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ABSTRACT

The phase rectified signal averaging (PRSA) method is a
technique initially developed to evaluate the acceleration and
deceleration of the cardiac rhythm when applied to long-
term-recordings of heartbeat intervals [1]. Because PRSA
enables better cancellation of non-periodic or/and intermit-
tent components, artifacts and impulsive noise, the quasi-
periodic components are enhanced compared with classical
Fourier analysis. Thus provides a higher accuracy for the
detection of the most important frequencies.

We propose to quantify the changes in sympathovagal
balance by characterizing the PRSA power spectrum of heart
rate variability (HRV) signals during rest and tilt. Synthetic
and clinical HRV signals of short-term recordings are consid-
ered. The results demonstrate the PRSA capacity to signifi-
cantly discriminate rest and tilt in terms of dominant frequen-
cies. The bias and standard deviation of the estimated sympa-
thovagal balance are also computed and compared with those
obtained with a classical spectral method.

1. INTRODUCTION

The heart rate variability (HRV) signals are defined as the
fluctuation time-series in the beat-to-beat RR-intervals.Over
the past two decades, power spectral analysis of HRV signals
has become a commonly used tool, for assessing the effect
of the sympathetic and parasympathetic modulations of the
RR-intervals in a non-invasive manner [2, 3, 4, 5, 6].

The HRV power spectrum is usually divided into differ-
ent spectral bands [2, 4]. The boundaries of the most com-
monly used frequency bands are referred to as the very low
frequency (VLF) band (< 0.04 Hz), the low frequency (LF)
band (0.04Hz - 0.15 Hz) and the high frequency (HF) band
(0.15Hz - 0.4 Hz). These boundaries may fluctuate around
these ranges. Parasympathetic activity is thought to influence
the HF components whereas both sympathetic and parasym-
pathetic activities have an effect on the LF components. The
measure of the ratio of the LF and HF component powers
(LF/HF ratio) has been used as an index of the balance be-
tween the effects of the sympathetic and parasympathetic
systems, which is referred to as the sympathovagal balance.

Unfortunately, HRV signals are non-stationary and often
contaminated by impulsive noise and artifacts due to abnor-
mal beats, unevenly sampled or/and missing data. The can-
cellation of these artifacts and noise using classical spectral
methods is never perfect and it requires assumptions of mod-
els and special rules. Moreover, phantom beat replacement
can deteriorate the estimation accuracy of the power spectral

density (PSD), even at low levels of artifacts [7]. Therefore,
the development of an insensitive method to such artifacts
and abnormal beats is a need for HRV signal processing.

In [1, 8, 9], authors proposed a non-linear signal transfor-
mation, called the phase-rectified signal averaging (PRSA),
the principle of which is very easy and they applied it to
HRV signals. The center deflection of the obtained PRSA
curve efficiently characterizes the average capacity of the
heart to decelerate or accelerate the cardiac rhythm. Later,
the PRSA method was applied to a variety of other appli-
cations to enhance quasi-periodic components embedded in
non-stationarity. For example, the PRSA method was applied
to electrocardiogram signals to perfectly cancel the ventric-
ular component [10, 11]. In [12], a new time-frequency rep-
resentation based on the PRSA principle was defined to ana-
lyze electroencephalogram signals.

In the present paper, we aim at better quantifying the
sympathovagal balance using the PRSA method. The in-
vestigation is performed by a spectral analysis of the PRSA
curves. This can provide a higher sensitivity for the detec-
tion of the dominant frequencies related to sympathetic and
parasympathetic activities during rest and tilt. Because of its
properties: elimination of non periodic components, cancel-
lation of artifacts and reducing impulsive noise, PRSA can
allow a better accuracy of the LF/HF ratio estimation of both
situations. The potential of PRSA is demonstrated through
experiments both on synthetic and clinical HRV signals. A
comparison with a parametric autoregressive (AR) spectral
method is also provided.

The paper is organized as follows. The PRSA principle, a
classical parametric spectral method and the HRV signal data
set are described in section 2. A deflection criterion is also
introduced to help compare the performance of the PRSA
with the classical parametric spectral method. Results and
discussions of assessing the LF/HF ratio based on the PRSA
method are provided in section 3 for synthetic and real data
HRV signals. The final section concludes with a summary
and some progress on our study.

2. METHODS

Two different methods PRSA and a classical parametric
spectral method are compared in the assessment of the
changes in the LF/HF ratio, expected during a stand-test. In
a first step, comparisons were conducted in simulated condi-
tions and in a second step, those were conducted in RR real
data.
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2.1 PRSA method

The basic idea of PRSA is the averaging of selected segments
of a discrete time signalyn corrupted by artifacts and noise.
These segments are symmetric regarding to so-called anchor
points, samples at which the instantaneous phase of the sig-
nal is close to zero. In the simplest version of PRSA [1, 8, 9],
the anchor points coincide with the increases in the signaly
(Fig.1(b)), i.e. instantsn such thatyn > yn−1.

Assuming a total ofM anchor points indexed bynm, m =
1, . . . ,M, segments of length 2L + 1 are centered on these
anchor points (Fig.1(b-d)),

[ynm−L,ynm−L+1, . . . ,ynm , . . . ,ynm+L−1,ynm+L] . (1)

All these segments are averaged, which leads to the PRSA
signalỹℓ

ỹℓ =
1
M

M

∑
m=1

ynm+ℓ, for ℓ=−L,−L+1, . . . ,L. (2)

Finally, a classical PSD estimation technique is applied to
ỹℓ. Figure 1 displays the steps of the PRSA method for a
simulated signal.
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Figure 1: Principle of PRSA: (a) signalyn = sin(2π0.23n) +
1.5sin(2π0.097n) (dotted line), anchor points (circle). (b)-(d) Seg-
ments of length 2L+1= 29 centered on anchor points. (e) PRSA
signalỹℓ (2), (f) PRSA spectrum and (g) signal spectrum. The sam-
pling frequency is 2.7 Hz.

When the signal is corrupted by noise and artifacts, the
potential quasi-periodic components which are hidden in a
classical Fourier transform of the signalyn, appear more
clearly in the spectrum of PRSA signal (2). This is illus-
trated in Fig.2 for a simulated example. The signal con-
sidered is a pure tone at the frequency 0.097 Hz contami-
nated by an impulsive noise. As can be observed, the peak
frequency at 0.097 Hz is clearly enhanced using the PRSA
method (Fig.2(b)) while this peak is hidden in the classical
signal spectrum (Fig.2(c)). Actually, the averaging process
removes correlated or nonperiodic components of the signal

(such as noise and artifacts) while phase resetting helps en-
hance the existing local-periodicities. Other examples illus-
trating the potential of the PRSA as a tool to improve the es-
timation of existing periodicities are provided in [10, 11,12].
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Figure 2: Enhancement of existing quasi-periodic components
in signals using PRSA method: (a) studied signalyn =
1.5 sin(2π0.097n) embedded in impulsive noise, (b) spectrum of
PRSA signal (2) and (c) signal spectrum.

2.2 Parametric spectral estimation

Although the assumption of HRV signal stationarity required
by classical spectral methods is rarely realistic, these meth-
ods are still commonly used to investigate the power alter-
ation in the LF and HF bands in different situations [2, 4, 6].
One standard spectral parametric method among others is the
Yule-Walker autoregressive (AR) method. The estimation of
the Yule-Walker AR parameters is achieved by evaluating a
biased estimate of the signal’s autocorrelation function,and
solving the least squares minimization of the forward pre-
diction error. The Yule-Walker equations can be solved effi-
ciently via Levinson’s algorithm and the obtained AR model
is always a stable all-pole model. However it is important
to note that this method depends on selecting the appropriate
order of the AR model. Therefore, we evaluate the minimum
description length criterion (MDL) to determine the model
order [13].

2.3 HRV data set

Here, we describe the procedure to generate synthetic HRV
signals and we specify the characteristics of the clinical HRV
data.

2.3.1 Synthetic HRV signals

Simulated signals are generated following typical spectra.
We have used two AR models that approximately match the
PSD at supine rest and after tilt described in [3]. The true
model order in both cases isp = 7. The AR model coeffi-
cientsak and the varianceσ2

r of the driving white noise are
reported in Table 1 for a sampling rate of 1 Hz. The noise is
zero mean and the PSD of the AR model is given by [3]

PSD( f ) =
σ2

r
∣

∣∑p
k=0 ak ej2π f

∣

∣

2 . (3)

A very low frequency trend, additive white Gaussian noise
(AWGN) and impulsive noise are then added to the simulated
signals in order to obtain realistic artificial HRV signals.
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Table 1: Coefficients and noise variance of the AR models.

Coeff. Rest Tilt

a0 1 1
a1 -1.6265 -1.8149
a2 1.8849 2.1365
a3 -1.8327 -2.1703
a4 1.2970 1.7194
a5 -0.7758 -0.9221
a6 0.4133 0.5311
a7 -0.2136 -0.3262

σ2
r 404 10−6 137 10−6

2.3.2 Clinical HRV signals

HRV real data are collected from experiments in 11 healthy
human subjects during a classical stand-test by means of a
Holter device at a sampling frequency equal to 1000 Hz. The
mean, bias and STD of the change in the LF/HF ratio are
provided in paragraph 3.2.

2.4 Deflection criterion
In order to decide between the two techniques: PRSA
method and Yule-Walker AR spectral method, in terms
of which technique provides the best measurement of the
LF/HF ratio, we propose to use the deflection criterion
[14, 15, 16]. Actually, this criterion is well-known in de-
tection procedures to discriminate between two hypotheses.
So, let the null hypothesisH0 be the rest situation and the
alternate hypothesisH1 be the tilt position. The deflectionD
is defined as follows,

D =

∣

∣E[r]H0
−E[r]H1

∣

∣

√

STD[r]H0
STD[r]H1

, (4)

wherer is the estimate of the LF/HF ratio. E[.]H0
and E[.]H1

design the mean expectations under hypothesisH0 andH1
respectively. It is of course assumed thatr is such that all
these quantities are finite. It is also worth noting that the
deflection definition of eq.(4) is a symmetric version of that
discussed in [14].

3. RESULTS AND DISCUSSIONS

In order to ascertain the potential of the PRSA, realistic artifi-
cial HRV signals are initially used. The results are compared
to those obtained by the Yule-Walker AR spectral method.
Both methods are then tested on real data to demonstrate con-
sistency with the simulated results.

3.1 Synthetic HRV signal

Figure 3(a) shows a simulated HRV signal composed of a
rest period of 500 samples followed by a tilt period of 600
samples (7 order AR models specified in Table 1 are used).
The signal is embedded in an additive white Gaussian noise
(SNR=30 dB), a very low frequency trend in the rest period
and impulsive noise. The probability of positive or negative
spike occurrence within 100 samples is equal top = 0.01.
Figures 3(b) and (c) display the Yule-Walker AR PSD esti-
mate during rest and tilt respectively. The model orders es-
timated using MDL are 5 and 6. The PRSA spectra during
rest and tilt are depicted in Fig.3(d) and (e) respectively.All
spectra were normalized to have a total energy equal to one.
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Figure 3: HRV signal analysis: (a) Simulated signal (7th AR
model 1). The signal is composed of a rest period (500 samples)
followed by a tilt period (600 samples), embedded in an additive
white Gaussian noise (SNR=30 dB), a very low frequency trend in
the rest period and impulsive noise. A positive or negative spike
occurs within 100 samples with a probability equals top = 0.01.
The parametric PSD estimation during rest (b) and tilt (c). The
spectra of PRSA signal (2) during rest (d) and tilt (e).

From Fig.3(d), one can observe that the significant power
during rest is located in the HF band while the LF band is
almost absent from the PRSA spectrum. In the opposite,
PRSA method clearly enhances the LF components during
tilt with respect to the power of the HF components. Addi-
tionally, application of the PRSA allows the cancellation of
the very low frequency trend which clearly appears in the
parametric PSD estimate.

To statistically report on the application of the PRSA for
assessing the LF/HF ratio, we consider two cases described
as follows.

• Case 1: Signal of Fig.3(a) is embedded in AWGN. We
run 2000 random realizations of zero mean AWGN with a
signal to noise ratio (SNR) varying from 0 to 30 dB. The
mean and standard deviation (STD) of the LF/HF ratio es-
timate are evaluated for each SNR value. The results ob-
tained using PRSA and the AR spectral method are depicted
in Fig.4.

For high SNR (10 to 30 dB), the mean of the LF/HF
ratio estimated during tilt is about 6 times bigger than that
obtained during rest when the PRSA method is used. This
factor is about 2 when the LF/HF ratio is estimated by the
Yule-Walker AR spectral method with a fixed model order
equal to 7. However, both methods exhibit the same STD be-
havior: a small and almost constant STD is observed for all
SNR values during rest whereas a high STD is obtained for
high SNR during tilt.

Figure 5 shows the deflection computed using the PRSA
method. The results are compared with those obtained by
the Yule-Walker AR spectral method using a model order se-
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Figure 4: (a) Mean, (c) bias and (d) STD of the LF/HF ratio es-
timate: (solid line) rest and (dotted line) tilt, (⋄) PRSA, (o) Yule-
Walker AR spectral method. The AR model order is assumed to be
known and fixed equal to 7. (b) Mean quotient: the LF/HF ratio
during tilt normalized by the LF/HF ratio during rest.

lected by the MDL criterion and the Yule-Walker AR spectral
method using a model order fixed to 7.
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Figure 5: Deflection for different SNR: (–⋄) PRSA, (⋆) Yule-
Walker AR spectral method with a model order fixed equal to 7 and
(o) Yule-Walker AR spectral method with a model order selected by
MDL, (dotted line) a preprocessing (median filter) is employed to
remove impulsive noise from data and (solid line) raw data are
used (no preprocessing).

As one can observe, the deflection values computed
using the classical techniques are smaller than the values
obtained by PRSA for SNR varying from 10 to 30 dB.
The PRSA performance is reduced when the SNR tends to
zero. However PRSA is still perform much better than the
classical AR method especially when the model order is not
known and is selected with the MDL criterion.

• Case 2: Signal of Fig.3(a) is embedded in impulsive
noise. The spikes occur with a probability varying from
0.002 to 0.15. A spike probability equals 0.01 means that
one spike may occur within 100 samples. We run 2000 ran-
dom realizations of impulsive noise for each spike probabil-
ity. The deflection (4) is evaluated for each spike probability.
Curves plotted on Fig.6 show that the PRSA method pro-
vides the best deflection value. Actually, the over / or under-
estimation of the model order impacts on the accuracy of the

estimation of the power in LF and HF bands when using the
parametric PSD estimate. However, thanks to the averaging
process included in the PRSA steps, less inclusion of noise
is impacting the PRSA spectrum and thus provides a more
accurate quantification of the most spectral dominant power.
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Figure 6: Deflection when the probability of spike occurrence is
varying: (–⋄) PRSA, (⋆) Yule-Walker AR spectral method with
a model order fixed equal to 7 and (o) Yule-Walker AR spectral
method with a model order selected by MDL, (dotted line) a pre-
processing (median filter) is employed to remove impulsive noise
from data and (solid line) raw data are used (no preprocessing).

3.2 Analysis of HRV real data

An example of a real HRV is depicted in Fig.7. The PRSA
spectrum and the PSD AR estimate are also provided. We
observe the same results as expected with synthetic signals.

Based on the 11 subjects, the mean values of the LF/HF
ratio are 0.2300 and 3.2768 using the PRSA, 0.7774 and
2.4831 using the PSD AR estimate, in rest and tilt positions,
respectively. The STD values of the LF/HF ratio estimate
are 0.1846 and 2.4052 using the PRSA, 0.3459 and 1.8090
in rest and tilt positions, respectively.

Despite its good performance, it is important to men-
tion some limitations regarding the PRSA method. First,
this technique requires the choice of the lengthL. In all the
example shown in this paper, 2L+ 1 is chosen equal to 29.
The small length of PRSA signal may impact the compu-
tation of the power spectrum of the PRSA signal (2). Sec-
ond, few theories about PRSA were developed. Neverthe-
less, the potential of this technique is obvious when it is ap-
plied to quasi-periodic components corrupted by impulsive
noise. The PRSA especially cancels the very low frequency
trend and impulsive noise. There is no need for artificial sig-
nal preprocessing to achieve better accuracy of the LF/HF
ratio compared to classical spectral methods.

4. CONCLUSION AND PERSPECTIVES

The phase-rectified signal averaging method is a simple def-
inition tool that computes a short-term PRSA signal from
the studied signal. The quasi-periodic components, which
are initially hidden in a classical Fourier analysis, are en-
hanced in the PRSA signal spectrum. Indeed, artifacts, cor-
related non-periodic components, noise and especially im-
pulsive noise are canceled thanks to the averaging process
and to the phase synchronization. The noise impact to the
accuracy of the frequency estimation is much reduced.
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Figure 7: (a) HRV real data from experiments in healthy human
subjects during rest followed by tilt. The PSD AR estimate during
rest (b) and tilt (c). The model order in both cases is computed based
on the MDL criterion. The spectrum of PRSA signal (2) during rest
(d) and tilt (e).

In the present paper, the analysis of HRV signals was
considered based on the PRSA method. The aim was to im-
prove the characterization of the response of autonomic sys-
tem to the change from laying to standing. Since the LF /HF
power values are required to measure the LF/HF ratio, which
is a quantity reflecting the change in the sympathovagal bal-
ance, we proposed to evaluate these powers and the LF/HF
ratio using the PRSA signal spectrum.

Synthetic HRV signals and HRV real data obtained from
experiments in human healthy subjects including rest and tilt
are considered. Results observed show the PRSA method ca-
pable of efficiently extracting the LF components while the
HF components are decreased during tilt and vice versa dur-
ing rest. The comparison with the conventional spectral anal-
ysis, the PSD AR estimate, shows the discrimination between
rest and tilt to be particularly significant using the PRSA
method. Indeed, the deviation of LF/HF ratio during rest
from the one during tilt is three times bigger with the PRSA
method.

This analysis suggests that the PRSA method may facil-
itate the detection of impairment in the sympathovagal bal-
ance, when it occurs, in a noninvasive way. This will be ad-
dressed in further works. We also aim to study the impact
of individual time dependent boundaries of the LF and HF
bands developed in [4].
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