
A PERCEPTUALLY ENHANCED BLIND SINGLE-CHANNEL AUDIO SOURCE
SEPARATION BY NON-NEGATIVE MATRIX FACTORIZATION *

S. Kırbız and B. Günsel

Multimedia Signal Processing and Pattern Recognition Lab.,
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ABSTRACT
This paper proposes a 2D Non-negative Matrix Factorization
(NMF) based single-channel source separation algorithm that
emphasizes perceptually important components of audio. Un-
like the existing methods, the proposed scheme performs a
psychoacoustic pre-processing on the mixture spectrogram in
order to supress audio components that are not critical to hu-
man hearing sensation while amplifying the perceptually im-
portant ones. This yields the auditory spectrogram referred
as sonogram of the observed audio mixture and the individ-
ual sources are then extracted by 2D NMF. Test results re-
ported in terms of Signal-to-Distortion-Ratio (SDR), Signal-
to-Inference-Ratio (SIR) and Signal-to-Artifact-Ratio (SAR)
show that the proposed perceptually enhanced separation im-
proves the quality of decomposed audio sources by 1.5-6.5
dB with a reduced computational complexity.

1. INTRODUCTION

Estimating individual audio sources from the mixture signal
is called audio source separation. Audio source separation
has been used in several applications including robust speech
recognition, music transcription, speaker identification, etc.

In this paper the focus is on the separation of music and
speech signals from a single observation. The goal of single-
channel Blind Source Separation (BSS) is to extract the un-
derlying audio source signals from a single linear mixture. In
such situation, human listener has the ability to keep the at-
tention to a single audio source in an adverse acoustical con-
dition. However, the problem of estimating several sources
from one input signal is an ill-posed problem thus has been a
challenging topic for the researchers.

A vast amount of research has been conducted in the
field of blind single-channel audio source separation. Among
these, Non-negative Matrix Factorization (NMF) [1, 2, 3] is
a simple but efficient factorization method which has been
extensively used for factorizing the input data into a linear
combination of basis vectors with non-negativity constraints
on output matrices. Efforts have been made to develop more
robust and efficient algorithms by adding further constraints
for the decomposition, such as sparseness, temporal conti-
nuity [4] or extending the model to be convolutive [3, 2].

* This work is partially supported by the Scientific and Technological
Research Council of Turkey (TUBITAK) BIDEB.

Smaragdis [3] introduced the non-negative matrix factor de-
convolution (NMFD) algorithm in which each instrument is
modeled by a time-frequency signature that varies in inten-
sity over time. Scmidt et al. [2] proposed non-negative matrix
factor 2-D deconvolution (NMF2D) algorithm for separating
the instruments in polyphonic music by representing each in-
strument by a single time-frequency profile convolved in both
time and frequency in a log-frequency spectrogram. A few
approaches in the area of source separation have utilized the
framework of psychoacoustics [5]. Among these, Virtanen
[1] presents a perceptually weighted NMF algorithm for sin-
gle channel source separation that assigns a weight coefficient
for each critical band in each frame to model the loudness
perception of the human auditory system. Although the algo-
rithm achieves a high separation quality on non-overlapping
audio sources, it is not sufficient for separating the mixtures
of instruments/sources which overlap their whole duration. In
[6], a perceptually motivated Frequency-Domain Independent
Component Analysis (FDICA) scheme is proposed which fil-
ters the frequency components that are perceptually irrelevant
by exploiting the masking properties of speech. The defi-
ciency of the frequency domain algorithms is the invariance
to scaling and permutation which means that the output of the
separation algorithm will be the original sources, arbitrarily
scaled, permuted and delayed. In this work, the psychoacous-
tic masking applied prior to FDICA is used to avoid the per-
mutation problem rather than improving the perceptual qual-
ity of the separated sources.

In the proposed method, a Non-negative Matrix Factor
2-D Deconvolution (NMF2D) [2] based perceptual source
separation is performed by applying a psychoacoustic pre-
processing prior to decomposition. The pre-processing is ap-
plied based on the psychoacoustic model proposed in [7] in
order to remove the information in the audio signal which is
not critical to our hearing sensation while retaining the im-
portant parts. In [7], the raw audio signals are pre-processed
in order to obtain a time-invariant representation of the per-
ceived characteristics in two stages. In the first stage of
the feature extraction process, the specific loudness sensa-
tion (sone) per critical band (Bark) is calculated. In the sec-
ond stage, the periodicity and the spectrum histograms are
calculated based on the pre-processing and combined with
the meta-information. The extracted features are then clus-
tered and organized on a 2D map display using Self Organiz-
ing Maps. We just applied the psychoacoustic pre-processing
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step of the work proposed in [7] in order to increase the per-
ceptual quality of the separated sources. We evaluated the
performance of the proposed method on real audio mixtures
which were synthetically generated by summing two differ-
ent sources of music and speech. The effects of the NMF2D
parameters are also investigated by performing the tests using
combinations of various NMF2D parameters on our dataset
which are defined in Section 3. It is shown that the proposed
method enhances the separation performance by an amount
of 1.5 dB to 6.5 dB and outperforms the conventional NMF
[8] and NMF2D [2] algorithms.

2. PROPOSED METHOD

Conventionally Non-negative Matrix Factorization (NMF)
based source separation algorithms aim to factorize the ob-
served non-negative mixture matrix X ∈ R

B×M as a product
of two non-negative matrices W and H such that

X [b, i]≈
N−1

∑
n=0

W [b,n]H[n, i] (1)

where W [b,n] denotes the b−th basis component of the n−th
audio component, H[n, i] is the gain of the n− th component
in time frame i = 0 · · ·M− 1 and N is the number of audio
components. The audio components belonging to the same
source are then clustered into a single source.

In audio source separation applications, the mixture X is
usually represented as a time-frequency spectrogram. Given
the observed mixture X, we are interested in jointly esti-
mating the basis (W ∈ R

B×N) and the gain (H ∈ R
N×M)

matrices which are restricted to be entry-wise non-negative.
The rank N of the factorization is usually chosen such that
(B+M)N < BM, and hence the dimensionality reduction is
achieved.

Unlike the existing methods, the proposed perceptually
enhanced NMF2D framework yields a clustered representa-
tion of the mixture data by performing a psychoacoustic pre-
processing on the spectrogram. Hence the proposed method
improves the quality of the separated sources as well as de-
creases the computational complexity. In this section, we
first describe the psychoacoustic pre-processing applied on
the mixture spectrogram and then present the proposed de-
composition method.

2.1. Auditory Spectrogram
Most of the audio source separation algorithms perform the
separation on audio spectrogram. In this work, we propose
to apply a pre-processing scheme on the spectrogram in order
to retain the perceptually important components and supress
the information which is not critical to human hearing. The
pre-processing is applied using the MA Toolbox [7]. First, the
Short-Time Fourier Transform (STFT) of the mixture signal
x is computed

XF [k, i] =
1

NF

NF−1

∑
t=0

h[t,NF ]x[t, i]e− j2πtk/NF , (2)

where 0 ≤ k ≤ NF
2 , k = 0 · · ·K − 1 is the frequency index,

i = 0 · · ·M− 1 is the frame index, t is the sample index, NF

is the frame length and h is the Hanning window. To model
the frequency response of the outer and middle ear, each fre-
quency component of the spectrogram is weighted as

|Sw[k, i]|2 =W 2
V [k]|XF [k, i]|2, (3)

where the weighting function is defined as

WV [k] = 10AdB

(

kFs
NF

)

/10
. (4)

In Eq.(4), Fs is the sampling frequency and AdB(.) is the re-
sponse of the outer and middle ear model to each frequency f
(kHz), proposed by Terhardt [9]:

AdB( fkHz) =−3.64(10−3 f )−0.8−10−3(10−3 f )4

+6.5exp
(

−0.6(10−3 f −3.3)2). (5)

The main characteristic of this weighting filter is that the in-
fluence of very high and low frequencies is reduced while fre-
quencies around 3−4kHz are emphasized [7].

Subsequently the frequency bins of the STFT are grouped
into 24 critical-bands according to [5] in order to obtain the
spectrogram in bark scale represented as C[b, i], where b =
0 · · ·23 is the critical band index and i = 0 · · ·M − 1 is the
frame index. The conversion between the bark and the linear
frequency scale is computed with,

Zbark( fkHz) = 10arctan(0.76 f )+3.5arctan( f/7.5)2. (6)

These frequency bands reflect the characteristics of the hu-
man auditory system. The width of the critical-bands is linear
from 100Hz to 500Hz and beyond 500Hz the width increases
nearly exponentially [5].

We apply a spectral masking on the bark spectrogram ac-
cording to [7]

Sm[b, i] =
23

∑
p=0

10TdB[b,p]/10C[p, i] (7)

where T [b, p] is the contribution of critical-band zb to zp

T [b, p] =15.81+7.5(zp− zb +0.474)

−17.5
(

1+(zp− zb +0.474)2)1/2
. (8)

The main characteristic is that lower frequencies have a
stronger masking influence on higher frequencies than vice
versa.

The specific loudness sensation (sone) is calculated using
the formula suggested by Bladon and Lindblom [7] in decibel
relative to the threshold of hearing,

X [b, i] =
{

2(SmdB [b,i]−40)/10, ifSmdB [b, i]≥ 40dB,
(SmdB [b, i]/40)2.642, otherwise,

(9)

where SmdB is the loudness in dB defined as

SmdB [b, i] = 10log10 Sm[b, i]. (10)

Fig. 1 illustrates an audio signal representation in
time and various representations in time-frequency domain.
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Fig. 1. The time and time-frequency illustrations of an audio signal.
(a) time domain signal x (b) spectrogram S, (c) filtered spectrogram
Sw (d) Bark spectrogram C (e) masked Bark spectrogram Sm, (f)
sonogram X.

Fig.1(a) depicts the signal in time domain. In Fig.1(b), the
audio spectrogram S is displayed. Fig. 1(c) is a plot of Sw
obtained after applying outer and middle ear filtering to the
spectrogram S. Fig.1(d) illustrates the Bark spectrogram C

obtained by grouping the frequency bands in Sw into critical
bands. Fig. 1(e) is Sm obtained after frequency masking ap-
plied on the Bark spectrogram C and Fig. 1 (f) illustrates the
auditory spectrogram (sonogram) X obtained after loudness
calculation.

As it is seen from Fig.1, the sonogram retains the auditory
components which are critical to human hearing. Note that,
since the sonogram has only B = 24 frequency bands, sono-
gram representation significantly decreases the size of the
time-frequency data which consequently decreases the com-
putational complexity of decomposition.

2.2. Source Decomposition by Non-negative Matrix Fac-
tor 2-D Deconvolution
In Non-negative Matrix Factor 2-D Deconvolution (NMF2D)
based source separation algorithms [2], the observed mixing
data X ∈ R

K×M is factorized to be a 2-D convolution of Wτ

which depends on time τ and H
φ which depends on pitch φ :

X≈Λ=
T−1

∑
τ=0

Φ−1

∑
φ=0

↓φ
W

τ
→τ
H

φ . (11)

In (11), ↓ φ denotes the downward shift operator which moves
each element in the matrix φ rows down, and→ τ denotes the
right shift operator which moves each element in the matrix τ
columns to the right [2]. Each element in Λ is defined as:

Λ[b, i] =
T−1

∑
τ=0

Φ−1

∑
φ=0

N−1

∑
n=0

W τ [b−φ ,n]Hφ [n, i− τ ], (12)

where N is the number of audio components. Note that, NMF
model is a special case of NMF2D model for τ = 0,φ = 0.

In the literature, NMF algorithms [8] are used to estimate
the non-negative basis functions and mixing matrices itera-
tively based on the minimization of the Euclidean distance
between the observed data X and model Λ, or divergence D,
given as

D = ∑
b

∑
i

X [b, i] log
X [b, i]
Λ[b, i]

−X [b, i]+Λ[b, i], (13)

where b= 0 . . .B−1 is the frequency index and i= 0 . . .M−1
is the frame index. In most of the NMF based algorithms, the
frequency index is the index of the linear frequency bands. In
the proposed method, the linear frequency bands k = 0 · · ·K−
1 are grouped into critical bands b = 0 · · ·B− 1 as described
in [7].

Considering the gradient decent optimization scheme, the
multiplicative updates for Hφ and W

τ are obtained as:

H
φ ←H

φ .∗

[

∑
τ

↓φ
W

τ
T
(
←τ
X ./

←τ
Λ
)

]

./

[

∑
τ

↓φ
W

τ
T

1

]

(14)

W
τ ←W

τ .∗

[

∑
φ

(

↑φ
X./

↑φ
Λ
)

→τ
H

φ
T]

./

[

∑
φ
1

→τ
H

φ
T]

(15)

where 1 is a matrix of suitable size with all elements equal
to 1; .∗ and ./ are element-wise multiplication and division,
respectively.
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Fig. 2. Factorization of the piece of music using NMF2D. The two
time-frequency plots on the left are Wτ for each factor, i.e. the time-
frequency signature of the two sources. The two time-pitch plots on
the top are H

φ for each factor showing how the sources are placed
in time and pitch.

It is shown that NMF2D is an effective method for audio
separation [2] because it enables to represent a regularly re-
peating pattern that spans multiple columns(rows) of the spec-
trogram using multiple bases(gains) that describe the entire
sequence. To give an idea, the basis matrices W

τ and the
gain matrices H

φ for each factor are displayed in Fig. 2 to-
gether with the mixture spectrogram. The N columns of Wτ

obtained by NMF2D represent the dominant spectral patterns
contained in the input whereas their weights H

φ correspond
to their temporal profiles.

In the proposed method, NMF2D is performed on the au-
ditory spectrogram (sonogram) of the mixture signal for de-
composing the sonogram of each component. The sonograms
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constituting the same audio source are then clustered into a
single source sonogram by clustering the base matrices us-
ing the K-means clustering algorithm [10]. Each time-domain
source signal is reconstructed by masking the mixture spec-
trogram X depending on the source sonogram. First, we re-
constructed the sonogram of each component by

Λn[b, i] =
T−1

∑
τ=0

Φ−1

∑
φ=0

W τ [b−φ ,n]Hφ [n, i− τ ], (16)

for each specific value of n. Then we clustered the component
sonograms constituting the same source by applying K-means
clustering on the base matrices. Based on the reconstructed
source sonograms, we constructed a spectrogram mask for
each source, so that the value of each spectrogram bin is as-
signed to each source in proportion with the sonogram value
at that bin. The mapping of the spectrogram masks back into
the spectrogram domain is performed as it is proposed in [2].
The complex spectrogram is filtered based on the masks, and
the inverse filtered spectrogram is computed using the mix-
ture phase .

3. SIMULATION RESULTS

To test the proposed approach, monophonic mixtures were
synthetically generated by summing two different sources.
Different datasets have been considered and described below.
• Dataset A consists of synthetic mono mixtures of N =

2 sources (piano and drums) created using 10 seconds-
excerpts of original separated tracks from the song “Sun-
rise” by S. Hurley, available under a Creative Common
License at [11] and downsampled to 16 kHz.
• Dataset B consists of synthetic mixtures of speech and

music sources obtained from the development dataset
of the Signal Separation Evaluation Campaign (SiSEC
2008)[12].

• Dataset C consists of synthetic mixtures of two speech
sources obtained from the development dataset of the Sig-
nal Separation Evaluation Campaign (SiSEC 2008)[12].
All the sources are 10 seconds-long and sampled at 16

kHz.
The separation is performed using the method outlined in

Section 2 by applying a pre-processing on the spectrogram.
The performance of the proposed method (NMF2D-sone) is
compared with the conventional NMF2D model applied on
the spectrogram (no pre-processing) in order to see the con-
tribution of the psychoacoustic pre-processing.

In order to evaluate the quality of the separated
sources we use the Signal-to-Distortion-Ratio (SDR), Signal-
to-Interference-Ratio (SIR) and Signal-to-Artifacts-Ratio
(SAR). We used MATLAB routines for computing these cri-
teria obtained from the SISEC’08 webpage [12] and reported
the results in terms of SIR, SAR and SDR.

The observation signal is represented using the log-
magnitude spectrogram. The audio signals are analyzed by
the short time Fourier transform with a NF = 2048 point Han-
ning windowed FFT and 50% overlap. NF/2+1 = 1025 FFT
slices are obtained. The spectrogram bins are grouped into
blog FS/2

80 / log2(1/48)c = 318 logaritmically spaced frequency

bins in the range of 80 Hz to 8 kHz with 48 bins per octave,
which corresponds to four times the resolution of the equal
tempered musical scale. Then, we performed the NMF2D
analysis of the log-frequency magnitude spectrogram. For the
remaining parameters, we used the following values, rank =
[2 20 80 200], τ = [0 1 5 9], φ= [0 1 5 9]. The sampling
rate of the inputs was 16 kHz. We performed separation us-
ing all combinatios of these parameters on our dataset which
amounted to 64 experiments for each of three mixtures, re-
peated 10 times for a total of 1920 experiments. We averaged
the performance measures over all the experiments and ana-
lyzed the effect of various parametes.

Of more importance than the individual parameters is the
interaction between them. Fig. 3-5 are instrumental in point-
ing this out. We briefly describe some of the major interac-
tions here. We also reported the results of the conventional
NMF2D algorithm proposed in [2] (NMF2D) for comparison
issues. As it is seen from the figures, the length of the bases
(τ) varies the performance measures significantly. The pro-
posed NMF2D-sone algorithm performs better for τ = {0,1}.
Similarly, the NMF2D method also performs better for low τ
values. If we compare the results depending on the number
of gains φ , we see that the proposed method performs bet-
ter SDR and SIR values at φ = {0,1}. The rank parameter
is also of main importance. The proposed method performs
higher SDR and SIR values for rank r = 2. If we compare
the performance of the proposed method to the conventional
NMF2D algorithm, we can see that the proposed method in-
creases the SDR value by an amount of 0.7 dB. The depen-
dency of the NMF2D performance on the same parameters
is quite different. NMF2D method performs better for low τ
and high φ values. The performance of NMF2D increases as
rank increases. The highest SDR, SIR and SAR values are
obtained at around rank r = 20. The performance starts to
decrease slightly if we increase the rank much more.

Figure 4 illustrates the performance of the proposed
method in terms of SIR. We can see the same characteris-
tics depending on the parameters of τ ,φ and rank. However,
the SIR values obtained by NMF2D method is slightly better
than the SIR values obtained by the proposed method.

The change in SAR values for the parameters τ,φ and
rank are completely different than SDR and SIR. The pro-
posed method performs higher SAR values for τ = {0,1},
φ = {5,9} and rank r = {80,200}. The increase in SAR val-
ues obtained by the proposed method is huge and it is around
7 dB.

In general, as τ grows, more bases acted as a detriment
to the separation quality. More gains introduced less interfer-
ence noise, which causes SDR and SIR to increase and SAR
to decrease. Finally as the rank increases we noted that the
number of bases and number of gains become more impor-
tant.

In order to measure the computational load of the pro-
posed method, we implemented the NMF2D and NMF2D-
sone algorithms for a particular experiment using 10 sec mono
mixture (sampled at 16 kHz) with N = 2 sources and NMF2D
parameters selected as r = 200 components, τ = 0 and φ = 9.
The algorithms are run on a PC equipped with a 2.4 GHz Intel
Core2 Quad processor using the same parameters and initial
conditions.
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across different scales indicated by their maximum and minimum
values along the vertical axis.
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method as denoted over each row (NMF2D, NMF2D-sone). Each
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NMF2D takes about 1879.24 sec to converge in 2000 iter-
ations for this particular experiment. The proposed NMF2D-
sono algorithm takes about 48.59 sec to converge in 185 it-
erations. NMF2D-sono algorithm decreases the size of the
data matrix, thus decreases the computational time while in-
creasing the separation quality of the estimated sources sig-
nificantly.

4. CONCLUSION

In this paper, we propose a perceptual audio source separation
method using NMF2D. The perceptuality is integrated into
the separation algorithm by psychoacoustic pre-processing
applied on the mixture spectrogram. The simulation results
indicate that the proposed psychoacoustic pre-processing sig-
nificantly improves the quality of the reconstructed audio
sources and decreases the computational complexity.
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Fig. 5. Performance measures in terms of SAR for combinations
of NMF2D parameters τ and φ . Each row of plots is for a different
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