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ABSTRACT

This paper explores the potential of applying com-
pressed sensing (CS) to multichannel audio coding.
In this context, we consider how sinusoidally-modelled
multichannel audio signals might be encoded using com-
pressed sensing, as opposed to directly encoding the si-
nusoidal parameters (amplitude, frequency, phase) as
current state-of-the-art methods do. The results, ob-
tained from listening tests using 80 sinusoids per frame
with no residual noise signal, show that such a model
can achieve equal or better performance to that of the
state-of-the-art methods. Given that CS can lead to
novel coding systems where the sampling and compres-
sion operations are combined into one low-complexity
step, this can be considered as an important step to-
wards applying the CS framework to audio coding ap-
plications.

1. INTRODUCTION

Multichannel audio allows the recreation of rich sound
scenes, through the transmission of multiple audio chan-
nels. As the number of channels used can be many times
that of a 2-channel stereo signal (8 channels for 7.1 mul-
tichannel audio, for example), the bitrate requirements
can be considerable.

The sinusoidal model [1, 2] represents an audio sig-
nal using a small number of time-varying sinusoids. The
model allows for a compact representation of the orig-
inal signal and for efficient encoding and quantization.
Extending the sinusoidal model to multichannel audio
applications has also been proposed (e.g. [3]). State-of-
the-art methods for encoding and compressing the pa-
rameters of the model (amplitudes, frequencies, phases)
are based on directly encoding these parameters [4–7].

Compressed sensing (CS) [8, 9] seeks to represent a
signal using a number of linear, non-adaptive measure-
ments. Usually the number of measurements is much
lower than the number of samples needed if the sig-
nal is sampled at the Nyquist rate. Thus, CS com-
bines compression and sampling of a signal into one
low-complexity step. An important restriction is that
CS requires that the signal is sparse in some basis—in
the sense that it is a linear combination of a small num-
ber of basis functions—in order to correctly reconstruct
the original signal. This prohibits the application of CS
to a large class of signals, including audio signals, which
are of interest in this paper.
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Thus, we apply the CS framework to the
sinusoidally-modelled part of an audio signal. This is
a sparse signal, since by definition it contains only a
small number of frequency components for each time
segment. In our previous work [10, 11], we introduced
a novel method of encoding the parameters of a mono-
phonic sinusoidal model using CS. Here, we extend that
work by deriving a system which applies CS to the case
of sinusoidally-modelled multichannel audio. Listening
tests demonstrate that the proposed system can achieve
equal or better performance compared to current state-
of-the-art sinusoidal coding methods. Given the advan-
tages of the CS methodology in terms of computational
complexity, applicability to sensor networks and local
signal compression, as well as inherent encryption, this
paper provides an important step towards applying CS
to audio coding, at least in low-bitrate audio applica-
tions where the sinusoidal part of an audio signal pro-
vides sufficient quality. It is shown here that, except
from one primary (reference) audio channel, a simple
low-complexity system can be used to encode the si-
nusoidal model for all remaining channels of the multi-
channel recording. It is noted that low-complexity local
encoding of audio signals could enable a variety of audio-
related applications, such as environmental monitoring,
recording audio in large outdoor venues, and so forth.
At the same time, the paper proposes a novel psychoa-
coustic modelling analysis for the selection of sinusoidal
components in a multichannel audio recording.

2. SINUSOIDAL MODEL

The sinusoidal model was initially applied to the anal-
ysis/synthesis of speech [1]. A signal s(t) is represented
as the sum of a small number K of sinusoids with time-
varying amplitudes and frequencies. This can be written
as

s(t) =

K
∑

k=1

αk(t) cos[βk(t)], (1)

where αk(t) and βk(t) are the instantaneous amplitude
and phase, respectively. To estimate the parameters
of the model, one needs to segment the signal into a
number of short-time frames and compute a short-time
frequency representation for each frame.

Each component in the l-th frame is represented as a
triad of the form {αl,k, fl,k, θl,k} (amplitude, frequency,
phase), corresponding to the k-th sine wave. Practically,
after the sinusoidal parameters are estimated, a residual
noise component is computed by subtracting the sinu-
soidal component from the original signal.

Current state-of-the-art methods for sinusoidal mod-
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elling employ perceptual matching pursuit algorithms to
determine the model parameters of each frame. To per-
form multichannel sinusoidal analysis, we have extended
the method presented in [12] to include state-of-the-art
psychoacoustic analysis [13]. At each iteration, the al-
gorithm picks a sinusoidal component frequency that is
optimal for both channels, as well as channel-specific
amplitudes and phases. This choice minimizes the per-
ceptual distortion measure

Di =
∑

c

∫

Ai,c(ω)|Ri,c(ω)|2dω, (2)

where Ri,c(ω) is the Fourier transform of the residual
signal of the c-th channel after the i-th iteration, and
Ai,c(ω) is a frequency weighting function set as the in-
verse of the current masking threshold energy. The con-
tributions of each channel are simply summed to obtain
the final measure.

This paper utilizes the improved masking model de-
tailed in [13]. An important question is what masking
model is suitable for multichannel audio where the dif-
ferent channels have different binaural attributes in the
reproduction. In transform coding, a common prob-
lem is caused by Binaural Masking Level Difference
(BMLD); sometimes quantization noise that is masked
in monaural reproduction is detectable because of bin-
aural release, and using separate masking analysis for
different channels is not suitable. However, this effect
in parametric coding is not so well established.

We performed preliminary experiments using:
firstly, separate masking analysis, i.e. individual Ai,c(ω)
based on the masker of channel c for each signal sepa-
rately (see (2)), secondly, using the masker of the sum
signal of all channel signals to obtain Ai(ω) for all c,
and thirdly, power summation of the other signals’ at-
tenuated maskers to the masker of channel c according
to

Ai,c(ω) = 1/[Mi,c(ω) +
∑

k
k 6=c

wkMi,k(ω)], (3)

where Mi,c(ω) is the masker energy of the c-th channel
after the i-th iteration, wk the estimated attenuation
(panning) factor that was varied heuristically, and k it-
erates through all channel signals excluding c. In this
paper we chose to use the first method, i.e. separate
masking analysis for channels (wk = 0), for the rea-
son that we did not find notable differences in BMLD
noise unmasking, and that the sound quality seemed to
be marginally better with headphone reproduction. For
loudspeaker reproduction, the second or third method
may be more suitable.

The use of this psychoacoustic multichannel sinu-
soidal model resulted in sparser modelled signals, in-
creasing the effectiveness of our compressed sensing en-
coding.

3. COMPRESSED SENSING

In the compressed sensing methodology, a signal which
is sparse in some basis can be represented using much
fewer samples than the Nyquist rate would suggest.
Given that a sinusoidally-modelled audio signal is
clearly sparse in the frequency domain, our motivation
has been to encode such signal using a small part of its
actual samples, thus avoiding encoding a large degree
of unnecessary information. In the following, we briefly

review the CS methodology.

3.1 Measurements

Let xl be the N samples of the sinusoidal component in
the sinusoidal model in the l-th frame. It is clear that xl

is a sparse signal in the frequency domain. To facilitate
our compressed sensing reconstruction, we require that
the frequencies fl,k are selected from a discrete set, the
most natural set being that formed by the frequencies
used in the N -point fast Fourier transform (FFT). Thus
xl can be written as xl = ΨX l, where Ψ is an N × N
inverse FFT matrix, and X l is the FFT of xl. As xl

is a real signal, X l will contain 2K non-zero complex
entries representing the real and imaginary parts—or in
an equivalent description, the amplitudes and phases—
of the component sinusoids.

In the encoder, we take M non-adaptive linear mea-
surements of xl, where M � N , resulting in the M × 1
vector yl. This measurement process can be written as

yl = Φlxl

= ΦlΨX l, (4)

where Φl is an M × N matrix representing the mea-
surement process. For the CS reconstruction to work,
Φl and Ψ must be incoherent. In order to provide in-
coherence that is independent of the basis used for re-
construction, a matrix with elements chosen in some
random manner is generally used. As our signal of in-
terest is sparse in the frequency domain, we can simply
take random samples in the time domain to satisfy the
incoherence condition, see [14] for further discussion of
random sampling. In this case, Φl is formed by ran-
domly selecting M rows of the N × N identity matrix.

3.2 Reconstruction

Once yl has been measured, it must be quantized and
sent to a decoder, where it is reconstructed. Recon-
struction of a compressed sensed signal involves trying
to recover the sparse vector X l. It has been shown [8,9]
that

X̂ l = arg min ‖X l‖p s.t. yl = ΦlΨX l, (5)

with p = 1 will recover X l with high probability if
enough measurements are taken. The `p norm is de-

fined as ‖a‖p = (
∑

i |ai|
p)

1

p . It has recently been shown
in [15] that p < 1 outperforms the p = 1 case, and it is
this method that we use for reconstruction in this paper.

A feature of CS reconstruction is that perfect recon-
struction cannot be guaranteed, and thus only a prob-
ability of “perfect” reconstruction can be guaranteed,
where “perfect” defines some acceptability criteria, typ-
ically a signal-to-distortion ratio. This probability is
dependent on M , N , K and the quantization used.

Another important feature of the reconstruction is
that when it fails, it can fail catastrophically for the
whole frame. Not only will the amplitudes and phases
of the sinusoids in the frame be wrong, but the sinu-
soids selected—or equivalently, their frequencies—will
also be wrong. In the audio environment, this is sig-
nificant as the ear is sensitive to such discontinuities.
Thus it is essential to minimize the probability of frame
reconstruction errors (FREs), and if possible eliminate
them.

Let F l be the positive FFT frequency indices in xl,
whose components Fl,k are related to the frequencies
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Figure 1: A block diagram of the proposed system. In the encoder, the sinusoidal part of each audio channel
is encoded by randomly sampling its time-domain representation, and then quantizing the random samples using
scalar quantization. In the decoder, the sinusoidal part is reconstructed from the random samples.

in the xl by fl,k = 2πFl,k/N . As F l is known in the
encoder, we can use a simple forward error detection
scheme to detect whether an FRE has occurred. We
found that an 8-bit cyclic redundancy check (CRC) on
F l detected all the errors that occurred in our simula-
tions.

Once we detect an FRE, we can either re-encode and
retransmit the frame in error or use some interpolation
between the correct frames before and after the errored
frame to estimate it. Previous work has shown that
a suitable target for the probability of FRE (PFRE) is
less than 10−2 [11]. Obviously, the retransmission of a
frame in error requires more bandwidth compared to the
interpolation option, but if the probability of FREs is
kept low enough this increase should be tolerable. For
instance, PFRE ≤ 10−2 would incur an increase in bit-
rate of approximately one percent.

In this work, the retransmission scheme is used. We
note that in addition to the retransmission and the in-
terpolation options, a third alternative is the error-free
operation. This is done by reconstructing the frame
in the encoder using the random samples selected. If
the frame is successfully reconstructed, then these ran-
dom samples are transmitted. If not, then a new set of
random samples are selected and reconstruction is at-
tempted again. This process is repeated until a set of
random samples that permit successful reconstruction
is found. In addition to eliminating the need for CRC
and retransmission, or interpolation, the error-free mode
allows for a lower bit-rate, by allowing the system to op-
erate with many less random samples than the other two
modes. Clearly, the reconstruction in the encoder dra-
matically increases the complexity of the encoder, and
so we do not explore this mode further in this work.

4. SYSTEM DESIGN

A block diagram of our proposed system is depicted in
Fig. 1. The first channel is encoded in a manner very
similar to that of [10], and is shown in Fig. 1(a). The
C-channel audio signal is first passed through a psy-
choacoustic sinusoidal modelling block to obtain the si-
nusoidal parameters {F 1,l, α1,l, θ1,l} for the l-th frame
of the primary channel. These then go through what
can be thought of as a “pre-conditioning” phase where

the amplitudes are whitened (SW) and the frequencies
remapped (FM). The interested reader is referred to [10]
for more details. The modified sinusoidal parameters
{F ′

1,l, α′

1,l, θ1,l} are then reconstructed into a time do-
main signal, from which M1 samples are randomly se-
lected (RS). These random samples are then quantized
to Q bits by a uniform scalar quantizer (Q), and sent
over the transmission channel along with the side infor-
mation from the spectral whitening, frequency mapping
and cyclic redundancy check (CRC) blocks.

In the decoder, the bit stream representing the ran-
dom samples is returned to sample values in the dequan-
tizer block (Q−1), and passed to the compressed sensing
reconstruction algorithm, which outputs an estimate of

the modified sinusoidal parameters, {F̂
′

1,l, α̂′
1,l, θ̂1,l}.

If the CRC detector (CHK) determines that the block
has been correctly reconstructed, the effects of the spec-
tral whitening and frequency mapping are removed—
(SW−1) and (FM−1), respectively—to obtain an esti-

mate of the original sinusoid parameters, {F̂ 1,l, α̂1,l,

θ̂1,l} , which are passed to the sinusoidal model resyn-
thesis block. If the block has not been correctly recon-
structed, then the current frame is either retransmitted
or interpolated, as previously discussed.

Due to the fact that the sinusoidal models for all the
channels share the same frequency indices,

F c,l = F 1,l c = 2, 3, . . . C, (6)

F ′
c,l = F ′

1,l c = 2, 3, . . . C, (7)

F̂
′

c,l = F̂
′

1,l c = 2, 3, . . . C, (8)

F̂ c,l = F̂ 1,l c = 2, 3, . . . C, (9)

the encoding and decoding for the other (C−1) channels
can be a lot simpler, as shown in Fig. 1(b). In particu-
lar, the compressed sensing reconstruction collapses to a
back-projection. Let us write the measurement process
of (4) as

yc,l = Φc,lΨXc,l (10)

where yc,l, Φc,l and Xc,l denote the c-th channel ver-
sions of yl, Φl and X l, respectively.
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Figure 2: Results of quality rating tests for various
stereo signals. “V & K” refers to the method of [6].
(“Tr.&Vi.” denotes a signal containing trumpet and vi-
olin.) The bits per frame per sinusoid are given for each
of the two transmitted audio channels.

Let ΨF be the columns of Ψ chosen using F 1,l, and

XF
c,l be the rows of Xc,l chosen using F 1,l. We can

write (10) as

yc,l = Φc,lΨF XF
c,l. (11)

This can then be rewritten as

XF
c,l = (Φc,lΨF )

†
yc,l (12)

where (B)
†

denotes the Moore-Penrose pseudo-inverse

of a matrix B, defined as (B)
†

=
(

B
H
B

)−1

B
H with

B
H denoting the conjugate transpose of B.

Thus (12) gives a way of recovering XF
c,l from Φc,l,

F 1,l and yc,l. However, the decoder only has Φc,l, F̂ 1,l

and ŷc,l, which is yc,l after it has been through quanti-
zation and de-quantization. So the decoder for the other
(C − 1) channels can recover an estimate of XF

c,l using

X̂
F̂

c,l =
(

Φc,lΨF̂

)†
ŷc,l. (13)

which is much less complex than (5).
One particular advantage of the recovery of (13) is

that it is only the primary (c = 1) audio channel that
determines whether or not an FRE occurs. The number
of random samples required for the other (C − 1) chan-
nels can be significantly less than that for the primary
channel, and thus Mc < M1, c = 2, 3, . . . C. Decreasing
Mc only decreases the signal-to-distortion ratio, which
the ear is much less sensitive to than the effect of FREs.
This of course means that the primary channel will be
the best quality channel, with the other (C − 1) being
of lower quality. This may or may not be desired, and
if not, sum and differences of the channels may be sent
instead of the actual channels. This allows the recovery
of the original channels with a more even quality.

5. LISTENING TESTS

While the proposed multichannel coding scheme oper-
ates in principle regardless of the number of channels,
and in fact becomes more beneficial in terms of total bi-
trate when the number of channels is high, it was conve-
nient for us to perform listening tests using headphones

Table 1: Parameters used to encode the signals used
in the listening tests, and their associated per-frame bi-
trates.

raw overhead final per
chan M bitrate CRC FM SW bitrate sine

1 240 960 8 406 320 1694 21.2

2 210 840 0 0 160 1000 12.5

2 180 720 0 0 160 880 11.0

2 150 600 0 0 160 760 9.5

and stereo signals, following ITU-R BS.1116 [16]. Ten
volunteers participated, and the tests took place in a
quiet office room. The following six stereo signals were
used: male and female speech, male and female cho-
rus, trumpet and violin, a cappella singing, jazz and
rock. For the former three stereo signals, the speech
recordings were obtained from the VOICES corpus [17]
of OGI’s CSLU, the chorus signals were provided by
Prof. Kyriakakis of the University of Southern Cali-
fornia, and the individual instrument recordings were
obtained from the EBU SQAM disc. The latter three
types of recordings were obtained from popular music
CDs. The test signals can be found at 1.

The sinusoidal model analysis was performed us-
ing K = 80 sinusoid components per frame and an
N = 2048-point FFT. All the audio signals were sam-
pled at 22 kHz with a 20 ms window and 50% overlap-
ping between frames. Using K = 80 provided a high-
enough quality that the residual signals were not re-
quired.

The results of this test are given in Fig. 2, where the
vertical lines indicate the 95% confidence limits. Our
proposed method was implemented using 4-bit quanti-
zation of the random samples and the parameters given
in Table 1. The primary channel was the sum of the left
and the right channels, and the secondary channel their
difference. The primary channel had 4 bits per sinusoid
of spectral whitening (SW) and approximately 5 bits per
sinusoid for frequency mapping (FM), and required 240
random samples to achieve a PFRE of less than 10−2,
giving a required bit rate of 21.2 bits per sinusoid. The
secondary channel had 2 bits per sinusoid of spectral
whitening and no bits were required for frequency map-
ping. The number of random samples for the secondary
channel were {150, 180, 210}, giving {9.5, 11.0, 12.5} bits
per sinusoid respectively.

In Fig. 2, the notation e.g. 21 & 9.5 bits in the x-
axis, corresponds to using 21 bits for the primary chan-
nel and 9.5 bits for the secondary channel per sinusoid,
while 30.5 is the total number of bits per sinusoid used
(the summation of all channels). Note that for each
additional audio channel in this example, 9.5 bits per
sinusoid would be required. We used the retransmission
mode to ensure no FREs occurred.

The signals generated by our method were compared
to a popular sinusoidal coding method, namely that
of [6], denoted as “V&K”, operating at the rates of 17
& 8, 23 & 12, and 24 & 13 bits per sinusoid, for the
left and right channels respectively. Both channels are
coded separately, and no frequency information is sent
for the right channel as it is the same as that used in
the left channel. Thus, the fact that our multichannel

1http://www.ics.forth.gr/˜ mouchtar/cs4sm/
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sinusoidal model uses the same frequency indices for all
channels, which was exploited in our multichannel CS
coding method as explained, is also exploited for the
method of [6], so that the comparison provided is fair.
In this case though, the left and right channels (and not
their sum and difference) are encoded. As previously
stated, the notation e.g. 17 & 8 in Fig. 2 corresponds
to using 17 bits per sinusoid for the left channel (used
as primary), and 8 bits for the right channel (used as
secondary).

The signal with 17 & 8 bits per sinusoid was used
as an anchor signal, and it is clear that the listeners
could distinguish the reduction in bitrate and thus qual-
ity. It can be clearly seen in Fig. 2 that our proposed
method achieves a similar quality to that of [6] for the
slightly lower bitrate, 33.5 vs 37 bits per sinusoid for the
stereo signal. These rates were chosen for comparison as
they achieve a consistent quality for all signals. Since at
this rate the proposed method performs slightly better
than [6] for some signals and slightly worse for others, we
claim that their performance is comparable. Of interest
is also the lower rate of 32 bits for the proposed method
compared to the 35 bits of [6], where it can be seen that,
with the exception of the trumpet/violin signal, the pro-
posed method performs very well, and more consistently
compared to [6]. We are confident that these gains ex-
tend to the multichannel case (more than 2 channels).
More generally, our interest in this paper is to provide
a study as to whether CS can be applied to audio cod-
ing, and in this sense the results in this paper are quite
encouraging.

6. CONCLUSIONS

We have presented a new method for encoding a mul-
tichannel signal that has been modelled using the sinu-
soidal model, making use of compressed sensing (CS).
The complexity of the secondary channels is significantly
lower than that of the primary channel. Through listen-
ing tests, we have shown that our method can achieve
equal or better performance to that of other state-of-
the-art sinusoidal coding methods. This can be consid-
ered an important result towards the final objective of
being able to apply the CS framework to audio signals,
where the challenge is that of addressing the sparsity
requirement. Application of CS to audio coding, even
for low-bitrate applications such as those examined here
(i.e. parametric modelling) can lead to novel systems
for analog-to-digital conversion of audio signals and al-
low for local coding of audio signals (e.g. using a sensor
network for recording and compressing the audio infor-
mation in large outdoor spaces).
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