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ABSTRACT
The objective of this paper is to develop a convex opti-
mization approach for solving image deconvolution prob-
lems involving frame representations. Until now, most of
the proposed frame-based variational methods assumed ei-
ther Lipschitz differentiability properties or tight representa-
tions. These assumptions are relaxed here, thus offering the
possibility of considering a broader class of image restora-
tion problems. The proposed algorithms allow us to solve
both frame analysis and frame synthesis problems for vari-
ous noise distributions. The proposed approach is proved to
be effective for restoring data corrupted by Poisson noise by
using (non-tight) discrete dual-tree wavelet representations.

1. INTRODUCTION

Many works in image processing are concerned with chal-
lenging inverse problems such as denoising or deconvolution.
For such problems, the original imagey ∈ R

N is degraded by
a matrixT ∈ R

N×N modeling a convolutive degradation and
by a non-necessarily additive noise. The resulting degrada-
tion model is the following:

z = Dα (Ty) (1)

whereDα denotes the noise effect andα > 0 is some related
parameter (for example,α may represent the variance for
Gaussian noise or the scaling parameter for Poisson noise).
In this context, our objective is to recover an imagey ∈ R

N ,
the closest possible toy, from the observation vectorz ∈ R

N

and available prior information. In early works, this prob-
lem was solved for Gaussian noise using Wiener filtering,
or equivalently quadratic regularization techniques. Later,
multiresolution analyses were used for denoising by apply-
ing a thresholding to the generated coefficients [1]. Then,
in order to improve the denoising performance, redundant
frame representations were substituted for wavelet bases [2].
In [3, 4, 5, 6], authors considered convex optimization tech-
niques to jointly address the effects of a noise and of a linear
degradation within a convex variational framework. When
the noise is Gaussian, the forward-backward (FB) algorithm
[3] (also known as thresholded Landweber when the regular-
ization term is anℓ1-norm [4, 5, 6]) can be employed in the
context of wavelet basis decompositions and its use can be
extended to arbitrary frame representations [7]. However,in
the context of a non-additive noise such as a Poisson noise or
a Laplace noise, FB algorithm is no longer applicable due to
the non-Lipschitz differentiability of the data fidelity term.
Other convex optimization algorithms must be employed

such as the Douglas-Rachford (DR) algorithm [8], the Paral-
lel Proximal Algorithm (PPXA) [9] or the Alternating Direc-
tion Method of Multipliers (ADMM) [10, 11]. Nevertheless,
for tractability issues, the authors have restricted the scope
of their works to tight frame representations [9, 10, 11]. The
goal of this paper is to propose a way to relax the tight frame
requirement by considering a particular class of frame repre-
sentations.

In the following, we consider two convex minimization
problems which are useful to solve frame-based restoration
problems formulated under a Synthesis Form (SF) or an
Analysis Form (AF). The SF can be expressed as:

minimize
y=F⊤x, x∈R

K

n

∑
i=1

fi(Liy)+
m

∑
j=1

g j(x) (2)

and the AF is:

minimize
y∈RN

n

∑
i=1

fi(Liy)+
m

∑
j=1

g j(Fy). (3)

F ∈ R
K×N (resp. F⊤ ∈ R

N×K) denotes the frame anal-
ysis (resp. synthesis) operator. For everyi ∈ {1, . . . ,n},
fi : R

N 7→ ]−∞,+∞] is a convex, lower semicontinuous and
proper function andLi ∈ R

N×N is a convolutive operator. For
every j ∈ {1, . . . ,m}, g j : R

K 7→ ]−∞,+∞] is a convex, lower
semicontinuous and proper function. In numerous works, SF
is prefered since AF appears more difficult to solve numeri-
cally [12, 13, 14].

This paper is organized as follows: Section 2 presents
the structure of the frames considered in this work. Section3
recalls convex optimization tools such as proximity operators
and describes the proposed algorithms to minimize (2) and
(3). Finally, restoration results are given in Section 4 in the
presence of Poisson noise, by using Dual-Tree Transforms
(DTT).

Notation: Throughout this paper,Γ0(R
I) designates the

class of lower semicontinuous convex functionsϕ : R
I →

]−∞,+∞] which are proper in the sense that their domain
domϕ =

{

u ∈ R
I
∣

∣ ϕ(u) < +∞
}

is nonempty. Ifϕ ∈ Γ0(R
I)

has a unique minimizer, it is denoted by argminu∈RI ϕ(u).
The relative interior of a setS is denoted by riS.

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 611



2. FRAME REPRESENTATIONS

Physical properties of the target imagey, such as sparsity or
spatial regularity, are suitably expressed in terms of the frame
coefficientsx = (x(k))1≤k≤K ∈ R

K wherey = ∑K
k=1 x(k)ek and

(ek)1≤k≤K denotes a family of vectors in the Euclidean space
R

N (N ≤ K). Such a family of vectors constitutes a frame if
there exists a constantµ in ]0,+∞[ such that

(∀y ∈ R
N) µ‖y‖2 ≤

K

∑
k=1

|〈y | ek〉|
2. (4)

The associated frame operator is the injective linear operator
defined as

(∀y ∈ R
N) Fy = (〈y | ek〉)1≤k≤K , (5)

the adjoint of which is the surjective linear operator givenby

(

∀(x(k))1≤k≤K ∈ R
K)

F⊤(x(k))1≤k≤K =
K

∑
k=1

x(k)ek. (6)

2.1 Tight frames

A tight frame is such that

F⊤F = µ I , µ ∈ ]0,+∞[ , (7)

where I denotes the identity matrix. A simple example of a
tight frame is the union ofµ orthonormal bases. Other ex-
amples of tight frames can be found in [15, 16, 17]. When
F−1 = F⊤, an orthonormal basis is obtained. Further con-
structions as well as a detailed account of frame theory in
Hilbert spaces can be found in [18].

2.2 A particular class of non tight frames

A subclass of frame representations is defined as

F = U









V1
V2
...

VQ









(8)

where,U ∈ R
K×QN is a tight frame analysis matrix with con-

stantµU ∈ ]0,+∞[, and for everyq ∈ {1, . . . ,Q}, Vq ∈ R
N×N

is a prefiltering operator . For Condition (4) to be fullfilled,
prefilters(Vq)1≤q≤Q must satisfy the following lower bound-
edness relation:

(∀ω ∈ [−π ,π ]2) µU

Q

∑
q=1

|v̂q(ω)|2 ≥ µ , (9)

where, for everyq∈ {1, . . . ,Q}, v̂q(ω) denotes the frequency
response of the filter associated with the convolutive operator
Vq. Indeed, it is straightforward to show that

F⊤F = µU

Q

∑
q=1

V⊤
q Vq. (10)

The simplest example of such a frame is aQ-channel undeci-
mated filter bank satisfying (9), which has a redundancy of a

factorQ. In order to obtain low redundancy representations,
frames such as the 2D real (resp. complex)M-band DTT
have been proposed [19, 20]. The DTT consists of perform-
ing two (resp. four)M-band orthonormal wavelet decompo-
sitions in parallel (orthogonal matricesUq), each one being
preceded by a prefiltering stage (Vq matrices) related to dis-
cretization. Finally, an orthogonal combination (orthogonal
matrix R) of the subbands is applied to ensure directionality.
Such a frame satisfies (8) and (9), where

U = R









U1 0 . . . 0
0 U2 . . . 0
...

...
...

0 . . . . . . UQ









. (11)

Note that thediscrete DTT is not a tight frame in general.
Tight frame representations have been widely used in

convex optimization methods for data recovery. In the next
section, we recall some convex optimization tools and show
the relevance of the class of frames defined by (8) in con-
junction with recent optimization approaches.

3. PROXIMAL TOOLS AND ALGORITHMS

In imaging, there has been recently a growing interest in ad-
vanced convex optimization tools. A commonly used tool
is the Projection Onto Convex Sets (POCS) which is an al-
ternating projection algorithm. The notion of projection was
extended by Moreau [21] by introducing the proximity oper-
ator of a functionϕ ∈ Γ0(R

I):

proxϕ : R
I → R

I : v 7→ arg min
u∈RI

1
2
‖u− v‖2 + ϕ(u). (12)

It can be observed that whenϕ is the indicator functionιC of
a nonempty closed convex subsetC of R

I , i.e.

(∀u ∈ R
I) ϕ(u) =

{

0, if u ∈C;
+∞, otherwise,

(13)

proxιC reduces to the projectorPC ontoC. Other examples of
proximity operators corresponding to the potential functions
of standard log-concave univariate probability densitieshave
been listed in [3, 7, 9]. The proximity operators used in the
experimental part of this paper, are recalled below.

Example 3.1 Let χ > 0, and set

ϕ : R → ]−∞,+∞] : ξ 7→ χ |ξ |. (14)

Then, for every ξ ∈ R,

proxϕ ξ = sign(ξ )max{|ξ |− χ ,0}. (15)

Example 3.2 [7]
Let α > 0, and set

ϕ : R → ]−∞,+∞]

ξ 7→







−χ ln(ξ )+ αξ , if χ > 0 and ξ > 0;
αξ , if χ = 0 and ξ ≥ 0;
+∞, otherwise.

(16)
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Then, for every ξ ∈ R,

proxϕ ξ =
ξ −α +

√

|ξ −α|2 +4χ
2

. (17)

Numerous iterative algorithms are based on proximity
operators such as FB or DR algorithms allowing us to mini-
mize a sum of two functions with secured convergence prop-
erties. The former one can be regarded as more restrictive
than the latter one in the sense that it requires the Lipschitz
differentiability of one function. To solve the considered
minimization problems formulated in (2) and (3), two solu-
tions can be considered. On the one hand, DR formulation
in a product space leads to the PPXA algorithm presented in
[9] for minimizing a sum of more than two convex functions.
However, one of the difficulties of the considered minimiza-
tion problems formulated in (2) and (3) is that they involve
linear operators. A solution consists of using the following
result:

Proposition 3.3 [8]
Let ϕ ∈ Γ0(R

J) and let L ∈ R
J×I . Suppose that LL⊤ = χ I ,

for some χ ∈ ]0,+∞[. Then, ϕ ◦L ∈ Γ0(R
I) and

proxϕ◦L = I +χ−1L⊤(proxχϕ − I )L. (18)

On the other hand, augmented Lagrangian algorithms such as
ADMM (sometimes also named alternating split Bregman al-
gorithm) can be used [10, 11]. Both solutions are considered
in the literature for dealing with tight frame representations.

In [22], it is shown that PPXA and ADMM can be put in
a unifying framework based on proximity operators. The ap-
plication of the resulting algorithm (called PPXA+) to Prob-
lem (2) (resp. Problem (3)) is given in Algorithm 1 (resp.
Algorithm 2). (In these algorithms, the sequences(ai,ℓ)1≤i≤n
and (b j,ℓ)1≤ j≤m correspond to possible numerical errors in
the computation of the proximity operators at iterationℓ.)

Algorithm 1
Initialization












(ηi)1≤i≤n ∈ ]0,+∞[n ,(κ j)1≤ j≤m ∈ ]0,+∞[m

(vi,0)1≤i≤n ∈ (RN)n,(w j,0)1≤ j≤m ∈ (RK)m

x0 = argminu∈RK ∑n
i=1 ηi‖LiF⊤u− vi,0‖

2

+∑m
j=1 κ j‖u−w j,0‖

2

Forℓ = 0,1, . . .










































For i = 1, . . . ,n
⌊ pi,ℓ = proxfi/ηi

vi,ℓ + ai,ℓ

For j = 1, . . . ,m
⌊ r j,ℓ = proxg j/κ j

w j,ℓ + b j,ℓ

λℓ ∈]0,2[

cℓ = argminu∈RK ∑n
i=1 ηi‖LiF⊤u− pi,ℓ‖

2

+∑m
j=1 κ j‖u− r j,ℓ‖

2

For i = 1, . . . ,n
⌊ vi,ℓ+1 = vi,ℓ + λℓ

(

LiF⊤(2cℓ− xℓ)− pi,ℓ
)

For j = 1, . . . ,m
⌊ w j,ℓ+1 = w j,ℓ + λℓ

(

2cℓ− xℓ− r j,ℓ
)

xℓ+1 = xℓ + λℓ(cℓ − xℓ)

The convergence of the sequence(xℓ)ℓ∈N (resp.(yℓ)ℓ∈N)
generated by Algorithm 1 (resp. Algorithm 2) is established
under the following assumptions:

Algorithm 2
Initialization












(ηi)1≤i≤n ∈ ]0,+∞[n ,(κ j)1≤ j≤m ∈ ]0,+∞[m

(vi,0)1≤i≤n ∈ (RN)n,(w j,0)1≤ j≤m ∈ (RK)m

y0 = argminu∈RN ∑n
i=1 ηi‖Liu− vi,0‖

2

+∑m
j=1κ j‖Fu−w j,0‖

2

For ℓ = 0,1, . . .










































For i = 1, . . . ,n
⌊ pi,ℓ = proxfi/ηi

vi,ℓ + ai,ℓ

For j = 1, . . . ,m
⌊ r j,ℓ = proxg j/κ j

w j,ℓ + b j,ℓ

λℓ ∈]0,2[

cℓ = argminu∈RN ∑n
i=1 ηi‖Liu− pi,ℓ‖

2

+∑m
j=1κ j‖Fu− r j,ℓ‖

2

For i = 1, . . . ,n
⌊ vi,ℓ+1 = vi,ℓ + λℓ

(

Li(2cℓ− yℓ)− pi,ℓ
)

For j = 1, . . . ,m
⌊ w j,ℓ+1 = w j,ℓ + λℓ

(

F(2cℓ− yℓ)− r j,ℓ
)

yℓ+1 = yℓ + λℓ(cℓ− yℓ)

Assumption 3.4

1.
(

⋂n
i=1 ridom fi ◦LiF⊤

)

∩
(

⋂m
j=1 ridomg j

)

6= ∅

(resp.
(

⋂n
i=1 ridom fi ◦Li

)

∩
(

⋂m
j=1 ridomg j ◦F

)

6= ∅).

2. There exists λ ∈]0,2[ such that (∀ℓ∈ N), λ ≤ λℓ+1 ≤ λℓ.
3. (∀i ∈ {1, . . . ,n}), ∑ℓ∈N ‖ai,ℓ‖ < +∞

and (∀ j ∈ {1, . . . ,m}), ∑ℓ∈N ‖b j,ℓ‖ < +∞.

In these algorithms, a large-size matrix inversion must be
performed for solving the quadratic minimization requiredin
the initialization step and in the computation of the interme-
diate variables(cℓ)ℓ∈N. As shown next, the form of the frame
operatorF made in (8) renders this inversion tractable:

• for SF (Algorithm 1)

κ
( n

∑
i=1

ηiFL⊤
i LiF

⊤ + κ I
)−1

= I −F
(

κ
(

n

∑
i=1

ηiL
⊤
i Li

)−1
+ F⊤F

)−1
F⊤,

= I −F
(

κ
(

n

∑
i=1

ηiL
⊤
i Li

)−1
+ µU

Q

∑
q=1

V⊤
q Vq

)−1
F⊤, (19)

• for AF (Algorithm 2)

( n

∑
i=1

ηiL
⊤
i Li + κF⊤F

)−1

=
( n

∑
i=1

ηiL
⊤
i Li + κµU

Q

∑
q=1

V⊤
q Vq

)−1
(20)

by settingκ = ∑m
j=1 κ j.

The last matrix inversions in (19) and (20) are easily
performed by noticing that(Li)1≤i≤n and(Vq)1≤q≤Q can be
jointly decomposed by Fourier diagonalization techniques.
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4. EXPERIMENTAL RESULTS

In this part, we apply the proposed optimization methods to
image restoration. More specifically, we consider the follow-
ing SF and AF problems:

min
x∈RK

f1(T F⊤x)+ ιC(F⊤x)+ g1(x) (21)

and
min
y∈RN

f1(Ty)+ ιC(y)+ g1(Fy) (22)

whereF represents the 2-band DTT [20] which, as men-
tionned in Section 2.2, is a particular case of the frame opera-
tor subclass defined by (8), and whereT ∈ R

N×N denotes the
matrix associated with a 2D (periodic) convolution operator.
Problem (21) (resp. (22)) is a particular case of Problem (2)
(resp. (3)) wheren = 2 andm = 1. f1 denotes the data fi-
delity term andf2 = ιC is the indicator function (see (13))
of a nonempty closed convex setC of R

N (for example, re-
lated to support or value range contraints).g1 corresponds
to the regularization term operating in the frame domain. In
the considered problems,L1 = T andL2 = I . The matricesT
and(Vq)1≤q≤Q (related toF) as defined above can be diago-
nalized by using a 2D Discrete Fourier Transform (DFT), in
order to efficiently perform the matrix inversions in (19) and
(20).

Some experiments are presented in Figures 1 and 2, for
images degraded by Poisson noise with scaling factorα =
0.8 and by a uniform blur of kernel size 3× 3. The DTT
[20] is computed using symlets of length 6 over 3 resolution
levels. The data fidelity termf1 corresponds to the general-
ized Kullback-Leibler divergence, which is well adapted to
Poisson noise. Its proximity operator is derived from Exam-
ple 3.2.C = [0,255]N models a constraint on the range of the
pixel values andg1 corresponds to a classical regularization
of the form:

g1 : (ξk)1≤k≤K 7→
K

∑
k=1

τk|ξk|
βk . (23)

In our simulations, the parameters(τk)1≤k≤K ∈]0,+∞[K and
(βk)1≤k≤K ∈ {1,4/3,3/2,2}K in (23) are empirically chosen
to maximize the signal-to-noise-ratio (SNR). Whenβk ≡ 1,
the proximity operator ofg1 reduces to a soft thresholding as
shown by Example 3.1.

Figure 1 shows a comparison between the use of a com-
plex DTT and of a tight frame version of the complex DTT
(where for everyq ∈ {1, . . . ,4}, Vq = I ). In this simula-
tion example, a cropped version of “Barbara” image (N =
128× 128) is considered by adopting a SF criterion. The
use of the non-tight DTT including prefilters allows us to im-
prove the quality of the results both visually and in terms of
SNR and SSIM [23].

Figure 2 displays a second restoration example on a
cropped version of “Marseille” image (N = 128×128), still
by considering DTT, both for the AF and SF criteria. The
restoration results present slight differences in favour of the
AF approach.
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