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ABSTRACT one narrowband source corrupted by additive white Gaussian

This paper focuses on the data-aided (DA) direction of alriv noise (AWGN) channel. We note that in [10], the channel
(DOA) estimation of a single narrow-band source in time-amplitude is assumed constant over the observation interva
varying Rayleigh fading amplitude. The time-variant faglin In radar applications, H. Gu [4] developed a radar tracking
amplitude is modeled by considering the Jakes’ and the firstlgorithm for multiple moving targets where the targets am-
order autoregressive (AR1) correlation models. Closetifo plitudes are assumed deterministic and time-variant. How-
expressions of the CRB for DOA alone are derived for fasever, in many applications requiring DOA estimation (e.g.,
and slow Rayleigh fading amplitude. As a special case, thenobile communication, radar), the assumption that thechan
CRB under uncorrelated fading Rayleigh channel is derivechel amplitude is constant throughout the observation gerio
A analytical approximate expressions of the CRB are derived not valid.
for low and high SNR that enable the derivation of a number In this paper, basing on the formulation in [10], we con-
of properties that describe the bound’s dependence on key psider the problem of estimating the DOA of one source by as-
rameters such as SNR, channel correlation. A high signal-tsuming that the Rayleigh fading amplitude of the associated
noise-ratio maximum likelihood (ML) estimator based on thetarget vary in time according to Jakes’ or first order autore-
ARL1 correlation model is derived. The main objective is togressive (AR1) correlation models. We derive closed-form
reduce algorithm complexity to a single-dimensional searc expressions for the DA CRB for the DOA parameter alone
on the DOA parameter alone as in the static-channel DOA esvith correlated and uncorrelated time-varying Rayleigh fa
timator. Finally, simulation results illustrate the perfance ing amplitude. This bound enables to evaluate the effect
of the estimator and confirm the validity of the theoreticalof the amplitude’s time variation on DOA estimation. We
analysis. present a simple estimation procedure derived through-an ap

Index Terms—DOA estimation, ML estimator, Cramér proximate, high-SNR maximum-likelihood (ML) approach
Rao bound, Time-varying fading channel, Jakes’ channdbased on a simplified model for the amplitude fading process.

model, AR1 channel model. The estimation procedure requires only a single-dimermsion
parameter search.
1. INTRODUCTION The paper is organized as follows. Section 2 describes

the signal model, the Jakes’ and AR1 correlation models and

lane waves incident on an arrav of sensors is an impoRCSe the estimation problem. In Section 3, exact and ap-
P . . y of . p groximate closed-form expressions for the CRB of the DOA
tant problem in array signal processing due to its applica:

tions in radar, sonar, mobile communications, and so o, (e gaE)arameter alone are derived for fast amplitude fading, slow
[1,2.3,4)) S’tochas,tic and deterministic CRés derivatb;n ~“amplitude fading and uncorrelated amplitude fading madels
the DOA parameter alone has been an intensive research fi I[y this section, we also prove different properties of the de

because the performances of several high-resolution DO ed bound. In Section 4, the ML estimator is derived for
P 9 \%high SNR approximation. Finally, simulation results are

Estimating the direction of arrival (DOA) of propagating

estimation methods are known to be comparable to the : :
bounds under certain mild conditions. These bounds ha eresented In Section 5.
been derived for circular and non-circular complex Gaumssia 2. SIGNAL MODEL AND PROBLEM

sources under uniform white noise field in [5] and [8] respec- FORMULATION

tively. In particular, the DOA estimation problem of a siag| _ . .

source has been extensively studied for a static change| (e. L6t @n arbitrary array oM sensors receive a single tar-
[6, 7]). A fast and explicit approximate ML algorithm with 9t With unknown DOA. Over the observation interval, the
lower computational complexity has been developed in [6]R8Y!€igh fading amplitude of the target is assumed to vary in
The ML DOA estimation for a constant-modulus signal is ad-ime according to Jakes’ or first order autoregressive (AR1)
dressed in [7] which utilizes the available knowledge of thecOrrelation models. Assuming a receiver with ideal sample
signal waveform. In recent years, DOA estimation for non-iming and perfect synchronization, tex 1 array snapshot
circular complex signal with discrete distributions (elgj- complex vectors at the output of the matched filter can be
nary phase shift keying (BPSK) and offset quadrature phasgodeled as

shift keying (OQPSK) modulated signals) which are widely ¥n=Shna(6)+nn, n=0,...,.N—1 (2.1)
used in communication systems, has attracted more attentio ) ) )

due to the performance gain from the non-circular propertiewherea(8) is the steering vector parametrized by the scalar
(e.g., [9, 12, 11]). In [10] a closed-form expressions of theunknown DOA parameteft. We supposéa(6)|> =M. The

DA CRB and stochastic CRB for DOA alone has been detransmitted signas, is assumed known witfs,|> = 1. The
rived for BPSK and QPSK modulated signals in the case oM-variate additive noise vectofsi)x—o_..n_1 are assumed
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to bei.i.d. zero-mean complex circular Gaussian with devar It is clear that fory = 0 the channel becomes an uncorre-
ance matrix EénknE) = 0?1. The procesky is the sample of lated fading process, and fgr= 1, the channel is simply a
the fading amplitude of the target assumed to be zero-mearalization of a single random variable (slow fading).

circular complex Gaussian with unknown variangg and We note that the derivation of analytical expression of
correlation function given by: the CRB and the ML DOA estimator are difficult tasks un-
def ;2 . » der Jakes’ fading amplitude. Thus, for the sake of anallytica

Ry (M) = GFE(habyy_m) = 0 do(2mfa Tm), tractability, we choose to model the fading amplitude as an

whereJy(.) is the first kind Oth-order Bessel functiohjs the AR1 process.

symbol period andy denotes the maximum Doppler shift The estimation problem can now be formulated as fol-
4 . ; : S
This is frequently referred to as the Jakes’ model [14]. The lows: Given the received signaf whose PDF 's given by
I defined ade’ oh (2.4) and an unknown parameter veotots (8, on,oh,y)T,
signal-to-noise ratio (SNR) is defined @s= estimatef. In this problem, is the parameter of interest
Collectmg the samples of the recelved 5|gnal to form aand the other parameters are nuisance parameters.

vectory = (yo - ,nyl) yields the following model 3. CRB EVALUATION

y=SAh+n, (2.2) The CRB for zero-mean, circular complex, Gaussian mea-
where A % 1 & a(0), S def Diag(S,...,sv-1) @1, h def  surements vector depend on unknown vector paranoeier

def T given by the circular complex Gaussian Slepian-Bangs for-
(ho,...,hn-1)" andn = (nf,...,nJ, ;)" isaNMx1noise mula [16, rel. B.3.25].

vector with covariance matrig?I. Since the transmitted _ -1
. n .~ CRB(a) = (Iy)
symbolss, are known,y is a zero-mean complex Gaussian
random vector, with correlation matrix given by T, % Tr(R? aRzR 19R; Kl=1.. .4
def y Z day * da

Ry = E(yy™) = SAR,A"SH + 071, (2.3)
The expression of the CRB for DOA alone proved in [13], is
whereRh E(hhH) is the fading amplitude correlation ma- summarized by the following result.

S|nce|sn|2 1 for all n, the matrixS is unitary (i.e.SS" =  Result 1 The DA CRB of the paramet@ralone is decoupled
SHS = I). Subsequently, the probability density functionfrom that of the other parameters under AR1 fading ampli-

(PDF) ofy is the same as the PDF of2'SHy and which ~ tudes, andis given by:

is given by: No?
gven’dy . L CRB(6) — CREPA(6) h @
p(y;a) =p(z;a) = meﬂ Rz (2.4) Tr (R2 (Rh+ ai I) )
def
whereR; = SHR, S = AR,A" + 021 is the covariance ma- Argy _ 11 ; 3
{iX Of the Vectors n where CR%’ (8) = Np 5 and wherea is the purely ge

a'(6) with Mig €1

AR1 model of fading Among various channel models, the ometrical factot 2a™™ (6)M o)

6)
information theoretic results in [15] show that the firstier H 1/ o def da(0)
AR model provides a sufficiently accurate model for timea(e)al (8)/M anda’(6) = 09 ' ) )
fading ChanneH‘]k — th71 + & Whereq( ~ </1/(0’ Oﬁ(l— We note that the C@\ |S the DA CRB derived in

[10] when the amplitudes fading is assumed constant within
the observation period.

y?)) is the additive driving noise and Wheyéj:efJo(andT)
is assumed to be unknown. The fading amplitude at tirise

constrained to follow a sequence from a known initial stateRemark 1 We note that the results obtained with the sim-

sayho: 1 plified AR1 correlation model are not numerically identical
he — V'h 25 to the results obtained with the Jakes’ model except for high
n=Vho+ Z Venic (2:5) SNR, the analytical insight obtained under the AR1 correla-
The correlation ovem signalling intervals is given by tion model also applies to the Jakes’ model (see Section 5).
RﬁR E(hah: Vm‘ In the special cases of slow fading amplitudes.,y =
n n+m

landRy = GhllT) and uncorrelated fading amplitude

and it depends on the mobility environment (and on the symgi.e., y = 0, andRy, = ah I), the result 1 can be extended to
bol timeT) at hand. Consequently, the covariance matrix forthe foIIowmg result.

the AR1 channel model depends on the unknown parameter

y can be written as Result 2 The CRB for DOA alone over slow and uncorre-
lated fading amplitudes are given By

1 y ¥ A
4 1 y VN72 1The parameter o is equal the following valuesaya =
RﬁR _GE v y yN—3 (2.6) nzw cog(0) [resp. auca = m] for uniform linear [resp.
: uniform circular] array.
2Where the superscripts Slow and Uncor of Ci(p) and
W1 W N=2 N-3 1 CRBY"®(p) refer slow and uncorrelated channel fading respectively.
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CRBSO(9) — lrrr, 1 (3.8) Property 2 Forlow SNR, the CRB for DOA alone is approx-
N\a|p MNp2 ' imately inversely proportional tp? (decreasing rapidly with
! 1/101 1 SNR).
CRB"(6) = = (— [— + —ZD , (3.9
N\alp Mp Note that the parameter is a monotone de-
We remak that the bound (3.9) is the conventional stochastig’easing function of fyT for Jakes’ and AR1
CRB for DOA alone of one source derived under the circulaOrrelation  models as illustrated  in  Fig. 1.
complex Gaussian distribution [8]. From (3.8) and (3.9), we 0 ‘ ‘
have ‘ ARL1 correlation model
Jakes correlation model
CRBU™(9) > CRB®%(9) for all SNR SRS
CRBU™(9) ~ CRBS(6)~CRBY"(6) for high SNR N
1 1 N
Uncor ~ Slow ~_- -
CRB™"(8) ~ NCRB>*"(0)~ NpZ2 Ma for low SNR -l
3.1 Approximate expressionsfor CRB
To get more insights on the CRB, we obtain in the following
approximate expressions for the CRB given by (3.7) in the
high and low SNR regimes that enable the derivation of the . ‘ ‘
properties below. o w0 w0 10°
3.11 High and low SNR expressions Fig.1 The channel-dependent paramef@rfor the Jakes and AR1
For high and low SNR cases, we have correlation model versufyT with N = 200.
From this figure, we see thgl decreases rapidly for

o2\t ; X ;
Rn+ 20y -1 ¢or high SNR Jakes’ correlation model contrary to AR1 correlation model
( ht M ) R,," forhig for which 8 remains quite constant up fgT = 0.0032. As
5\ -1 2 the CRB (3.11) approximately inversely proportionalGp
(Rh+ %I) ~ %I for low SNR, we have the following property
_ Property 3 Forlow SNR, the CRB for DOA alone is a mono-
hence, the channel-dependentterm of the denominator of Egnically decreasing function of the channel correlaticar p
(3.7) can be approximated as: rametery which varies from uncorrelated fading boung=£

52\ 0) to the slow fading bound/= 1).
Tr (Rﬁ (Rh+ V”I) )

Q

Q

No? for high SNR
4. ML DOA ESTIMATOR

) o? -1 o? ) The direct maximization of the likelihood function (2.4)thvi
Tr{ Ry Rnt 41 ~ o TT(Rp) forlow SNR respect to the unknown parametets a difficult task. To fa-
cility the derivation of the ML estimates af, we choose to

Consequently, the expressions of the CRB for DOA alone fofodel the variation of the amplitude fading as AR1 process

high and low SNR cases are given by: with covariance matrix is given by (2.6). Using the Marko-
' vianity property of the AR1 process the log-likelihood func
CRB""(@) = CRB{*(6) forhigh SNR (3.10) tion proved in [13] is given by (after drooping the constant
term)
CRBY() = %i forlow SNR  (3.11)
p°B Ma L(a) = —(In(detR))— (N—1)In(defC)) +zH R zo

where the channel-dependent parameferis given by N_1
GiéTr(Rﬁ). We remark that the CRB given by (3.10) is iden- + 5 Z'r']iclz_n> (4.12)
tical to the DA CRB derived in [10] when the amplitudes n=1

fading is assumed constant within the observation period. o
3.1.2 CRB properties where zn = (zn — —Mgﬁig%a(e)aH (8)zn-1),
The following properties follow immediately from (3.10)éin  p def Gﬁa(e)aH ) + o2l and c U
(3.11). n

2 Mo H 2
Property 1 For high SNR, the CRB for DOA alone is ap- % 1- Ma,$+gg) a(6)a”(0) +opl
proximately inversely proportional to SNR and does notde- The following result proved in [13], shows that it is pos-
pend on the parameter of the channel. sible to reduce the optimization problem, under a high SNR
This property implies that the CRBs for DOA alone associ-2pproximation, to a single-parameter search with respect t
ated to Jakes’ and AR1 correlation models are identical fofhe DOA parametef.
high SNR. We also note that for a correlation model, theResult 3 For high SNR environment, the joint ML estimates

CRBs for DOA alone associated to slow, fast and uncorrethat maximize the log-likelihood functi¢#.12)are given by
lated fading channel are identical for high SNR. the following:
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B is obtained by the maximizing with respectto

~2(M-1) ~ v
FO) =~ (i@l 6k + (N-ina - o)
1 1
+ 2 [ 5N + o5—a(0)a" (8) | 20
<0,{ML O m262,,
N-1
n=1
wherez, %'z, — ﬁ,&L a(6)a" (0)zn_1 andC & o ni(ﬂ) +
nML

1
M267 (1)
are the estimates of the nuisance parameters given by

a(6)a"(6) and whered?), , 62 and L

C ke(6)
W=~ 2a(0) (@14
. = 5 ((ox(0) + T (akex®) + Fukus(0) )
(4.15)
2 =2 N, (4.16)
"MLTUN(M - 1) n; n'la(9)%m :

where the the DOA-dependent coefficiens®), | = 1, ...,4,
are given by

ger 1 (\Ch k H H H
602555 | 3 (ela(0)a (@) +2ll (@) (B)an )
def 1 ("t 4 H H H
k2,2(9)—w Zl(zn a(0)a” (0)zn-1+2, 1a(6)a” (6)zn)

def

Ka2(0) =k32(6) — ki.2(6)

From (4.14) and (4.16), using the high SNR condition,
we get for the true values @f that

L = z”;ll(zﬁa(e)a"'(G)Zn,l—i—zﬁila(e)a"'(6)zn)
N 2zH a(8)aH (8)zn-1
Noo (N—1)M?0iJo(2rtfgT)
b (N 2)(M207 + Mo?) ~ J(2mfgT)  (4.17)
62 =% 02, (4.18)

Similarly, from (4.15) using (4.17) and the high SNR condi-

tion, we get after some manipulation that

~2 N—oo 2

OnmL — Oh-

Consequentlyj., 62, andé2,, are the consistent esti-
mators ofy, o2 anda?, respectively at high SNR.

5. SIMULATION RESULTS

The purpose of this section is to illustrate the behavior oé
the derived CRB for DOA alone and the performance of thg,

derived estimator.

half-wavelength for whicla = (1,€¢,...,dM-18) ‘where

6 = nisina, with a the DOA relative to the normal of ar-
ray broadside. The channel is simulated according to the
Jakes and ARL1 correlation model [14, 15] with doppler-time
product of f4T. In our simulations, each value of the MSE
is obtained by averaging over 1000 independent runs. The
number of sample is fixed & = 200.

We begin with Fig.2, which compares CﬁB’“(G) (3.9),
CRBY"®°"(9) (3.9) and the exact CRB over Jakes’ and AR1
correlation model (3.7) with two values ¢§T versus SNR.
From this figure, we see that all these bounds are identical fo
high SNR except for low SNR where the fast bound decreas-
ing whenfyT is increasing as predicted by the Properties 1
and 3. On the other hand, we observe that the CRB associ-
ated with Jakes’ model remains close to the CRB associated
with AR1 model for low SNR.

10" F

T T T T T
— — —uncorrelated fading channel model (y=0)
Jakes correlation model

10° + AR1 correlation model

— = slow fading channel model (y=1)

-5 0 5 10
SNR (dB)
Fig.2 Exact CRB on DOA estimation with Jakes and AR1 correlation

model for two values of4T, CRB%°¥(8) and CRB°(9) versus SNR
with N = 200.

i i i
-25 -20 -15 -10 15

T 3 T T
Exact CRB-fast fading AR1 channel model

— . — Approx. CRB-fast fading AR1channel model-Low SNR approx
— — — Approx. CRB-fast fading AR1channel model-High SNR approx

CRB(8)

-5 10
SNR (dB)

Fig.3 Exact CRB and its approximations for the fast fading AR1
correlation model for three values & T versus SNR witiN = 200.

Fig.3 exhibits the domain of validity of the low and high
approximations of the CRB given by Egs. (3.11) and (3.10),
respectively. We can see from this figure that the domain of
validity depends on the values &§T, where for low SNR
the exact CRB equals to its low approximation bound for a
large low SNR range except whégT is decreasing (the am-
plitude fading becomes slow fading). In contrast to the low
NR case, we observe that the approximates CRB for high
NR does not depend dgT which is identical to its exact
ound for large SNR range whdgT decreasing.

Fig.4 presents the dependence of the CRB for DOA

i i
-15 -10

i
-20

-25 15

_Assume that a single narrowband source impinges on gjone on the Jakes' and AR1 correlation models for
uniform linear array (ULA) of sensofgl = 6 separated by a low SNR throughout the Doppler-time produdiyT.
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Doppler product were derived. These properties show that

0.016

~ Jakes channel model the DA CRB for DOA alone is insensitive to the channel-
sosl - gmiggi"nge'chm:nfe'l ol dependent time-Doppler product for high SNR expect for

low SNR. The ML approach for estimating DOA parame-
ter based on a mismatched AR1 channel-correlation model
upon which a high SNR estimator was derived. The estima-
tor was compressed into a single-parameter search over the
DOA parameter alone.

Issues that were not addressed in this paper are the ML
estimator and the CRB on DOA estimation of multiple tar-
gets over time-varying amplitudes. A paper in preparation
deals with these issues.
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