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Abstract—In this paper, two resource allocation schemes for
multiple radar systems are proposed. The first approach fully
utilizes all available infrastructure in the localization process,
i.e., all transmit and receive radars, while minimizing the total
transmit energy. The power allocation among the transmit radars
is optimized such that a predefined estimation mean-square error
(MSE) objective is met, while keeping the transmitted power
at each station within an acceptable range. The second scheme
minimizes the number of transmit and receive radars employed in
the estimation process by effectively choosing a subset of radars
such that the required MSE performance threshold is attained. In
the latter, the transmit antennas are assumed to fully utilize the
admissible power range. The Cramer-Rao bound (CRB), which
is known to be asymptotically tight to the maximum likelihood
estimator (MLE) MSE at high signal-to-noise ratio (SNR), is
used as an optimization metric for the estimation MSE. Subset
selection is implemented through a heuristic algorithm, offering
reduced computational cost compared with an exhaustive search.

Index Terms—MIMO radar, Multistatic radar, CRB, convex
optimization, power allocation, target localization.

I. INTRODUCTION

In recent years, radar architectures employing multiple,
widely distributed stations have been introduced, such as
multiple-input multiple-output (MIMO) radar systems with
widely spread antennas [1] and multistatic radar systems [2].
These systems have been shown to offer significant advantages
over traditional single antenna radars, referred to as monos-
tatic, or systems with one transmitter and one receiver which
are widely separated, often referred to as bistatic. MIMO
radar systems with widely distributed antennas offer enhanced
target localization capabilities by exploiting increased spatial
spread [1]. A study of localization estimation mean square
error (MSE) performance based on the Cramer-Rao bound
(CRB) [3] is presented in [4], demonstrating performance
improvement proportional to the product of the number of
transmit and receive antennas. An analysis of the localization
performance for multistatic radar systems is provided in [2],
where the MSE is shown to be a function of the geometric
spread. Localization MSE in MIMO radar systems with non-
coherent processing is inversely proportional to the signal
effective bandwidth, the signal-to-noise ratio (SNR), and the
product of the number of transmit and receive antennas [4].

0The research was supported by the Office of Naval Research under Grant
N00014-09-1-0342.

Localization performance improvement can be achieved
with an increase of either the number of participating radars
or the transmission power. In practice, most systems have
a predetermined performance goal including, but not limited
to, target localization accuracy and maximum total radiated
energy. Consequently, full system utilization may result in
inefficient use of system resources, such as the number of
operating radars, transmitted power, and communication load
between the radars and a central fusion center.

The notion of resource-aware design is of critical impor-
tance when it comes to radar applications that include mobile
deployment of stations or systems operating over prolonged
time periods, in which the cost of operation becomes signif-
icant. For surveillance radars that are mounted on vehicles
and thus have limited energy resources, or for anti-missile
defense radar systems, powered off-grid by diesel generators,
power aware design is beneficial in extending the ability of
such systems to operate before refueling. Furthermore, power
management is an essential part of military operations in
hostile environments, where low-probability-of-intercept (LPI)
operation may be required. In these scenarios, minimizing
the power that is required to perform the task is important.
Another aspect of the problem is the use of the available
infrastructure. For a given multiple radar system, multiple
mission assignments may be accomplished by minimizing the
number of transmit and received stations engaged in a specific
estimation task.

In this paper, two resource allocation schemes are proposed.
The first approach optimizes power allocation among all radars
in the system, while the latter offers a more effective utilization
of the existing radar stations, where the most advantageous
antenna subset is selected to accomplish the task requirements.
The choice of an optimal subset is normally implemented
through exhaustive examination of all possibilities. Here, we
propose a heuristic algorithm for the selection of this subset
and provide a performance comparison to an exhaustive search
alternative.

The paper is organized as follows: The system model is
introduced in Section II. Resource allocation schemes are
proposed in Section III, in which the CRB is derived first
in Subsection III-A, followed by the development of a power
allocation scheme that optimizes power allocation for a given
MSE threshold in Subsection III-B. A subset selection algo-
rithm, minimizing the number of transmit and receive radars
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active in the localization process, is given in Subsection III-C.
Numerical analysis is presented in Section IV. Finally, Section
V concludes the paper.

II. SYSTEM MODEL

We consider a distributed multiple radar system with 

transmit and  receive radars, forming an  × distributed
multiple radar system. An extended target, with a center of
mass located at position ( ), is assumed. The variation in
the location of the targets’ center of mass, as viewed by the
set of radars, is assumed to be small with respect to the system
resolution capabilities. The system is tracking the target’s
location and has available estimates for unknown parameters,
such as the target radar cross section (RCS), from previous
cycles. The search cell is confined to ( ±   ± ).
The transmit and receive radars are located in a two dimen-
sional plane. The  transmit radars are arbitrarily located at
coordinates (

 
),  = 1     , and the  receiver

radars are arbitrarily located at coordinates (  ),
 = 1     A set of orthogonal waveforms is transmitted,
with a lowpass equivalent  (), where

R
T | ()|

2
 = 1,

and T is the duration of the -th transmitted signal. The
waveform effective bandwidth is denoted by  and defined in
[5]. The waveforms’ transmitted powers 

are constrained
by maximal values pmax = [1max  2max   max

]
 .

Let  ( ) denote the propagation time of a signal
transmitted by radar , reflected by the target, and received
by radar :

 ( )=


+


 (1)

where 
is the range from transmitter  to the target and

 is the range from receiver  to the target, i.e.,


=

q
(

− )
2
+ (

− )
2 (2)

and

=

q
( − )

2
+ ( − )

2


where  is the speed of light. The baseband representation for
the signal transmitted from radar  received at radar  is

 ()=

q
 ( ) 

 (− )+()

(3)
The term  ( )=

1
2


2


represents the variation

in the signal strength due to path loss effects. The target
RCS  is modeled as deterministic, complex, and is as-
sumed to be unknown. The term () represents circularly
symmetric, zero-mean, complex Gaussian noise, spatially and
temporally white with autocorrelation function 2 ().

We define a vector of unknown parameters:

u =
£
 h

¤
 (4)

where h =[11 12   ]
 . The following vector nota-

tion is defined for later use: β = [1 2   ]
 , p =

[1  2   
]
 , and τ = [1 2   ]

 .

III. RESOURCE ALLOCATION SCHEMES

For a predetermined threshold for localization MSE, de-
noted by max , system resource utilization may be op-
timized by minimizing the total power radiation needed
to achieve this goal. Another option is for the system
to select a subset of radars that will perform the lo-
calization mission. The given system parameters include
the transmit radar locations set  = {(1  1) 
(2  2)   (3  3)}, receive radar locations set
 = {(1  1)  (2  2)   (3  3)}, tar-
gets’ RCS, h, propagation path loss, α, and noise variance,
2. The controllable design parameters are the transmit power
at each radar, 

, and the signal effective bandwidth β. In
general, power radiation is constrained by a maximum value
max

, determined by the operational design, and a minimal
value min

, chosen such that it may still be classified as
operating in the high SNR region. As the CRB is known to
be asymptotically tight to the maximum likelihood estimator
(MLE) MSE at high SNR [6], it is used here to represent
the localization MSE as a function of the power allocation.
Next, the CRB expression is derived, to support the proposed
resource allocation schemes.

A. The CRB

Given a vector of unknown parameters u its unbiased
estimate bu satisfies the following inequality [3]:

u

n
(bu− u) (bu− u)o ≥ J−1 (u)  (5)

where J (u) is the Fisher Information matrix (FIM) given by:

J (u) = u

(


u
log  (r|u)

µ


u
log  (r|u)

¶)
 (6)

where  (r|u) is the conditional, joint probability density
function (pdf) of the observation r = [11 12   ].
Given the received signal in (3), the conditional pdf  (r|u)
is of the following form:

 (r|u) =
1

(2)

2

exp

⎧⎨⎩− 1

2

X
=1

X
=1

Z


|()− (7)

q
 ( ) 

 (− )

¯̄̄̄2


)


The FIM, J (u), is derived in Appendix A (see (18), (23),
and (24)). The CRB matrix, C, is defined as the 2×2 upper
right block sub-matrix of the inverse of the FIM, J−1 (u),
resulting in the following matrix:

C (u)=

(
X
=1




∙
 
 

¸)−1
 (8)

where the elements , , and , are defined as

 =

X
=1

 ||2
µ


− 



+
 − 



¶2
(9)

 =

X
=1

 ||2
µ


− 



+
 − 



¶2
(10)
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and

 =

X
=1

 ||2
µ


− 



+
 − 



¶
(11)

×
µ


− 



+
 − 



¶


where =
822
2

2 . The trace of the matrix C represent the
lower bound on the sum of the MSEs for the target location
estimation, i.e., tr (C) ≤ 2 + 2 , where 2 and 2 are
the target’s  and  location estimation MSE, respectively.
Following some additional matrix manipulations, the trace of
the CRB matrix C can be expressed as

tr (C) =
p (a+ b)

p

³
ab − cc

´
p

 (12)

where a = [1 2   ]
 , b = [1 2   ]

 , and
c = [1 2   ]

 are defined by the elements in (9),
(10), and (11). For the case of equal power allocation, p =
 [1 1  1]

 , the trace of the CRB is

tr (C) =
1



1 (a+ b)

1
³
ab − cc

´
1
 (13)

where  = ∗ . The expression for the CRB as given
in (12), offers a metric that may be used to represent the MLE
MSE in the power allocation schemes provided next.

B. Power Allocation: Minimize the Power Budget

In this power allocation scheme, the total radiating power,
P
=1


, is minimized to meet a given localization accuracy

threshold, . This can be formulated into an optimization
problem of the form

minimize
p

1p

 tr (C (ũ))≤ 
max




≤ max

 ∀ = 1 2 


≥ min

 ∀ = 1 2 
(14)

where C (ũ) is the 2×2 CRB matrix given in (8) and ũ =h
̃ ̃ h̃

i
is a vector of preliminary estimates of the target

location and RCS, obtained in previous cycles. The search
cell center coordinates, ( ), may also be used instead of
an estimated target location(̃ ̃). The optimization problem
in (14) may be rewritten as

minimize
p

1p

 p

h³
ãb̃

 − c̃c̃
´
p − 1




³
ã+ b̃

´i
≥ 0


≤ max

∀


≥ min

∀
(15)

where ã, b̃, and c̃ are calculated for the estimated
vector ũ. The optimization problem in (15) is non-
convex [7]. To solve it we first relax the constraints
by exchanging the first inequality by an equality, i.e.,

p

h


³
ãb̃

 − c̃c̃
´
p −

³
ã+ b̃

´i
= 0, and since


6= 0, ∀ = 1 2  , the latter constraint is replaced

by
³
ab − cc

´
p − 1


(a+ b) = 0. Minimizing the

power vector results in maximizing the MSE, bringing it as
close as possible to the threshold point 


. The following

relaxed convex optimization problem may be composed:

minimize
p

1p


³
ãb̃

 − c̃c̃
´
p− 1


max

³
ã+ b̃

´
≥ 0


≤ max

∀


≥ min

∀

(16)

The relaxed convex optimization problem formulated in (16)
can be solved using available convex optimization tools, such
as CVX [8]. The optimal solution to (16), p∗ , is then
used as the starting point for a local optimization, applied
to the original nonconvex problem in (15). An appropriate
search algorithm is proposed in Table 1. The local optimum
obtained in this process, p

, is then compared with
the uniform power distribution budget, for which  =
1




1 (a+b)

1 (ab−cc )1 . If needed, the locally optimum search is

updated and repeated.

Table 1: Optimization algorithm for (15)

1. Init:

p = p
∗


 (p) =
p(ã+b̃)

p


ãb̃

−c̃c̃

p

Iteration step 40
Stop conditions 

2. Repeat,
p = argmax

©


−  (p)

ª
s.t. min

≤ −1

4 = 4−1
1p
1p−1

3. while
¡

max
− 

¡
p−1

¢¢ ≥ 

4. p
= p−1

5. end.

C. Subset Selection: Minimize the Number of Operational
Radars

The power allocation scheme introduced previously adapts
the transmitted energy to the system characteristics, such
as physical location of transmit and receive antennas with
respect to the target, reflectivity, and propagation path losses.
For a given scenario, some transmit/receive antenna pairs
are contributing more to the localization performance than
others, i.e., transmit/receive pairs that have lower path prop-
agation losses and better views of the target are advan-
tageous over ones with higher path losses and/or low re-
flectivity viewing angles. Thus, a given localization accu-
racy threshold, , may be obtained by using a smaller
subset of the available transmit and receive antennas. An
optimal set of transmit and receive antennas may be cho-
sen such that tr

³
C (̂ ̂)|min

´
≤ , where min =

{x ∈ x ∈  | = 1     = 1   }, 1 ≤
 ≤  , 1 ≤  ≤  , is a minimal set of transmit
and receive antennas that delivers the required performance
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goal . The choice of the minimal subset of radars may
be implemented through exhaustive examination of all possi-
bilities. Such a search has a complexity of ∼ 

¡
2+

¢
. In

Table 2, a heuristic algorithm is proposed for the selection of
this subset, offering a reduced complexity of ∼  (2).
In the proposed algorithm, a subset is initially generated by
selecting a transmitter and a receiver that are closest to the
target. Following, a receiver that minimizes the trace of the
CRB matrix is added to the subset. Transmitters and receivers
are added sequentially until the trace of the CRB matrix value
is lower than the threshold . A minimum of four antennas
is required for localization, i.e., the cardinality of min, |min|,
is set to be at least four. The transmitters in the subset are
assumed to use their maximum available power max

.
Once a subset is chosen, the transmitted power may be

further optimized by using the power allocation scheme pro-
posed previously with the subset. For large numbers of radars,
significant complexity reduction is achievable through the use
of the proposed algorithm.

IV. NUMERICAL ANALYSIS

To evaluate the performance of the proposed algorithms,
numerical analysis of some specific cases is presented in this
section.

The spatially diverse multiple propagation paths between the
transmit and receive radars have different error characteristics,
reliant on the specific path loss, target reflectivity, effective
bandwidth, and transmitted power (as seen from (8)). The
power allocation methods, proposed in the previous section,
dilute the error variation through adequate distribution of the
transmit power. In Figure 1 a 5 × 5 multiple radar system
( =  = 5) is illustrated; it has four different radars
spreads, accounting for different error characteristics. These
are exploited for a numerical analysis of the proposed power
allocation algorithms.

Case 1 to Case 4 in Figure 1 are equivalent to the case of
different path loss on the  transmit/receive paths, denoted
by  6= 00 ;∀0  0. The reflectivity of the target
on paths originating from transmitter 1 and 5 are set to be
relatively low, 1 ≤ 01 and 5 ≤ 04;∀ . Table 3
summarizes the power allocation optimization, , for
a given localization MSE threshold, which in this case it is set
to 


= 3m2. The power values are normalized to the noise

variance, 2. The total transmit power for uniform allocation,
, is calculated with (13), where tr (C) = 


. The

total power utilized to generate a localization MSE of 


or
less, , is minimized using the allocation algorithm in
Subsection III-B. It is observed that uniform power allocation
is not necessarily the best allocation, where in Case 1 and
Case 2, the total power allocated in the optimization process,
, is about half of that used in the uniform alloca-
tion (). The power efficiency of the optimized allocation
compared with the uniform one is dependent on the radar
spread and the path loss. For Case 4, distributed and unified
power allocations have the same power budget, yet, there
are more than one possible power distribution that meet
performance. This supports integration of additional decision

criteria in determining the final power distribution, based on
the transmitters’ individual power resource status.

Table 2: Subset choice - heuristic algorithm

1. init:
Choose x ∈  s.t. min kx− xk2
Choose x ∈  s.t. min kx− xk2
Select subsets:
min = {x x},
Update:

0
 = \x , 

0
 = \x ,

Set:  = 1

2. while
³
tr
³
C (̂ ̂)|min

´
 

´
&& (|min|  4)
if  =even:

if 
0
 6=  than choose x ∈ 

0
 s.t.

min
°°°tr³C (̂ ̂)|min∪x

´
− 

°°°2
Update: min = min ∪ {x} , 

0
 = 

0
\ {x}

Set:  = + 1

if  =odd:
if 

0
 6=  than choose x ∈ 

0
 s.t.

min
°°°tr³C (̂ ̂)|min∪x

´
− 

°°°2
Update: min = min ∪ {x} , 

0
 = 

0
\ {x}

Set:  = + 1

if 
0
 6=  and 

0
 6=  than go to (4)

3. go to (2)
4. end

Applying the subset selection algorithm to the
four cases in Figure 1 results in the following
selections: min (Case 1) = {x2 x4 x1 x4},
min (Case 2) = {x2 x3 x4 x1 x4},
min (Case 3) = {x2 x4 x2 x4}, and
min (Case 4) = {x2 x4 x1 x4}. The estimation
performance goal may be achieved by using four to five
antennas out of the available ten. An exhaustive search
would have given the same number of radars for all cases,
though for Case 2 it would select a configuration with two
transmitters and three receivers and for Case 3, a subset of one
transmitter and three receivers. In the first of these cases, the
selection of the first transmitter and receiver in the proposed
algorithm prevents the choice given by the exhaustive search.
In the optimization process, transmit/receive pairs with better
locations with respect to the target and lower path losses are
selected. The selection based on the proposed algorithm is
nearly the same as the optimal result achieved by exhaustive
search. This suggests that significant complexity reduction
can be achieved with low penalty via the proposed algorithm.

V. CONCLUSIONS

To support resource-aware design for target localization
in distributed multiple radar systems, two resource alloca-
tion schemes have been developed. One minimizes the total
radiating power to accomplish a predetermined localization
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MSE threshold, while the other minimizes the number of
radars employed to achieve this threshold. The transmitters’
powers are constrained to specific ranges that follow system
design criteria such as minimal SNR or values set by antenna
parameters. A closed-form expression for the CRB has been
used to represent the localization MSE. The power allocation
nonconvex optimization problem has been solved by first
relaxing the original constraints and then using its solution to
find a local optimum for the original nonconvex problem. It has
been shown that uniform power allocation is not necessarily
the best choice, and significant power savings can be obtained
through proper distribution of power, based on the radars’
geometric spread with respect to the target location and the
target RCS. The same accuracy performance may be obtained
by using only a fraction of the available radars, supporting
efficient infrastructure operation. An efficient subset selection
algorithm has been proposed, providing reduced complexity
with little or no penalty compared with an exhaustive search.

Table 3: Minimize power: Different path loss and RCS.

case 1 case 2 case 3 case 4
 166 160 75 165
 238 322 75 165

p

⎡⎢⎢⎢⎢⎣
68

1

1

21

75

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1

1

60

100

1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
15

15

15

15

15

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1

100

1

62

1

⎤⎥⎥⎥⎥⎦
APPENDIX A

DERIVATION OF THE J(U) MATRIX

The FIM for the unknown parameter vector u = [ h] is
derived in this appendix. The conditional pdf in (7) is used as
follows:

J (u) = r|u
h
∇u ln  (r|u) (∇u ln  (r|u))

i
 (17)

As the conditional pdf in (7) is given as a function of the
time delays, , and not the target location, ( ), we first
compute the FIM with respect to the vector γ = [τ h], J (γ),
and use the chain rule to evaluate J (u), as follows [6]:

J (u) = QJ (γ)Q  (18)

where the Jacobian matrix Q is

Q=


u
 (19)

To calculate J (γ), we first derive the second order deriva-
tive of  (r|γ) given in (3) with respect to the elements of
vector τ as

2 [ln  (r|γ)]


=

½
422 ||2  =  and  = 

0 


(20)
The derivative of  (r|γ) with respect to the elements of τ
and h, 2[ln (r|)]


, are

2 [ln  (r|γ)]


=
2 [ln  (r|γ)]


= 0 ; ∀     (21)

Fig. 1. MIMO radar with 5× 5 elements with different geometric layouts.

Finally, the second order derivative of  (r|γ) with respect to
the elements of h, 2[ln (r|)]


, are

2 [ln  (r|γ)]


=

½
  =  and  = 

0 
 (22)

Combining the expressions in (20), (21), and (22), provides
the FIM for vector γ:

J (γ)=
³
422 ||2  

´
 (23)

where  (◦) is a diagonal matrix with diagonal entries listed
in (◦). The Jacobian matrix Q is

Q =

⎡⎢⎣
1−
1

+
1−
1

· · · 
−



+
−


0
1−
1

+
1−
1

· · · 
−



+
−


0

0 · · · 0 I

⎤⎥⎦ 
(24)

The FIM J (u) is composed by applying the chain rule in
(18), combining the FIM J (γ), given in (23), and the Jacobian
matrix Q, given in (24).
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