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ABSTRACT
In this paper, we represent a new approach for robust speaker

independent ASR using binary masks as feature vectors. This
method is evaluated on an isolated digit database, TIDIGIT in
three noisy environments (car, bottle and cafe noise types taken
from the DRCD Sound Effects Library). Discrete Hidden Markov
Models are used for the recognition and the observation vectors are
quantized with the K-means algorithm using a Hamming distance.
It is found that a recognition rate as high as 92% for clean speech is
achievable using Ideal Binary Masks (IBM) where we assume prior
target and noise information is available. We propose that using a
Target Binary Mask (TBM), where only prior target information
is needed, performs as good as using IBMs. We also propose a
TBM estimation method based on target sound estimation using
non-negative sparse coding (NNSC). The recognition results for
TBMs with and without the estimation method for noisy conditions
are evaluated and compared with those of using Mel Frequency
Cepstral Coefficients (MFCC). It is observed that binary mask
feature vectors are robust to noisy conditions.

1. INTRODUCTION

Automatic Speech Recognition (ASR) systems have been improv-
ing significantly since the 50’s. However, there are still many chal-
lenges to be surpassed to reach the human performance or beyond.
It is well known that one of the key challenges is the robustness un-
der noisy conditions. Another challenge is the need for innovative
modeling frameworks. Most of the work has been focusing on the
successful representations such as mel frequency cepstral coeffients
(MFCC). However, because of a long history of research within the
current ASR paradigm, the performance enhancement usually re-
ported is very little. We will suggest a new approach which gives
the state of the art performance that is robust to noisy environments.

Since the human auditory system has a great performance, it is
tempting to use the human auditory system as an inspiration for an
efficient ASR system. Auditory Scene Analysis (ASA) studies per-
ceptual audition and describes the process how the human auditory
system organizes sound into meaningful segments [1]. Computa-
tional ASA (CASA) makes use of some of the ASA principles and
it is claimed that the goal of CASA is the ideal binary mask (IBM)
[2]. IBM is a binary pattern obtained with the comparison of the
target and the noise signal energies with prior information of target
and noise signals separately.IBMs have been shown to improve
speech intelligibility when applied to noisy speech signals. The lis-
teners have been exposed to the resynthesized speech signals from
the IBM-gated signal and almost perfect recognition results have
been obtained even for a signal-to-noise-ratio (SNR) as low as -60
dB which corresponds to pure noise [3, 4]. Having proven to make
improvements on speech intelligibility of humans, it is inevitable
not to make the use of CASA and thusIBMs for machine recog-
nition systems. Green et. al. have studied this in [5]. They used
CASA as a preprocessor to ASR and used only the time-frequency
regions of the noisy speech which are dominated by the target sig-
nal to obtain the recognition features. Therefore, they concluded

that occluded (incomplete) speech might contain enough informa-
tion for the recognition.

In this work we go one step further and explore the possibility
that not only the occluded speech but the mask itself might carry
sufficient information for ASR. The most obvious benefit of this
new approach is the simplicity with the use of binary information
on the mask. The difficulty about using this method would be the
need for the prior information of the target and noise signals to es-
timate theIBM. However, we minimize this need by using Target
Binary Mask (TBM) where only target information is needed and
compared to a speech shaped noise (SSN) matching the long term
spectrum of a large collection of speakers. UsingTBMs has also
been proven to give high human speech intelligibility [4]. In addi-
tion, we propose aTBM estimation method based on non-negative
sparse coding (NNSC) [6].

This paper will focus on a speaker-independent isolated digit
recognizer with hidden Markov models (HMM) using the binary
masks as the feature vectors. In Section 2 we give the modeling
framework. The experiments and results are explained in Section 3.
Finally Section 4 states the conclusion.

2. MODELING FRAMEWORK

2.1 Ideal Binary Masks

The computational goal of CASA, theIBM, is obtained by keeping
the time-frequency regions of a target sound which have more en-
ergy than the interference and discarding the other regions. More
specifically, it is one when the target is stronger than the noise for
a local criteria (LC), and zero elsewhere. The time-frequency (T-F)
representation is obtained by using the model of the human cochlea
as the basis for data representation [7]. IfT(t, f ) andN(t, f ) de-
note the target and noise time-frequency magnitude, then theIBM
is defined as

IBM(t, f ) =

{

1, if T(t, f )−N(t, f )> LC
0, otherwise

(1)

Figure 1 shows time-frequency representations of the target,
noise and mixture signals. The target is digit six by a male speaker
while the noise isSSNwith 0 dB of SNR. The correspondingIBM
with LC of 0 dB is also seen in Figure 1. Calculating anIBM re-
quires that the target and the noise are available separately.

LC andSNRvalues in Equation 1 are two important parameters
in our system. IfLC is kept constant, increasing or decreasing the
SNRmakes the mask get closer to all-ones mask or all-zeros mask
respectively. The change inIBMs for a fixedLC with differentSNR
values is shown in Figure 2 for a digit sample. As also seen from this
figure, with fixed threshold, low or highSNRvalues result in masks
with little or redundant information respectively. Meanwhile, in-
creasing theSNRvalue is identical to decreasing theLC value and
vice versa. Therefore, the relative criterionRC= LC−SNRwas
defined in [4] and the effect ofRCof an IBM on speech perception
was studied. They calculatedIBMs with priori target and noise in-
formation and multiplied the mixture signal with the corresponding
IBMs. They,exposed human subjects to resynthesized IBM-gated
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Figure 1: llustration of T-F representations of a target, noise (SSN)
and mixture signals with the resultant IBM (0 dB of SNR, 32 fre-
quency channels and window length of 20ms)red regions: highest
energy,blue regions: lowest energy.

mixtures and found high human speech intelligibility (over 95%)
for the RC range of [-17 dB, 5 dB]. We took thisRC range as a
reference and the results of our ASR system coincided with human
speech perception results in terms ofRC range, which is shown in
section 3.
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Figure 2: IBMs of digit three with SSN for a fixed LC at 0 dB and
for different SNR values .

2.2 Target Binary Masks

The binary mask calculated based on only the target signal was stud-
ied and is called Target Binary Mask (TBM) [8]. TBMs were further
investigated in [4] in terms of speech intelligibility and the results
were comparable to those ofIBMs. The definition ofTBM as seen
in equation 2 is very similar to that ofIBM except that while obtain-
ing TBM the target T-F regions are compared to a reference SSN
matching the long-term spectrum of the target speaker. (It is also
possible to compare the target to a frequency dependent threshold
corresponding to the long term spectrum of SSN)

TBM(t, f ) =

{

1, if T(t, f )−SSN(t, f )> LC
0, otherwise

(2)

Figure 3 illustrates the T-F representation of a target signal and
the mixture signal with cafe noise at 0 dB SNR. That figure also
shows the resultantIBM andTBM patterns withLC of 0 dB, and
the difference between them is discernible. TheTBM mimics the
target pattern better, whereas theIBM pattern depends on the noise
type.

Some of the properties ofTBM can be very practical. First of
all, acquiring aTBM needs only the priori information of the target.
Therefore, estimating theTBM can be much more convenient in
some applications, especially if speech enhancement techniques are
used. In the case of an ASR system that is robust to noise types, use
of TBMs in the training stage requires less computational effort as
opposed to the use ofIBMs where it is needed to include allIBMs
for all different noise types in the training stage.

Figure 3: llustration of T-F representations of a target (digit six),
mixture (target+cafe noise) and mixture signals with the resultant
IBM and TBM red regions: highest energy,blue regions: lowest
energy.

Figure 4: IBMs for different digits for the same speaker

2.3 ASR Using Binary Masks

As mentioned previously, we investigate if the mask itself can be
used to recognize different words. The distinctivity of the masks
can be observed easily in Figure 4, in whichIBMs for four different
digits with SNRof -6 dB using SSN as interference are shown. (
Note thatIBM is identical toTBM when the noise type is SSN. )
Moreover, as seen in Figure 5 , the masks for different speakers for
the same digit are very similar. Thus, the patterns in every mask
are characteristic for each digit which results that these patterns are
promising representations for speech recognition.

Figure 5: IBMs for digit three for different speakers.

We use a discrete Hidden Markov Model (HMM) as the recog-
nition engine [9]. As the vector quantization method before HMM,
we choose to use K-means algorithm, which has been shown to per-
form as well as many other clustering algorithms and is computa-
tionally efficient [10] and proven to be successfully applicable to
classify binary data [11]. Figure 6 illustrates the acquisition of the
feature vectors to be classified by K-means. We stack the columns
of the IBM into a vector. The number of columns to be stacked
is a parameter that has been optimized for this work (it is 3 for
this study) as well as other parameters: the codebook size, the state
number of the HMM, the number of frequency bands, and the win-
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dow length of theIBM. The optimization process can be found in
detail in [12].

Figure 6: Acquistion of the feature vectors to be clustered by K-
means.

The whole system is summarized in Figure 7. First, the masks
for training and test data are calculated. The feature vectors ob-
tained fromIBMs are quantized with K-means to acquire the ob-
served outputs for discrete HMM. One HMM for each digit is
trained with the corresponding data. Finally, the test masks are in-
put to each HMM and the test digit is assigned to the one with the
highest likelihood. We use only clean data for training. However,
for testing we use clean data to see the best performance that can
be obtained with our system, an unprocessed mixture signal to see
the worst case performances under noisy conditions and finally an
estimated target signal from the mixture to see the improved results
under noisy conditions.

Figure 7: The schematics representation of the system used.

2.4 Estimation of TBMs

Estimation ofTBM is simpler compared to that of anIBM as men-
tioned previously. Once the target signal is estimated, it is compared
to a referenceSSNsignal in the T-F domain. For speech and noise
separation, non-negative sparse coding (NNSC), a combination of
sparse coding and non-negative matrix factorization, is used [6].
This method was proven to be successful for wind noise reduction
in [13], and we took this work as reference for our method.

The principle in NNSC is to factorize the non-negative signal,
X into a dictionaryW and a codeH:

X ≈WH. (3)

The columns of the dictionary can be considered as the basis and
the code matrix can be considered to have the weights for each of
the basis vectors constituting the signalX. In our caseX is the T-F

representation of a signal which is non-negative (details about the
acquisition of T-F spectrogram are in section 3). We use the method
described in [13] that is based on the algorithm in [14].W andH are
initialized randomly, and updated according to the equations below
until convergence:

H←− H×
WT .X

WT .W.H +λ
, (4)

W←−W×
X.HT +W× (1.(W.H.HT ×W))

W.H.HT +W× (1.(X.HT ×W)))
. (5)

Here, (.) indicate direct multiplication, while (×) and ( ) indicate
point wise multiplication and division. 1 is a square matrix of ones
of suitable size.

When the speech signal is noisy, and if the noise signal is as-
sumed to be additive, then

X = Xs+Xn≈ [WsWn]

[

Hs
Hn

]

, (6)

whereXs andXn denote the speech and noise. We precompute the
noise dictionaryWn using noise recordings and using equations 4
and 5. We keep this precomputedWn fixed and learn speechXs
using the following iterative algorithm,

Hs←− Hs×
WT

s .X
WT

s .W.H + ls
, (7)

Hn←− Hn×
WT

n .X
WT

n .W.H + ln
, (8)

Ws←−Ws×
X.HT

s +Ws× (1.(W.H.HT
s ×Ws))

W.H.HT
s +Ws× (1.(X.HT

s ×Ws)))
, (9)

The clean speech is estimated as

Xs =WsHs. (10)

Finally, theTBM is estimated by comparing the estimated speech
signalXs to the referenceSSNsignal spectrogram using equation
2. As mentioned previously, differentRCvalues lead to masks with
different densities and only choosing the rightRC values leads to
high recognition results. However, we learn the rightRC values
for ASR after training and testing withIBMs, where we have the
pure target and noise signals. (The results can be seen in section 3
in figure 8.) We assume that after NNSC we have the pure target
spectrogram. Then, since we also have the referenceSSNsignal
spectrogram that is also used during training, we only need to adjust
SNRandLC values for the rightRC value. However, to obtain the
SNRbetween the estimated target and speech, we do not go back to
the time domain which would be a waste of time and computational
power. Thus, we define a newSNRin the T-F domain which is
calculated by the ratio between the sum of all T-F bins of the target
signal to the sum of all T-F bins of the noise signal and is called as
SNRTFD. We observed thatRCTFD = LCTFD−SNRTFD range is
similar toRCrange found before (The results can be seen in section
3 in figure 10).

3. EXPERIMENTAL EVALUATIONS

In the experiments, data from TIDIGIT database were used. The
spoken utterances of 37 male and 50 female speakers for both train-
ing and test data were taken from the database. There are two exam-
ples from every speaker for each of 11 digits (zero-nine, oh) making
174 training, 87 test and 87 verification utterances for each digit.
The verification set has been used to obtain the optimized parame-
ters for HMM and for NNSC and the final results are obtained using
the test set. The experiments were carried out in MATLAB and an
HMM toolbox for MATLAB by Kevin Murphy was used [15]. The
experiments have also been verified using the HMMs in the Sta-
tistical Toolbox of MATLAB. For NNSC the NMF:DTU toolbox
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for MATLAB [16] has been adjusted for our system and used. The
time-frequency representations of the signals sampled at 8kHz have
been obtained using a gammatone filter with 32 frequency channels
equally distributed on the ERB scale within the range of [80 Hz,
4000 Hz]. The output from each filterbank channel was divided
into 20 ms frames with 10 ms overlap. SSN, car, bottle(the sound
of many bottles chinking on a production line) and cafe noise were
used through the experiments [17]. A left-to-right HMM with 10
states was used to model each digit. The binary vectors were quan-
tized into a codebook of size 256 with K-means. The HMMs were
trained withIBMs obtained withLC of 0 dB and with differentSNR
values in the range of [-2 dB,16 dB] with 2 dB steps only usingSSN
as the reference noise signal. We compare the method with a stan-
dard approach using 20 static MFCC features. MFCC vectors are
also stacked as in Figure 6 and all parameters are the same except
for the optimized codebook size of 32. The optimal codebook size
is smaller since we have less training data for MFCC. One minute
of SSN, car, bottle and cafe noise recordings were used to obtain
the dictionaries for NNSC. For training, verification or test noise
samples different parts of corresponding noise types were used.

Recognition results obtained for the test set forIBMs withSSN
for LC of 0 dB and differentSNRvalues are presented in Figure
8. The rate curve is bell-shaped, i.e., the rate does not increase
monotonously whileSNRincreases. This is because of the previ-
ously mentioned fact that either increasing or decreasing theSNR
value results in masks closer to all-ones or all-zeros masks and thus
in the decrease of the recognizability of the masks. Figure 8 shows
that 92% recogniton rate is obtained forRCof -6 dB. Thus, the mask
with RCof -6 dB gives the maximum performance.
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Figure 8: The recognition rates with IBMs for LC=0 dB and
SNR=[-2 dB, 16 dB]

If the LC value can be adjusted so that the mask is as close to the
maximum-performance mask as possible (RC is close to -6 dB), we
can obtain high recognition results for differentSNRvalues. Choos-
ing the correctLC value under noisy conditions is a challenge since
we know neither theSNRvalue nor the noise spectrogram in real
life applications. This problem will be solved by using the NNSC
method assuming we have information about the noise character-
istics. However, it is reasonable to check the recognition results
that can be obtained comparing unprocessed mixture signals toSSN
with adjustedLC values (results are obtained with differentLC val-
ues and the best result is recorded) before exploring that method.
Figure 9 shows the recognition rates obtained using HMMs trained
with IBMs obtained by clean data andSSN, with the test set added
different noise types at anSNRrange of [0 dB, 20 dB] (with ad-
justedRC value for the best performance). In that figure, the re-
sults obtained using static MFCC features are also shown. It can be
seen that usingIBM features yields more noise-robust recognition
rates than using MFCC features. We point out the fact that we used
only static MFCC features and did not use any of the improvement
methods suggested for MFCC that result in a better performance
[18]. Nevertheless, we did not use dynamical features that could
be obtained fromIBMs either. In addition, we believe that the per-
formance ofIBMs for ASR can also be improved in various ways

such as mask estimation methods [19]. Moreover, if we consider
the ASR results obtained using MFCC within recent works, our re-
sults are comparable [18]. (We cannot make a direct comparison
though, since they use a different system and database.) In addition,
our method establishes a new route for robust ASR that is open for
further improvements. (Some additional results and figures of the
whole system can be found at [12]).
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Figure 9: The recognition rates for TBMs and MFCC features at
SNR range of [0 dB, 20 dB]

As mentioned previously, for NNSC we needed to the find
RCTFD range giving high recognition results. The corresponding
results can be seen in Figure 10 and -6 dB ofRCTFD gives the max-
imum performance and RC between -16 dB and 2 dB gives rea-
sonable recognition results (over 80%). The optimized parameters
for NNSC for this work are the size of the dictionary of noise and
speech,Wn andWs. Other parametersλ ,ls and ln were just set to
be very small numbers taking reference the results in [13]. To find
the optimal parameters for the size ofWn andWs, we checked the
recognition results for different size numbers between 4 and 512 for
all noise types withSNRTFD of 10 dB andLC of 0 dB. We choose
64 forWn and 128 forWs based on the results seen in Figure 11.
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Figure 10: The recognition rates with IBMs forLC=0 dB and
SNRTFD=[-2 dB, 16 dB]
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Figure 11: The recognition rates for different size ofWn andWs

In Figure 12, the recognition rates obtained with noisy mix-
tures before and after using NNSC is shown (with referenceSSNat
SNRTFD of 0 dB). As seen on the left of this figure, before NNSC,
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Figure 12: The recognition rates before and after NNSC

differentLC values within the good RC range found before (-4 dB
to 2 dB), result in scattered recognition rates. For cafe noise at 10
dB SNR, it is seen that before NNSC the rates can change from 30%
to 60% for those differentLC values. However, after using NNSC
to estimate the masks as explained, it is seen that the rates for those
LC values give the best performances, solving the choice of the right
LC values for our ASR system. Using NNSC not only solves this
problem but also leads to higher recognition results especially for
low SNRvalues at the price of a decrease in recognition results for
high SNRvalues. However, the decrease in highSNRvalues is not
as much as the increase in low ones. Finally, we obtain 60% to 70%,
16% to 73% and 40% to 70% recognition rates forSNRvalues be-
tween 0 dB and 20 dB for car, bottle and cafe noises respectively,
which are comparable to the state-of-the-art results [18, 20].

4. CONCLUSION

In this paper, we investigated a new feature extraction method
for ASR using ideal and target binary masks. It is found that
using binary information from the masks directly as feature
vectors results in high recognition performance. We constructed
a speaker-independent isolated digit recognition system. The
experiments were carried out with TIDIGIT database, using
discrete HMM as the recognition engine. The K-means algorithm
with hamming distance was used for vector quantization. The
maximum recognition rate achieved for clean speech is 92%. In
addition, the robustness of the binary mask features to different
noise types (car,bottle and cafe) was explored and the results were
compared to the MFCC features results. ATBM estimation method
using non-negative sparse coding has been demonstrated to give
state of the art performance. It is concluded that noise-robust ASR
systems can be built using binary masks.
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