configurations.

For the considered above scenario at minimal range and with a
Tx endfire array with an aperture of 70λ , optimum filter gains as
a function of θ0, is illustrated by Fig. 3. As expected, no spread
clutter mitigation is observed at the sector close to the Rx antenna
boresight, but off the boresight, there is a considerable sector where
sufficiently high performance may be observed.

Indeed, comparison of the optimum signal to clutter-plus-noise
ratio (SCNR), delivered by the optimum MIMO Tx beamformer at
Fig. 3, with the (SCNR)−1 for the conventional beamformer (Fig.
4), and finally, with the improvement in SCNR delivered by the
optimal MIMO processing with respect to the conventional beam-
former (Fig. 5), supports such a conclusion. Indeed, though the
SCNR never approaches its ultimate value of 10log10(8) = 9dB, in
a sector close to θ = 20o, we achieve an SCNR of 4dB, which is
almost 15 dB above the SCNR in the conventional beamformer at
this sector. This margin may be treated as sufficient for experimen-
tal validation of mode selection capabilities in HF MIMO radar.

4. SUMMARY AND CONCLUSIONS

In this paper we considered the problem of both transmit and receive
antenna geometry selection for spread-clutter mitigation in HF OTH
MIMO radar. We demonstrated that the rank of spread-clutter con-
tribution via a particular propagation mode (E–F, F–E or F–F) tends
to one, if both Tx and Rx arrays consists of K and L “rows” of
linear arrays with forward-only looking elements, and an aperture
in either the Tx or Rx linear array that tends to infinity. When K
orthogonal waveforms are deployed over the conventionally beam
steered K linear arrays of the Tx, and the azimuthal beam width of
the Rx linear array tends to zero as its aperture tends to infinity, the
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Figure 3: Optimal 1-D Tx/Rx filter results at minimum range.

Figure 4: Conventional 1-D Tx/Rx filter results at minimum range.

“elevation rank” of each spread-clutter mode is kept equal to one,
despite a broad azimuthal distribution of spread clutter.

Practical array design with a finite aperture of the Rx linear ar-
rays introduces “rank expansion” of the spread-clutter covariance
matrix, that depends on the azimuth of the look-direction with re-
spect to the linear array’s bore sight.

The SNR performance of the clairvoyant optimal Wiener re-
ceiver has been analyzed for different Tx and Rx 2D array ge-
ometries, with both forward-only looking and omni-directional el-
ements. It was demonstrated that in order to keep the number K of
the waveforms and rows in the Tx array small, and yet to provide
the required resolution within the entire “range depth” of the radar
coverage, sparse non-redundant arrays geometries must be used for
the inter-row distance selection in both Tx and Rx arrays.

Such design precludes the grating lobes from entering the di-
rections of rejection, while performance degradation caused by a
higher level of NRA sidelobes is shown to be acceptable. Specifi-
cally, the conducted analysis demonstrates that for forward-looking
arrays, the selected geometry of the Tx and Rx arrays has only 2–
2.5dB SNR degradation compared with the ultimate white-noise
limit. In all these cases, the spread clutter is mitigated ∼40dB with
respect to white-noise matched conventional Tx and Rx beamform-
ing in the 2D arrays.

We also considered experimental validation of the mode selec-

Figure 5: 1-D Tx/Rx SINR Improvement results at minimum range.

tive capability of a MIMO radar architecture using one-dimensional
Tx and Rx antennas, due to the difference in coning angles of dif-
ferently oriented Tx and Rx linear arrays. We demonstrated that for
significantly different elevation angles for E-E and E-F modes (ob-
served at minimal ranges), one can select a limited azimuth sector
where spread clutter mitigation associated with mode selection can
be clearly demonstrated.
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