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ABSTRACT
This paper focuses on the data-aided (DA) direction of arrival
(DOA) estimation of a single narrow-band source in time-
varying Rayleigh fading amplitude. The time-variant fading
amplitude is modeled by considering the Jakes’ and the first
order autoregressive (AR1) correlation models. Closed-form
expressions of the CRB for DOA alone are derived for fast
and slow Rayleigh fading amplitude. As a special case, the
CRB under uncorrelated fading Rayleigh channel is derived.
A analytical approximate expressions of the CRB are derived
for low and high SNR that enable the derivation of a number
of properties that describe the bound’s dependence on key pa-
rameters such as SNR, channel correlation. A high signal-to-
noise-ratio maximum likelihood (ML) estimator based on the
AR1 correlation model is derived. The main objective is to
reduce algorithm complexity to a single-dimensional search
on the DOA parameter alone as in the static-channel DOA es-
timator. Finally, simulation results illustrate the performance
of the estimator and confirm the validity of the theoretical
analysis.

Index Terms−DOA estimation, ML estimator, Cramér
Rao bound, Time-varying fading channel, Jakes’ channel
model, AR1 channel model.

1. INTRODUCTION

Estimating the direction of arrival (DOA) of propagating
plane waves incident on an array of sensors is an impor-
tant problem in array signal processing due to its applica-
tions in radar, sonar, mobile communications, and so on (e.g.,
[1, 2, 3, 4]). Stochastic and deterministic CRBs derivationfor
the DOA parameter alone has been an intensive research field
because the performances of several high-resolution DOA
estimation methods are known to be comparable to these
bounds under certain mild conditions. These bounds have
been derived for circular and non-circular complex Gaussian
sources under uniform white noise field in [5] and [8] respec-
tively. In particular, the DOA estimation problem of a single
source has been extensively studied for a static channel (e.g.,
[6, 7]). A fast and explicit approximate ML algorithm with
lower computational complexity has been developed in [6].
The ML DOA estimation for a constant-modulus signal is ad-
dressed in [7] which utilizes the available knowledge of the
signal waveform. In recent years, DOA estimation for non-
circular complex signal with discrete distributions (e.g., bi-
nary phase shift keying (BPSK) and offset quadrature phase
shift keying (OQPSK) modulated signals) which are widely
used in communication systems, has attracted more attention
due to the performance gain from the non-circular properties
(e.g., [9, 12, 11]). In [10] a closed-form expressions of the
DA CRB and stochastic CRB for DOA alone has been de-
rived for BPSK and QPSK modulated signals in the case of

one narrowband source corrupted by additive white Gaussian
noise (AWGN) channel. We note that in [10], the channel
amplitude is assumed constant over the observation interval.
In radar applications, H. Gu [4] developed a radar tracking
algorithm for multiple moving targets where the targets am-
plitudes are assumed deterministic and time-variant. How-
ever, in many applications requiring DOA estimation (e.g.,
mobile communication, radar), the assumption that the chan-
nel amplitude is constant throughout the observation period
is not valid.

In this paper, basing on the formulation in [10], we con-
sider the problem of estimating the DOA of one source by as-
suming that the Rayleigh fading amplitude of the associated
target vary in time according to Jakes’ or first order autore-
gressive (AR1) correlation models. We derive closed-form
expressions for the DA CRB for the DOA parameter alone
with correlated and uncorrelated time-varying Rayleigh fad-
ing amplitude. This bound enables to evaluate the effect
of the amplitude’s time variation on DOA estimation. We
present a simple estimation procedure derived through an ap-
proximate, high-SNR maximum-likelihood (ML) approach
based on a simplified model for the amplitude fading process.
The estimation procedure requires only a single-dimensional
parameter search.

The paper is organized as follows. Section 2 describes
the signal model, the Jakes’ and AR1 correlation models and
pose the estimation problem. In Section 3, exact and ap-
proximate closed-form expressions for the CRB of the DOA
parameter alone are derived for fast amplitude fading, slow
amplitude fading and uncorrelated amplitude fading models.
In this section, we also prove different properties of the de-
rived bound. In Section 4, the ML estimator is derived for
a high SNR approximation. Finally, simulation results are
presented in Section 5.

2. SIGNAL MODEL AND PROBLEM
FORMULATION

Let an arbitrary array ofM sensors receive a single tar-
get with unknown DOA. Over the observation interval, the
Rayleigh fading amplitude of the target is assumed to vary in
time according to Jakes’ or first order autoregressive (AR1)
correlation models. Assuming a receiver with ideal sample
timing and perfect synchronization, theM×1 array snapshot
complex vectors at the output of the matched filter can be
modeled as

yn = snhna(θ )+nn, n = 0, . . . ,N−1 (2.1)

wherea(θ ) is the steering vector parametrized by the scalar
unknown DOA parameterθ . We suppose‖a(θ )‖2 = M. The
transmitted signalsn is assumed known with|sn|

2 = 1. The
M-variate additive noise vectors(nk)k=0,...,N−1 are assumed
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to be i.i.d. zero-mean complex circular Gaussian with covari-
ance matrix E(nkn

H
k ) = σ2

nI. The processhk is the sample of
the fading amplitude of the target assumed to be zero-mean
circular complex Gaussian with unknown varianceσ2

h and
correlation function given by:

RJ
h(m)

def
= σ2

hE(hnh∗n−m) = σ2
hJ0(2π fdTm),

whereJ0(.) is the first kind 0th-order Bessel function,T is the
symbol period andfd denotes the maximum Doppler shift.
This is frequently referred to as the Jakes’ model [14]. The

signal-to-noise ratio (SNR) is defined asρ def
=

σ2
h

σ2
n
.

Collecting the samples of the received signal to form a

vectory
def
= (yT

0 , . . . ,yT
N−1)

T yields the following model

y = SAh+n, (2.2)

where A
def
= I ⊗ a(θ ), S

def
= Diag(s0, . . . ,sN−1) ⊗ I, h

def
=

(h0, . . . ,hN−1)
T andn

def
=
(

nT
0 , . . . ,nT

N−1

)T
is aNM×1 noise

vector with covariance matrixσ2
nI. Since the transmitted

symbolssn are known,y is a zero-mean complex Gaussian
random vector, with correlation matrix given by

Ry
def
= E(yyH) = SARhA

HSH + σ2
nI, (2.3)

whereRh
def
= E(hhH) is the fading amplitude correlation ma-

trix.
Since|sn|

2 = 1 for all n, the matrixS is unitary (i.e.,SSH =
SHS = I). Subsequently, the probability density function

(PDF) ofy is the same as the PDF ofz
def
= SHy, and which

is given by:

p(y;α) = p(z;α) =
1

πNM det(Rz)
e−z

H
R

−1
z z, (2.4)

whereRz
def
= SHRyS =ARhA

H +σ2
nI is the covariance ma-

trix of the vectorz.
AR1 model of fading Among various channel models, the
information theoretic results in [15] show that the first-order
AR model provides a sufficiently accurate model for time
fading channelshk = γhk−1 + ek whereek ∼ N (0,σ2

h (1−

γ2)) is the additive driving noise and whereγ def
= J0(2π fdT)

is assumed to be unknown. The fading amplitude at timen is
constrained to follow a sequence from a known initial state,
sayh0:

hn = γnh0 +
n−1

∑
k=0

γken−k. (2.5)

The correlation overmsignalling intervals is given by

RAR
h (m) = E(hnh∗n+m) = σ2

h γ |m|,

and it depends on the mobility environment (and on the sym-
bol timeT) at hand. Consequently, the covariance matrix for
the AR1 channel model depends on the unknown parameter
γ can be written as

R
AR
h = σ2

h

















1 γ γ2 . . . γN−1

γ 1 γ . . . γN−2

γ2 γ 1 . . . γN−3

...
...

...
. . .

...

γN−1 γN−2 γN−3 . . . 1

















(2.6)

It is clear that forγ = 0 the channel becomes an uncorre-
lated fading process, and forγ = 1, the channel is simply a
realization of a single random variable (slow fading).

We note that the derivation of analytical expression of
the CRB and the ML DOA estimator are difficult tasks un-
der Jakes’ fading amplitude. Thus, for the sake of analytical
tractability, we choose to model the fading amplitude as an
AR1 process.

The estimation problem can now be formulated as fol-
lows: Given the received signaly whose PDF is given by

(2.4) and an unknown parameter vectorα def
= (θ ,σ2

n ,σ2
h ,γ)T ,

estimateθ . In this problem,θ is the parameter of interest
and the other parameters are nuisance parameters.

3. CRB EVALUATION

The CRB for zero-mean, circular complex, Gaussian mea-
surements vector depend on unknown vector parameterα is
given by the circular complex Gaussian Slepian-Bangs for-
mula [16, rel. B.3.25].

CRB(α) = (Iα)−1

(Iα)k,l
def
= Tr

(

R−1
z

∂Rz

∂αk
R−1

z
∂Rz

∂αl

)

, k, l = 1, . . . ,4.

The expression of the CRB for DOA alone proved in [13], is
summarized by the following result.

Result 1 The DA CRB of the parameterθ alone is decoupled
from that of the other parameters under AR1 fading ampli-
tudes, and is given by:

CRB(θ ) = CRBDA
0 (θ )

Nσ2
h

Tr

(

R2
h

(

Rh + σ2
n

M I
)−1

) (3.7)

where CRBDA
0 (θ ) = 1

Nρ
1
α and whereα is the purely ge-

ometrical factor1 2a′H(θ )Π⊥
a(θ)a

′(θ ) with Π⊥
a(θ)

def
= I −

a(θ )aH(θ )/M anda′(θ )
def
= ∂a(θ)

∂θ .

We note that the CRBDA
0 (θ ) is the DA CRB derived in

[10] when the amplitudes fading is assumed constant within
the observation period.

Remark 1 We note that the results obtained with the sim-
plified AR1 correlation model are not numerically identical
to the results obtained with the Jakes’ model except for high
SNR, the analytical insight obtained under the AR1 correla-
tion model also applies to the Jakes’ model (see Section 5).

In the special cases of slow fading amplitude(i.e.,γ =
1andRh = σ2

h11T) and uncorrelated fading amplitude
(i.e.,γ = 0, andRh = σ2

hI), the result 1 can be extended to
the following result.

Result 2 The CRB for DOA alone over slow and uncorre-
lated fading amplitudes are given by2

1The parameter α is equal the following values αULA =

π2 M(M−1)
6 cos2(θ ) [resp. αUCA = Mπ2

4sin2 π/M
] for uniform linear [resp.

uniform circular] array.
2Where the superscripts Slow and Uncor of CRBSlow(ρ) and

CRBUncor(ρ) refer slow and uncorrelated channel fading respectively.
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CRBSlow(θ ) =
1
N

(

1
α

[

1
ρ

+
1

MNρ2

])

(3.8)

CRBUncor(θ ) =
1
N

(

1
α

[

1
ρ

+
1

Mρ2

])

, (3.9)

We remak that the bound (3.9) is the conventional stochastic
CRB for DOA alone of one source derived under the circular
complex Gaussian distribution [8]. From (3.8) and (3.9), we
have

CRBUncor(θ ) ≥ CRBSlow(θ ) for all SNR

CRBUncor(θ ) ≈ CRBSlow(θ )≈CRBDA
0 (θ ) for high SNR

CRBUncor(θ ) ≈ NCRBSlow(θ )≈
1

Nρ2

1
Mα

for low SNR

3.1 Approximate expressions for CRB

To get more insights on the CRB, we obtain in the following
approximate expressions for the CRB given by (3.7) in the
high and low SNR regimes that enable the derivation of the
properties below.

3.1.1 High and low SNR expressions

For high and low SNR cases, we have
(

Rh +
σ2

n

M
I

)−1

≈ R−1
h for high SNR

(

Rh +
σ2

n

M
I

)−1

≈
σ2

n

M
I for low SNR,

hence, the channel-dependent term of the denominator of Eq.
(3.7) can be approximated as:

Tr

(

R2
h

(

Rh +
σ2

n

M
I

)−1
)

≈ Nσ2
h for high SNR

Tr

(

R2
h

(

Rh +
σ2

n

M
I

)−1
)

≈
σ2

n

M
Tr(R2

h) for low SNR

Consequently, the expressions of the CRB for DOA alone for
high and low SNR cases are given by:

CRBhigh(θ ) = CRBDA
0 (θ ) for high SNR (3.10)

CRBlow(θ ) =
1

ρ2β
1

Mα
for low SNR (3.11)

where the channel-dependent parameterβ is given by
1

σ4
h
Tr(R2

h). We remark that the CRB given by (3.10) is iden-

tical to the DA CRB derived in [10] when the amplitudes
fading is assumed constant within the observation period.

3.1.2 CRB properties
The following properties follow immediately from (3.10) and
(3.11).

Property 1 For high SNR, the CRB for DOA alone is ap-
proximately inversely proportional to SNR and does not de-
pend on the parameter of the channel.

This property implies that the CRBs for DOA alone associ-
ated to Jakes’ and AR1 correlation models are identical for
high SNR. We also note that for a correlation model, the
CRBs for DOA alone associated to slow, fast and uncorre-
lated fading channel are identical for high SNR.

Property 2 For low SNR, the CRB for DOA alone is approx-
imately inversely proportional toρ2 (decreasing rapidly with
SNR).

Note that the parameterβ is a monotone de-
creasing function of fdT for Jakes’ and AR1
correlation models as illustrated in Fig. 1.

10
−4

10
−3

10
−2

10
−1

10
3

10
4

10
5

f
d
T

β

 

 
AR1 correlation model
Jakes correlation model

Fig.1 The channel-dependent parameterβ for the Jakes and AR1
correlation model versusfdT with N = 200.

From this figure, we see thatβ decreases rapidly for
Jakes’ correlation model contrary to AR1 correlation model
for which β remains quite constant up tofdT = 0.0032. As
the CRB (3.11) approximately inversely proportional toβ ,
we have the following property

Property 3 For low SNR, the CRB for DOA alone is a mono-
tonically decreasing function of the channel correlation pa-
rameterγ which varies from uncorrelated fading bound (γ =
0) to the slow fading bound (γ = 1).

4. ML DOA ESTIMATOR

The direct maximization of the likelihood function (2.4) with
respect to the unknown parameterα is a difficult task. To fa-
cility the derivation of the ML estimates ofα, we choose to
model the variation of the amplitude fading as AR1 process
with covariance matrix is given by (2.6). Using the Marko-
vianity property of the AR1 process the log-likelihood func-
tion proved in [13] is given by (after drooping the constant
term)

L(α) = −
(

ln(det(R))− (N−1) ln(det(C))+zH
0 R−1z0

+
N−1

∑
n=1

z̄H
n C−1z̄n

)

(4.12)

where z̄n
def
= (zn −

γσ2
h

Mσ2
h +σ2

n
a(θ )aH(θ )zn−1),

R
def
= σ2

ha(θ )aH(θ ) + σ2
nI and C

def
=

σ2
h

(

1−
γ2Mσ2

h
Mσ2

h +σ2
n

)

a(θ )aH(θ )+ σ2
nI

The following result proved in [13], shows that it is pos-
sible to reduce the optimization problem, under a high SNR
approximation, to a single-parameter search with respect to
the DOA parameterθ .
Result 3 For high SNR environment, the joint ML estimates
that maximize the log-likelihood function(4.12)are given by
the following:
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θ̂ML is obtained by the maximizing with respect toθ

F(θ ) = −
(

N ln(σ̂2(M−1)
n,ML σ̂2

h,ML)+ (N−1) ln(1− γ̂2
ML)

+ zH
0

(

1

σ̂2
n,ML

Π⊥
a(θ) +

1

M2σ̂2
h,ML

a(θ )aH(θ )

)

z0

+
N−1

∑
n=1

z̃H
n C̃z̃n

)

(4.13)

wherez̃n
def
= zn−

γ̂ML
M a(θ )aH(θ )zn−1 andC̃

def
= 1

σ̂2
n,ML

Π⊥
a(θ) +

1
M2σ̂2

h,ML(1−γ̂2
ML)

a(θ )aH(θ ) and whereσ̂2
h,ML, σ̂2

n,ML and γ̂ML

are the estimates of the nuisance parameters given by

γ̂ML = −
k2,z(θ )

2k4,z(θ )
(4.14)

σ̂2
h,ML =

1
N

(

k3,z(θ )+
1

1− γ̂2
ML

(−γ̂MLk2,z(θ )+ γ̂2
MLk1,z(θ ))

)

(4.15)

σ̂2
n,ML =

1
N(M−1)

N−1

∑
n=0

zH
n Π⊥

a(θ)zn, (4.16)

where the the DOA-dependent coefficients kl ,z(θ ), l = 1, ...,4,
are given by

k1,z(θ )
def
=

1
M2

(

N−1

∑
n=1

(zH
n a(θ )aH(θ )zn +zH

n−1a(θ )aH(θ )zn−1)

)

k2,z(θ )
def
=

1
M2

(

N−1

∑
n=1

(zH
n a(θ )aH(θ )zn−1 +zH

n−1a(θ )aH(θ )zn)

)

k3,z(θ )
def
=

1
M2

N−1

∑
n=0

zH
n a(θ )aH(θ )zn

k4,z(θ )
def
= k3,z(θ )−k1,z(θ )

From (4.14) and (4.16), using the high SNR condition,
we get for the true values ofθ that

γ̂ML =
∑N−1

n=1 (zH
n a(θ )aH(θ )zn−1 +zH

n−1a(θ )aH(θ )zn)

∑N−1
n=2 zH

n−1a(θ )aH(θ )zn−1

N→∞
−→

(N−1)M2σ2
hJ0(2π fdT)

(N−2)(M2σ2
h +Mσ2

n)
≈ J0(2π fdT) (4.17)

σ̂2
n,ML

N→∞
−→ σ2

n . (4.18)

Similarly, from (4.15) using (4.17) and the high SNR condi-
tion, we get after some manipulation that

σ̂2
h,ML

N→∞
−→ σ2

h .

Consequently,̂γML, σ̂2
h,ML andσ̂2

n,ML are the consistent esti-

mators ofγ, σ2
h andσ2

n , respectively at high SNR.

5. SIMULATION RESULTS

The purpose of this section is to illustrate the behavior of
the derived CRB for DOA alone and the performance of the
derived estimator.

Assume that a single narrowband source impinges on a
uniform linear array (ULA) of sensorsM = 6 separated by a

half-wavelength for whicha =
(

1,eiθ , . . . ,ei(M−1)θ
)

, where

θ = π sinα, with α the DOA relative to the normal of ar-
ray broadside. The channel is simulated according to the
Jakes and AR1 correlation model [14, 15] with doppler-time
product of fdT. In our simulations, each value of the MSE
is obtained by averaging over 1000 independent runs. The
number of sample is fixed atN = 200.

We begin with Fig.2, which compares CRBSlow(θ ) (3.8),
CRBUncor(θ ) (3.9) and the exact CRB over Jakes’ and AR1
correlation model (3.7) with two values offdT versus SNR.
From this figure, we see that all these bounds are identical for
high SNR except for low SNR where the fast bound decreas-
ing when fdT is increasing as predicted by the Properties 1
and 3. On the other hand, we observe that the CRB associ-
ated with Jakes’ model remains close to the CRB associated
with AR1 model for low SNR.
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uncorrelated fading channel model (γ=0)
Jakes correlation model
AR1 correlation model
slow fading channel model (γ=1)

f
d
T=0.02

f
d
T=0.1

Fig.2 Exact CRB on DOA estimation with Jakes and AR1 correlation
model for two values offdT, CRBSlow(θ ) and CRBUncor(θ ) versus SNR
with N = 200.
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Exact CRB−fast fading AR1 channel model
Approx. CRB−fast fading AR1channel model−Low SNR approx
Approx. CRB−fast fading AR1channel model−High SNR approx

f
d
T=0.3

f
d
T=0.1

f
d
T=0.04

Fig.3 Exact CRB and its approximations for the fast fading AR1
correlation model for three values offdT versus SNR withN = 200.

Fig.3 exhibits the domain of validity of the low and high
approximations of the CRB given by Eqs. (3.11) and (3.10),
respectively. We can see from this figure that the domain of
validity depends on the values offdT, where for low SNR
the exact CRB equals to its low approximation bound for a
large low SNR range except whenfdT is decreasing (the am-
plitude fading becomes slow fading). In contrast to the low
SNR case, we observe that the approximates CRB for high
SNR does not depend onfdT which is identical to its exact
bound for large SNR range whenfdT decreasing.

Fig.4 presents the dependence of the CRB for DOA
alone on the Jakes’ and AR1 correlation models for
low SNR throughout the Doppler-time productfdT.
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Fig.4 Exact CRB(θ ) for the Jakes and AR1 correlation model, and
CRBSlow(θ ) versusfdT with SNR= −15dB andN = 200.

We observe from this figure that as the Doppler-
time product fdT increases, the CRBs associated with
Jakes’ [resp. AR1] correlation model remain quite
constant up to Doppler-time product values of 0.0007
[resp. 0.0035], for which these bounds are identical
to the CRB associated to the slow amplitude fading.
We also see that the bounds increase when the time-
Doppler product increases as predicted by Property 3.
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AR1 correlation model (N=50)
AR1 correlation model (N=200)

Fig.5 Exact CRB(θ ) for the AR1 correlation model and estimated MSE
E(θ̂ML−θ )2 given by the ML estimator versus SNR fir two values ofN with
fdT = 0.01.

Fig.5 illustrates the Result 3 by comparing the exact CRB
(3.7) and the minimum mean square error (MSE) of DOA
estimate given by the asymptotic high SNR ML estimator
for the AR1 time-variant amplitude fading versus SNR. From
this figure, we observe a good agreement between the derived
CRB and the estimated MSE for high SNR. On the other
hand, we note that the asymptotic ML estimator still gives a
valid estimate of DOA parameter for small values ofN and
for low SNR.

6. CONCLUSION

The effect of time-variant Rayleigh amplitude fading on
DOA estimation of single source was studied. A closed-
form expression of the DA CRB for DOA alone is derived
with AR1 fading amplitudes. As special cases, the CRBs
for DOA alone over slow and uncorrelated amplitude fad-
ing are also derived from the general expression of the fast
amplitude fading bound. We have also derived analytical ap-
proximate expressions for the CRB of the DOA alone for
low and high SNR. Some properties that highlight how the
bound depends on key parameters such as SNR and time-

Doppler product were derived. These properties show that
the DA CRB for DOA alone is insensitive to the channel-
dependent time-Doppler product for high SNR expect for
low SNR. The ML approach for estimating DOA parame-
ter based on a mismatched AR1 channel-correlation model
upon which a high SNR estimator was derived. The estima-
tor was compressed into a single-parameter search over the
DOA parameter alone.

Issues that were not addressed in this paper are the ML
estimator and the CRB on DOA estimation of multiple tar-
gets over time-varying amplitudes. A paper in preparation
deals with these issues.
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