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ABSTRACT such as the Douglas-Rachford (DR) algorithm [8], the Paral-

The objective of this paper is to develop a convex opti-l,el Proximal Algorithm. (PPXA) [9] or the Alternating Direc-
mization approach for solving image deconvolution prob-ion Method of Multipliers (ADMM) [10, 11]. Nevertheless,
lems involving frame representations. Until now, most of/OF tractability issues, the authors have restricted thepsc
the proposed frame-based variational methods assumed &f-their works to tight frame representations [9, 10, 11]eTh
ther Lipschitz differentiability properties or tight reggenta- 90al of this paper is to propose a way to relax the tight frame
tions. These assumptions are relaxed here, thus offering ti€guirement by considering a particular class of frameerepr
possibility of considering a broader class of image restoraS€Nntations. _ _ R

tion problems. The proposed algorithms allow us to solve [N the following, we consider two convex minimization
both frame analysis and frame synthesis problems for varproblems which are useful to solve frame—based restoration
ous noise distributions. The proposed approach is proved #oblems formulated under a Synthesis Form (SF) or an
be effective for restoring data corrupted by Poisson nojse bAnalysis Form (AF). The SF can be expressed as:

using (non-tight) discrete dual-tree wavelet representat

n m
minimize 'y fi(Liy)+ (X 2
1. INTRODUCTION minimize 3 filky) ;91( ) 2

Many works in image processing are concerned with chal-

lenging inverse problems such as denoising or deconvolutio gnd the AF is:
For such problems, the original image RN is degraded by

a matrixT € RN*N modeling a convolutive degradation and

n m
by a non-necessarily additive noise. The resulting degrada minimize ZI fi(Liy) + Z gi(Fy). (3)
tion model is the following: yerRN & =
2= Za(Ty) (1) F e RN (resp. FT e RN*K) denotes the frame anal-

: . _ ysis (resp. synthesis) operator. For every {1,...,n},
where%, denotes the noise effect and> 0 is some related f.o RN |—oo, +00] is & convex, lower semicontinuous and

parameter (for exampley may represent the variance for . _ NxN ; :

Gaussian noise or the scaling parameter for Poisson nois@r."pe.r fun;tlon and € %K is a convolutive operat(l)r. For
In this context, our objective is to recover an image RN, ~ €veryj € {1,....mj}, gj: R" ], t-c0] is a convex, lower
the closest possible & from the observation veciarc RN~ Semicontinuous and proper function. In numerous works, SF

and available prior information. In early works, this prob- is prefered since AF appears more difficult to solve numeri-

lem was solved for Gaussian noise using Wiener ﬁltering?aIIy [12, 13, 14].

or equivalently quadratic regularization techniques. etat This paper is organized as follows: Section 2 presents
multiresolution analyses were used for denoising by applythe structure of the frames considered in this work. Se@ion
ing a thresholding to the generated coefficients [1]. Thensecalls convex optimization tools such as proximity openst
in order to improve the denoising performance, redundarind describes the proposed algorithms to minimize (2) and
frame representations were substituted for wavelet b&$es [ (3). Finally, restoration results are given in Section 4tia t
In [3, 4, 5, 6], authors considered convex optimization techpresence of Poisson noise, by using Dual-Tree Transforms
niques to jointly address the effects of a noise and of atinegDTT).
degradation within a convex variational framework. When
the noise is Gaussian, the forward-backward (FB) algorithm
[3] (also known as thresholded Landweber when the regulaNotation: Throughout this paperlo(R') designates the
ization term is arf;-norm [4, 5, 6]) can be employed in the class of lower semicontinuous convex functiahs R! —
context of wavelet basis decompositions and its use can qeoo,_,_oo] which are proper in the sense that their domain
extended to arbitrary frame representations [7]. Howewer, dom¢ = {u cR! ’ é(u) < +oo} is nonempty. i € Mo(R')
2 Laplace naise. FB algorithm i no longer applicable due 23 & Unidue minimizer, it is denoted by argpin ¢ (1)

. o L o %he relative interior of a se8is denoted by 1&.
the non-Lipschitz differentiability of the data fidelityrta.
Other convex optimization algorithms must be employed
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2. FRAME REPRESENTATIONS factorQ. In order to obtain low redundancy representations,
. . N . frames such as the 2D real (resp. complekpand DTT
Physical properties of the target imagesuch as sparsity oy, heen proposed [19, 20]. The DTT consists of perform-
spatial regularity, are suitably expressed in tfrms ofthmé ing two (resp. four)\/l—bar’1d orthonormal wavelet decompo-
coefficientst = (X)) 1<k € R wherey= 3¢ ;xecand  sitions in parallel (orthogonal matricék;), each one being
(&)1<k<k denotes a family of vectors in the Euclidean space,receded by a prefiltering stage, (matrices) related to dis-
RN (N < K). Such a family of vectors constitutes a frame if cretization. Finally, an orthogonal combination (orthogb
there exists a constaptin |0, +co such that matrix R) of the subbands is applied to ensure directionality.
Such a frame satisfies (8) and (9), where

K
RN 2< 2, 4
(WWeR™)  pllyl _k;|<y|e(>| (4) U 0 0
0 U ... O
The associated frame operator is the injective linear apera U=R | . ) - (12)
defined as : I
0 ... ... Ug
(WeRN)  Fy=({y|ea))i<ke, ®)

. o o . Note that thediscrete DTT is not a tight frame in general.
the adjoint of which is the surjective linear operator gitgn Tight frame representations have been widely used in
K convex optimization methods for data recovery. In the next
(K) K T (k) _ (K) section, we recall some convex optimization tools and show
(VX 1zkek €RT) - F (X )1ciex kzlx & (6)  ihe relevance of the class of frames defined by (8) in con-
B junction with recent optimization approaches.

2.1 Tight frames

. . 3. PROXIMAL TOOLSAND ALGORITHMS
A tight frame is such that
In imaging, there has been recently a growing interest in ad-
F'F=upul, U €10, +oof, (7) vanced convex optimization tools. A commonly used tool
is the Projection Onto Convex Sets (POCS) which is an al-
where | denotes the identity matrix. A simple example of aternating projection algorithm. The notion of projectioasv
tight frame is the union oft orthonormal bases. Other ex- extended by Moreau [21] by introducing the proximity oper-
amples of tight frames can be found in [15, 16, 17]. Whenator of a functionp € [o(R'):
F~1=FT, an orthonormal basis is obtained. Further con- 1
structions as well as a detailed account of frame theory in prox, : R' - R': vi— argmin= HU*V||2+ o(u). (12)
Hilbert spaces can be found in [18]. uer! 2

It can be observed that whenis the indicator functiomc of

2.2 A particular class of non tight frames a nonempty closed convex subgesf !, i.e.

A subclass of frame representations is defined as

0 if ueC,;
| _ ) ’
xl (uek) o(u= {+oo, otherwise, (13)
2
F=U]. (8) prox, reduces to the project® ontoC. Other examples of
V'Q proximity operators corresponding to the potential furcsi

of standard log-concave univariate probability denshiage
been listed in [3, 7, 9]. The proximity operators used in the

KXQN i 4 ti i Wi ) ! _
whereU € R is a tight frame analysis matrix with con experimental part of this paper, are recalled below.

stantuy € ]0,+oo, and for everyg € {1,...,Q}, Vg € RN<N
is a prefiltering operator . For Condition (4) to be fullfilled
prefilters(Vy)1<q<q must satisfy the following lower bound- Example3.1 Let X >0, and set

edness relation: ¢: R —]—o0o,+oo]: & x[E]. (14)
Q Then, for every & € R,
Voel-mad)  wY Ne@Pzp (@ Y |
4=1 prox, & = sign(&) max{|&| — x,0}. (15)

where, for every € {1,...,Q}, Vy(w) denotes the frequency
response of the filter associated with the convolutive dpera

Vq. Indeed, it is straightforward to show that Example 3.2 [7]
Let a >0, and set

Q .
FIF=pm Y Vg Vg (10) ¢: R —]—co,+oo]
g=1 —xIn(é)+aé, if x>0and& >0;
The simplest example of such a frame @-&hannel undeci- §—49¢ I x = .O and& >0; (16)
+00, otherwise.

mated filter bank satisfying (9), which has a redundancy of a
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Then, for every £ € R,

Algorithm 2

—a+E—aP+ax
prox, & = d i |(‘; o+ X. a7

Numerous iterative algorithms are based on proximity
operators such as FB or DR algorithms allowing us to mini-
mize a sum of two functions with secured convergence prop-
erties. The former one can be regarded as more restrictive
than the latter one in the sense that it requires the Lipschit
differentiability of one function. To solve the considered
minimization problems formulated in (2) and (3), two solu-
tions can be considered. On the one hand, DR formulation
in a product space leads to the PPXA algorithm presented in
[9] for minimizing a sum of more than two convex functions.
However, one of the difficulties of the considered minimiza-
tion problems formulated in (2) and (3) is that they involve
linear operators. A solution consists of using the follogvin
result:

Proposition 3.3 [8]
Let ¢ € Mo(RY) andlet L € R¥*!. Supposethat LLT = x1,

Initialization

(Mi)1<i<n € ]0,40[", (Kj)1<j<m € |0, +-00["
(Vio)1<i<n € (RM)™, (W) 0)1<j<m € (R)™
Yo = argmin,en $1 Mif|Liu—vi o*

+ 3™ KjllFu—w;of?

For¢=0,1,...

Fori=1,...,n

L Pie = ProXg /n Vie+aig

Forj=1,....m

| Fje = ProXy, /x, Wj¢ +bj

Ar€]0,2]

C; = argmin,epn 5q Mif[Liu— pis| ,
+3 LK [Fu—=rjl|

2

Fori=1,...,n

| Vi1 =Vig+Ae(Li(2c, —yr) — Piy)
Forj=1,....m

L W1 =Wjr+A(F(2c—Yr) —Tj0)
Yer1=Ye+Au(Co—Ye)

for some x € ]0,+[. Then, ¢ oL € Io(R') and

proxse. =1 +x LT (prox,, —1)L. (18)

On the other hand, augmented Lagrangian algorithms such als'

ADMM (sometimes also named alternating split Bregman al-
gorithm) can be used [10, 11]. Both solutions are considered
in the literature for dealing with tight frame represerdas.

Assumption 3.4
(ﬂi”:lridomfi oLiFT)N ( ’J-“:lridomgj) + O

(resp. (ﬂi”:lridomfi oLi) N (ﬂ'j“:lridomgj oF) + ).
2. Thereexists A €]0,2[ suchthat (V¢ e N), A <A1 < Ay

In [22], itis shown that PPXA and ADMM can be putin 3. (Vi € {1,...,n}), 3 en ||l < 4o

a unifying framework based on proximity operators. The ap-
plication of the resulting algorithm (called PPXA+) to Prob
lem (2) (resp. Problem (3)) is given in Algorithm 1 (resp.

and (VJ € {L"'am})' ZZEN HbJ,/|

< 00,

Algorithm 2). (In these algorithms, the sequent®s)1<i<n

In these algorithms, a large-size matrix inversion must be
performed for solving the quadratic minimization requiied

and (b ¢)1<j<m correspond to possible numerical errors inthe initialization step and in the computation of the interm

the computation of the proximity operators at iteration

Algorithm 1

Initialization N "
(ni)lgign S ]Oa +°°[ 7(Kj)1§j§m S ]07+°°[
(Vi,0)1<i<n € (RN)™, (Wj 0)1<j<m € (RK%m
Xo = argmin,cgx Yq Mi[[LiF "u—viol| ,
I + 3 L Killu—wjof
For(=0,1,...
Fori=1,...,n
L Pie=ProXs . Vie+aie
Forj=1,....m
L Tj0 = ProXg Wi +Dbj
/\5 6]07 2[

. 2
¢, = argmin,cgx 1L Nil|LiF "u—pi | ,

+YLaKillu=rill

Fori=1,...,n
| Vi1 =Vig+A(LiF T (2c— %) — pi)
Forj=1,....m
| Wi =Wje+Ar(2c0— % —Tj )
X1 = X+ Ae(Cr —X¢)

diate variable$c,)scn. As shown next, the form of the frame
operatoi- made in (8) renders this inversion tractable:

o for SF (Algorithm 1)
4 T T -1
K niFL LiF " +kl
(FLLFT 41
n -1
=1 —F(k(S mLL) " +FTF) FT,
(k(3 ML) +FTF)
n S Q - -1
:I—F(K(i;r]iLi Li) +“UQ;V“ vq) F', (19)
o for AF (Algorithm 2)
n -1
(ZniLILi+KFTF)
i=
n Q -1
_ (Zr)iLiT Li+Ki Y vquq) (20)
i= g=1

by settingk = 3, Kj.

The convergence of the sequenigg) scr (resp. (Ye)een) The last matrix inversions in (19) and (20) are easily
generated by Algorithm 1 (resp. Algorithm 2) is establishedperformed by noticing thatl;)1<i<n and(Vq)1<q<g can be
under the following assumptions: jointly decomposed by Fourier diagonalization techniques
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4. EXPERIMENTAL RESULTS

In this part, we apply the proposed optimization methods to
image restoration. More specifically, we consider the fello
ing SF and AF problems:

min f1(TF "%) + 1c(F "x) +g1(x) (21)
xeRK
and
min f1(Ty) + ic(y) + g1(Fy) (22)
yeRN

whereF represents the 2-band DTT [20] which, as men-
tionned in Section 2.2, is a particular case of the frameaper
tor subclass defined by (8), and wha@re RN*N denotes the
matrix associated with a 2D (periodic) convolution operato
Problem (21) (resp. (22)) is a particular case of Problem (2)
(resp. (3)) wheren =2 andm= 1. f; denotes the data fi-
delity term andf, = Ic is the indicator function (see (13))
of a nonempty closed convex getof RN (for example, re-
lated to support or value range contraintg). corresponds
to the regularization term operating in the frame domain. In
the considered problems; = T andL, = 1. The matrice§
and(Vg)1<q<o (related toF) as defined above can be diago-
nalized by using a 2D Discrete Fourier Transform (DFT), in
order to efficiently perform the matrix inversions in (19dan
(20).

Some experiments are presented in Figures 1 and 2, for
images degraded by Poisson noise with scaling faater
0.8 and by a uniform blur of kernel sizex33. The DTT
[20] is computed using symlets of length 6 over 3 resolution
levels. The data fidelity ternfy corresponds to the general-
ized Kullback-Leibler divergence, which is well adapted to
Poisson noise. Its proximity operator is derived from Exam-
ple 3.2.C = [0,255N models a constraint on the range of the
pixel values andy; corresponds to a classical regularization
of the form:

K
01 (&k)1kek = ) Tyc| k[P (23)
&1

In our simulations, the parametdig)1<k<k €]0, +oo[X and
(Bx)1<k<k € {1,4/3,3/2,2} in (23) are empirically chosen
to maximize the signal-to-noise-ratio (SNR). Whgp= 1,
the proximity operator ofj; reduces to a soft thresholding as
shown by Example 3.1.

Figure 1 shows a comparison between the use of a com-
plex DTT and of a tight frame version of the complex DTT
(where for everyg € {1,...,4}, Vg =1). In this simula-
tion example, a cropped version of “Barbara” image=
128x 128) is considered by adopting a SF criterion. The
use of the non-tight DTT including prefilters allows us to im-
prove the quality of the results both visually and in terms of
SNR and SSIM [23].

Figure 2 displays a second restoration example on a
cropped version of “Marseille” imagdN(= 128x 128), still
by considering DTT, both for the AF and SF criteria. The
restoration results present slight differences in favduhe
AF approach.
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Restored SF: SNR =16.3dB, SSIM = 0.87

Restored AF: SNR = 16.6 dB , SSIM =0.88

Figure 2: Synthesis approach versus Analysis approach.
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