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ABSTRACT

This paper presents an algorithm for computing the weights
of a loudspeaker array based on a given set of listening lo-
cations and their respective desired sound field distribution.
‘We achieve this by introducing the E-norm condition number
to control the desired sound field distribution for our appli-
cation. We show that the conditioning of the problem is de-
termined by this E-norm condition number and that part of
the computation of this number is independent of frequency.
Exploiting this intrinsic property and through the use of an
optimization algorithm, we develop an efficient algorithm for
the computation of array weights to achieve desired sound
field distribution in the spatial domain. The proposed al-
gorithm can also be used to search for a set of alternative
listening locations that give rise to a well-conditioned solu-
tion for the loudspeaker weights.

1. INTROCDUCTION

The use of a loudspeaker array system for far-field beam-
forming has been an active area of research since the middle
of last century. The objective of such an array is to project
sound in the far-field. One of the applications of such a
loudspeaker array is the deployment of a sound reproduction
system for a live concert in an open field or a large hall. In
such cases, it is important to project the sound energy in a
beam in order to reach a group of targeted audience in the
far-field of the array. To meet such a demand, loudspeakers
are often constructed in a vertical line array. This allows
users to achieve long throw characteristics of a straight-line
array [1].

One of the early attempts in controlling such loud-
speaker array using digital signal processing techniques for
controlling directivity pattern was presented in [2]. More
recently, the idea of wave field synthesis (WFS) [3] [4] is pre-
sented. The theory is based on the Huygens principle which
states that every wavefront can be decomposed into a su-
perposition of elementary spherical wavefronts emitted from
secondary sources. In a WFS array, each loudspeaker is in-
dependently controlled in order to operate as a secondary
source. It is also useful to note that a large number of loud-
speakers are often needed in implementing such WFS tech-
niques. The authors of [5][6] presented beamforming tech-
niques using a near-field loudspeaker array constructed from
a limited number of loudspeakers.

In this paper, we develop an algorithm for a loudspeaker
array using a relatively small number of loud-speakers (16 or
less) as compared to WFS. The aim is to compute the loud-
speaker weights in order to recreate a desired sound field
at predefined listening locations that are determined by the
users. In order to achieve this, we first formulate the prob-
lem using the propagation matrix of a loudspeaker array.
In addition, we show that the conditioning of this problem
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is determined by the properties of this propagation matrix.
We then exploit such properties and propose an algorithm
to determine if the predefined listening locations are optimal
for sound field recreation. In the event that a non-optimal
solution is found, our algorithm will propose a new set of lis-
tening locations within the vicinity of the original location in
the spatial domain for best reproduction of the sound field.
As an alternate application, we can, through the use of this
algorithm, select the optimal placement of the loudspeakers
in order to achieved a predefined sound field.

2. FAR-FIELD AND NEAR-FIELD ARRAY

Since different techniques are used for far and near-field loud-
speaker array design, it is important to review the classifica-
tion of far and near-field array. In theory, the distance sep-
arating near and far-fields is defined by a location in space
where the path length differences to all points on the sur-
face of the loudspeaker perpendicular to this location are
the same. However, in the case of practical loudspeakers,
this distance is infinite. For such practical loudspeakers,
this transition point can then be defined by the distance
at which the loudspeaker’s three-dimensional radiation bal-
loon no longer changes with increasing distance from the
source with regard to frequency. It can also be defined by
the distance from the source where the radiated level begins
to follow the inverse-square law for all radiated frequencies.
These two methods for determining the transition point re-
quire accurate anechoic measurements of the loudspeakers.
A simplified rule of determining the far and near-field
transition point for a single loudspeaker is given by the dis-
tance from the loudspeaker to the listening location where
the path length difference from points on the loudspeaker to
the listening location are within one-quarter wavelength at
the highest frequency of interest for a propagating wave. The
left panel of Fig. 1 shows an example of this transition dis-
tance d, where R is the radius of a loudspeaker diaphragm,
and A is the wavelength at the highest frequency of interest.
The transition distance can therefore be computed using

VETR —d=". (1)

4

As oppose to a single loudspeaker, it is important to note
that when determining the transition distance for a loud-
speaker array, the vibrating surface of the array spans over
all the loudspeakers. As a result of this, the radius of the
loudspeaker diaphragm R in (1) is now replaced by half the
length of the linear loudspeaker array. Consequently, the
transition distance increases significantly. The right panel
of Fig. 1 shows an illustrative example of a typical line ar-
ray loudspeaker. The corresponding transition distance is
plotted in Fig. 2.

As can be seen from Fig. 2, at a typical distance from
2 to 10 m away from the loudspeaker array, the listeners
are in the near-field of the loudspeaker array across most of
the frequencies. It is therefore important to note that for a
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Figure 1: Transition distance of a loudspeaker (left), near-
field loudspeaker array (right).
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Figure 2: Near and far-field transition distance for a 1 meter
long linear loudspeaker array.

typical home or office environment, listeners are in the far-
field of each loudspeaker while in the near-field of the entire
loudspeaker array.

3. THE PROPOSED ARRAY SYSTEM DESIGN

We now formulate the problem of finding a set of loudspeaker
array weights so as to generate a required sound field at a
predefined position. As described in Section 2, our focus
is on algorithms for the near-field. We consider the prob-
lem of controlling the sound field in a few listening locations
within a pre-determined area of interest. As discussed in
Section 1, several works in the literature have addressed this
problem but mainly for the far-field case. In particular, sev-
eral methodologies employ the well-known “delay-and-sum”
technique for beamforming purpose. To achieve this, a vec-
tor of complex coefficients is applied to the loudspeakers to
selectively project the undistorted signals towards a desired
direction. However in the near-field such as occur in most
scenarios for a loudspeaker array, the differences in distance
from the listening location to each of the loudspeakers are
not negligible as shown in Section 2.
We first consider an array of N loudspeakers with a
weight vector given by
w = [w1 wa .... wN], (2)
for which we would like to compute. The frequency indices
are temporarily omitted for clarity of presentation. The de-

sired response at the M listening locations are defined as

y=[y1y2 - Yy (3)

Exploiting the near-field characteristics for the array, we
model the transfer function from the ¢**, i =1,..., N, loud-
speaker to the j*, j = 1,..., M, listening location using the
Green’s function [7]

|
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where r;; is the distance from the 4th loudspeaker to the jth
listening location, kK = w/c is the wave number and c is the
speed of sound in air. Since the acoustic waves from each of
the loudspeakers are superimposed at each of the listening
location, we assume the signal input matrix is a unity matrix.
Consequently, the response at the ;™ listening location is
given by

N
yi =y wiGi. (5)
i=1
Formulating above using matrix notation, we obtain
y =wG. (6)

The N x M propagation matrix

Gll G12 GlM
G21 G22 G2M

G=| . . (7)
GNl GN2 GNM

is therefore a collection of all the Green’s function from each
loudspeaker in the array to each listening location. It is
useful to note that when the number of loudspeakers is equal
to the number of listening locations (N = M), the array
weight vector can be computed using

w=yG . (8)

However, in most scenarios, the number of loudspeakers is
not equal to the listening locations. For the case when N >
M, the array weight vector can be calculated by

W = yG+, 9)
where G is the pseudo-inverse of the propagation matrix
Gt =(G"G)'G". (10)

Similarly, if N < M , the array weight vector can be com-
puted using

w=yG", (11)

and
Gt =c"ce"). (12)

As can be seen, the determination of the weight vec-
tor W is limited by the conditioning of the matrix G G or
GG, Any ill-conditioning of this matrix will render the
computation of w being susceptible to numerical errors, it
is therefore important to determine how well-conditioned a
particular system is before computing w. The techniques
introduced in the following section apply to both G¥ G and
GG, We will use GG for illustration.
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4. CONDITIONING OF THE PROPAGATION
FUNCTION

As shown in Section 3, and reported in [6], the condition
number of the matrix G G is critical in achieving a practical
and stable solution to the loudspeaker weight vector. If the
condition number is too high, a small error in calculating the
array weight vector or any slight movement of the listening
locations can result in a significant difference between the
desired and achieved sound pressure level. To address this
issue, we further examine the condition number of the matrix
G G. Using (7), matrix G? G can be defined as

GGy GHGhs G"Gim
. GHGy  GHGas - G Gonr
G"G = . . ) . , (13)
GH Gy GMGyo GHGNnum
where
N
=Y Gni-Ga. (14)
n=1

One of the most popular way of determining the condi-
tioning of a problem is to exploit the l2-norm of the matrix.
The ls-norm condition number of the matrix G G is defined
as

@G"e)t . )

2

x2[GHG] = HGHG

where || - ||, is the lo-norm. Although the computation of

xg[GHG] is popular, we consider an example case where
there are N = 10 loudspeakers and M = 10 desired listen-
ing locations. With thlsé it is then required to compute the
condition number x2[G" G] of a 10 x 10 matrix for each fre-
quency. For the case when the frequency of interest spans
across a wide audio range, the computation of the l2-norm
condition number can be demanding.

In order to reduce computational load of the algorithm,
we propose to employ the E-norm condition number [8]. As
will be shown below, the motivation of using this E-norm
condition number is to increase the efficiency in determining
the conditioning of G G across a wide range of frequencies.
The E-norm of a M x M matrix R can be defined as

IR, = {ﬁtr [RHR] }1/2 . (16)

Similar to the Frobenius norm, the E-norm belongs to an
entrywise norm. Employing (16), we further define

HR”2 .= {%tr [R}}I/Q, (17)

and

|2 = {%tr R }1/2. (18)

The E-norm condition number of RY/? is then defined as

G A e N Lo

It has been shown in [8] that X% {le] varies monotonically

with y2[R]. As a result, x% [Rl/z] can be used as a measure

of x2[R]. Using the definitions above, we obtain the E-norm
condition number matrix as follows

E[(GHG)l/Q} _ H(GHG)I/QHEH(GHG —1/2 (20)

I

where
1/2
Hn1/2 1 H
li6"e) ), ~{ uleel o
and

1/2
H(GHG)l/2HE_{A14tr[(GHG)1}} L@

In order to compute the E-norm condition number defined
n (20), we compute tr(G” G) as required by (21). This can
be obtained by

M

This implies that tr(G” G) can be obtained by the summa-
tion of the squared elements in the propagation matrix G.
More importantly, as will be shown in Section 5, tr(G”G)
is constant across frequency for a fixed array setup. Conse-
quently, the first term on the right hand of (20) is indepen-
dent of the operating frequency and hence, we can compute
(23) for only one operating frequency in order to determine
how well-condition G¥ G is across the entire audible fre-
quency range of interest. This results in substantial savings
in computation since we do not need to compute this condi-
tion number across the entire frequency range of interest.

To compute (22), we exploit the eigenvalue decomposi-
tion (EVD) of G” G defined by

GG =QAQ, (24)
where Q is the square matrix whose columns are the eigen-
vectors of GT G, and A is the diagonal matrix whose diago-

nal elements are the corresponding eigenvalues. The inverse
of the matrix can then be expressed as

G"G)'=QAaT'Q . (25)

As a result, the trace of (GFG)™! can be found as

tr{(GHG)_l} QA‘IQ_l}

of
- wfaaa]
{

- > (26)

Where i and K are the eigenvalues and rank of the ma-
trix GHG. Using the above technique, condition number
can be obtained given any listening locations. Furthermore,
in the event when our algorithm detects that the rnatrlx
GHG is ill-conditioned for a particular set of predetermined
listening locations, our proposed algorithm then employs an
optimization method to search for listening locations that
are near the desired listen location that is better conditioned
for the computation of w. With this new solution, users can
then decide if the proposed listening locations are acceptable
for their listening application.
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Figure 3: Array setup with 8 loudspeakers and 3 listening
locations.

5. SIMULATION RESULTS

We illustrate the performance of our proposed algorithm in
the context of sound field reproduction using a linear loud-
speaker array. As shown in Fig. 3, we employ eight loud-
speakers positioned linearly with an array length of 2 m. As
an illustration, the number of listening locations is selected
as M = 3. It is important to note that the number of listen-
ing locations is not limited to three and can be extended to
accommodate more users. Furthermore, for smoother transi-
tion between the listening locations, a larger number is sug-
gested [6]. The technique used to generate the loudspeaker
array weights remains the same.

Before investigating on the placement of the listening
points, the following simulation illustrates the property of
the technique developed in Section 4. Figure 4 shows the
variation of the l2-norm condition number x2 [GH G] and the

square of E-norm condition number x% [(GHG)UQ] across
frequencies for the same array and listening locations across
different frequencies. It can be seen that x% [(GH G)Y 2] is
monotonic with the conventional /s-norm condition number
x2[G™ G] of the matrix G G. This implies that any vari-
ation in x% [(GHG)UQ} will give a good indication of the
conditioning of the system in order to compute the weights
w given by (9) or (11).

Figure 5 shows how log,, X% [(GHG)1/2] varies with fre-
quencies for different spacing ranging from 0.1 to 0.5 m be-
tween the listening locations as shown in Fig. 3. We can

see from this result that x% [(GHG)I/Z] is high for the low

frequency range. In addition, y% [(GHG)1/2] reduces with

increasing spacing between the listening locations. Similar
results can be obtained by keeping the listening point static
while changing the inter-spacing between the loudspeaker
units in the array. This result implies that spatial diver-
sity is required in order to achieve good reproduction of a
sound field particularly in the low frequencies. For higher
frequencies beyond 3 kHz however, this dependence is not as
significant.

Figure 6 shows the variation of log,, x% [(GHG)l/ﬂ

across frequencies for different loudspeaker spacing. Similar
to the previous case of varying the spacing between listen-

ing location, we note that log,, X% [(GHG)UQ} reduces with

increasing loudspeaker spacing. The two results of Figs. 5
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Figure 5: Variation of log, x% [(GHG)UQ] with frequencies

for different listening point spacing.

and 6 illustrate the mutual relationship between spacings
of the listening locations and the loudspeaker units. In ad-
dition to the above, it can be seen from Fig. 5 and 6 that

X% [(GHG)I/Q] is dependent on the loudspeaker array setup,

listening locations and the operating frequencies. It is im-
portant to note that, since the operating frequency is largely
dependent on the source and not within user’s control, we
focus on the placement of the listening locations rather than
the operating frequency. This implies that we can determine
the conditioning of the problem by searching within a spatial
location as will be shown later in this section. Furthermore,
as the setup of the listening locations and loudspeaker units
are mutually related, the techniques developed in the previ-
ous section can be used for our algorithm to search for better
placement of listening locations or loudspeaker array.

In order to illustrate the motivation and benefit of the
proposed algorithm, we plot the first term of (20) as shown
in Fig. 7 using the same setup. It can be seen that the
trace of the matrix GF G is constant and is independent of
the operating frequency. As a result, for each setup, this
term only needs to be computed once for all the operating
frequencies and hence computational efficiency is achieved.

It is important to note that x% [(GHG)I/Q} is dependent
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Figure 6: Variation of log,, X%[(GHG)I/Q] with different
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Figure 7: Trace of the matrix G G across frequencies for a
fixed array setup.

on the listening locations predefined. In the case when a set
of predefined listening locations renders an ill-conditioned
matrix G G, we utilize the techniques developed in Section
4, to find listening locations that give rise to a better con-
ditioned matrix. This allows one to compute w according
to (9) or (11). User can also set a search range within the
vicinity of the desired positions. To illustrate this example,
we show, in Fig. 8, a scenario where the search range is set
as maximum of 1.5 m away from the predefined initial listen-
ing point. In this experiment, the loudspeaker array setup
is shown in Fig. 3. We consider an example case where the
operating frequency is 1 kHz. Using our proposed E-norm
condition number, an iterative algorithm similar to that pre-
sented in [9] was implemented to search for a minimum of
the E-norm condition number. In addition, the search was
constraint to be within 1.5 m from the initial listening lo-
cation. The numbers shown in Fig. 8 depict the evolution
of the suggested listening positions at every iteration of the
optimization algorithm. It can be seen from this result that
the optimal position obtained is at the position where the lo-
cal minimum of E-norm condition number is achieved. This
position corresponds to the vicinity of the initial point se-
lected. With this new listening location, users can now con-
sider moving to this new location within the vicinity of the
initial location in order to enjoy the predefined sound field
set by him or her.

6. CONCLUSIONS

In this paper we present a novel approach to search for an op-
timal array configuration to avoid the ill-condition problem
in near-field loudspeaker array design. Conventionally, the
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Figure 8: Trajectory of searching an optimal point from a
given initial point with optimization iteration index. Num-
bers showing the evolution of listening positions at each it-
eration of the search algorithm.

condition number is computed using l>-norm. We proposed
an efficient way of computing the E-norm condition number.
Results obtained using both l2-norm and E-norm condition
number are shown. From the results, it can be seen that
using the proposed E-norm condition number significantly
reduces the computational complexity. Additional experi-
ments suggest that the results obtained using the E-norm
condition number is equivalent to that using the l2-norm
condition number.
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