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ABSTRACT
This paper proposes an adaptive averaging periodogram
(AAP) spectral estimator based on the structure of noise
power spectral density (NPSD) for speech enhancement,
which will be herein referred to as NPSD-AAP. In the pro-
posed spectral estimator, both the raw periodogram and the
NPSD are smoothed over frequency to reduce their vari-
ances if the NPSD has a relatively flat spectrum. Other-
wise no smoothing is performed so as to satisfy the high-
frequency resolution demand for the non-flat spectrum of
the NPSD. The NPSD-AAP provides a low-variance and
adaptive-bandwidth estimate of the power spectral density,
which could be applied to any frequency-domain speech en-
hancement algorithms. Especially, the NPSD-AAP is applied
to spectral subtraction to suppress the musical noise without
introducing audible speech distortion. Experimental results
confirm the validity of the proposed algorithm.

1. INTRODUCTION

The fast Fourier transform (FFT) is often used to compute
the raw periodogram for speech enhancement due to its com-
putational efficiency [1]. However, it is well-known that the
raw periodogram is not a good spectral estimate for its large
variance, which leads to the musical noise problem for most
frequency domain speech enhancement algorithms [2]-[11].

There are two ways to suppress the musical noise. One is
to reduce the variance of the raw periodogram directly, which
will be herein referred to as the direct approach. The other is
based on other mechanisms, which will be herein referred to
as the indirect approach. A typical indirect approach is the
decision-directed approach of Ephraim and Malah [3] and its
improved variants [4]-[8], where the key mechanism is the
smoothness of the priori signal-to-noise-ratio (SNR) [11].
Another typical indirect approach is to use the psychoacous-
tic models to suppress the musical noise. For example, Virag
[12] proposed an oversubtraction scheme based on psychoa-
coustic models, and Gustafsson et al. [13] developed a psy-
choacoustically motivated audio enhancement algorithm.

Several direct approaches also have been proposed re-
cently. Boll [2] used the magnitude averaging technique to
reduce the musical noise. It is an effective way to reduce the
variance of the raw periodogram by averaging the magnitude
over time, but only a limited time averaging is allowed due
to the non-stationary characteristic of the speech. Hendriks
et al. [10] proposed an adaptive time segmentation algorithm
to find neighboring wide sense stationary segments for each
frame. Hu and Loizou [11] proposed a speech enhancement
algorithm based on wavelet thresholding the multitaper spec-
trum (WTMS), where the WTMS is a low-variance spec-
tral estimator. Gustafsson et al. [14] suggested using the

Bartlett averaging periodogram (BAP). Both the WTMS and
the BAP have a constant time-frequency bandwidth product.
Spectral subtraction (SS) with adaptive bandwidths was pro-
posed by Gulzow et al. [15], where the bandwidth was adap-
tively determined by the voice activity detector (VAD). An
efficient realization without VAD had been proposed in [15],
but it needed to estimate the subband SNR to determine the
bandwidth. Obviously, when the narrowband noise is much
larger than the speech, the WTMS, the BAP, and the adaptive
bandwidths-based SS algorithms may cause audible speech
distortion due to their wide main-lobe characteristic.

It is well-known that the SS algorithm often requires
an accurate estimate of the noise power spectral density
(NPSD). That is to say, the performance of the SS algo-
rithm is somewhat influenced by the accuracy of the NPSD
[16]. Whereas, the characteristic of the NPSD is rarely used
in most conventional SS algorithms [17]. Considering the
harmonic-plus-noise model of speech, the spectral estimator
must have high-frequency resolution in order to distinguish
two neighboring harmonic spectra. This should be the main
reason why the raw periodogram is often used to provide a
high-frequency resolution spectral estimator for most of the
conventional SS algorithms. In fact, using the high or low
frequency resolution spectral estimator dose not make any
conspicuous difference for the speech signal. This is because
using low-frequency resolution spectral estimator may not
cause serious speech distortion and only reduces the amount
of the noise reduction for voice at low frequencies, where the
residual noise could be masked by the voice in most cases.
However, using the high or low frequency resolution spectral
estimator for the noise has obvious influences on speech en-
hancement. For the narrowband noise, using low-frequency
resolution spectral estimator may cause audible speech dis-
tortion and also may decrease the amount of the noise re-
duction due to the wide main lobe. Therefore, the structure
of the NPSD should determine whether the high-frequency
resolution is used or not.

In this paper, we propose to smooth the raw periodogram
over frequency adaptively, and basing on the structure of the
NPSD, to provide a low-variance and adaptive-bandwidth
spectral estimator for speech enhancement, which will be re-
ferred to as the structure of NPSD-based adaptive averaging
periodogram (NPSD-AAP). The basis of the NPSD-AAP is
the flatness of the estimated NPSD: if the estimated NPSD
has a relative flat spectrum, adjacent averaging smoothing is
applied to both the raw periodogram and the estimated NPSD
to significantly reduce their variances; otherwise, no smooth-
ing technique is used to satisfy the high-frequency resolu-
tion demand. To validate the proposed spectral estimator, the
NPSD-AAP is applied to the SS algorithm to suppress the
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musical noise while achieving low levels of speech distor-
tion. Experimental results verify the better performance of
the proposed NPSD-AAP-based SS algorithm.

This paper is organized as follows: In section 2, the the-
ory and the implementation of the NPSD-AAP are presented.
In section 3, the NPSD-AAP is applied to the SS algorithm.
Performance evaluation and conclusions are presented in sec-
tion 4 and section 5, respectively.

2. NPSD-AAP

2.1 Theory
Let PD( f ) be the NPSD at frequency f . The first derivative
of the natural logarithm of the NPSD is selected to measure
the flatness, which is defined as

ℜ( f ) =
∂ [lnE {PD ( f )}]

∂ f
=

1
E {PD ( f )}

∂ [E {PD ( f )}]
∂ f

, (1)

where ln{•} is the natural logarithm function; and E {•} is
the expectation function. Obviously, the gradient ℜ( f ) mea-
sures the variation of the NPSD. When ℜ( f ) becomes in-
finite, the NPSD is increasing or decreasing rapidly at fre-
quency f ; On the contrary, if ℜ( f ) is close to zero, the NPSD
is flat. In practice, the discrete Fourier transform (DFT) is
used, then (1) can be rewritten as

ℜ(k, i) =
|E {PD (k + i)}−E {PD (k)}|

i ·E {PD (k)}
, (2)

where k is the frequency index, i =±1,±2, · · ·±K f , and K f
is the number of the adjacent frequency bins. (2) shows that if
and if only E {PD (k)}= E {PD (k + i)},with i =±1,±2, · · ·±
K f , holds, then ℜ(k, i) ≡ 0, where the special case is only
valid for flat spectra, such as white noise. To be mentioned,
(2) is somewhat different from (1) since the absolute opera-
tion is applied in (2). ℜ(k, i) is still an effective measurement
because it has the same physical meaning as ℜ( f ). (2) can
be rewritten as

λ (k, i) = E{PD(k)}
E{PD(k+i)}

=

{
1

i·ℜ(k,i)+1 E {PD (k + i)} ≥ E {PD (k)}
1

1−i·ℜ(k,i) otherwise
(3)

where λ (k, i) indicates the ratio between the expected value
of the NPSD at bin k and that of the NPSD at bin k+ i. When
λ (k, i) is close to one, the NPSD at bin k and the NPSD at bin
k + i can be averaged because they have the same expected
values.

Given the following two hypotheses,

H0 (k, i) : λ (k, i) = E {PD (k)}
/

E {PD (k + i)}= 1
H1 (k, i) : λ (k, i) = E {PD (k)}

/
E {PD (k + i)} 6= 1 (4)

where i = ±1,±2 · · · ±K f . H0(k, i) indicates a hypothesis
that the NPSD at bins k and k+ i have the same expected val-
ues; and H1(k, i) indicates an alternative hypothesis that the
NPSD at bins k and k + i have the different expected values.
If H0(k, i) is true, the smooth operation can be applied to bins
k and k+ i to reduce the variance because they have the same
expected values.

2.2 The NPSD estimation and the implementation of the
NPSD-AAP
2.2.1 The NPSD estimation

There are two ways to estimate the NPSD. One is based on
the VAD, where the NPSD is estimated from the noise-only
segment [3],[14],[15]. The other is based on the minimum
statistics (MS) approach [16]. Martin has proved that the
variance of the minimum statistics power estimate is smaller
than the variance of a single recursively smoothed power es-
timate [16]. Thus, the MS approach is applied to estimate the
NPSD due to its low-variance characteristic.

We assume that the noise is d(n) and the clean speech is
s(n), then the noisy speech y(n) is given by

y(n) = s(n)+d(n). (5)

We further assume the raw periodogram of y(n), computed
by the N-point FFT with Hanning window, is IY (k, l), where
l is the frame index, and k = 0,1 · · ·N−1. The NPSD can be
estimated by the following two steps:

1) Recursive smoothing of the raw periodgoram IY (k, l)
leads to

PY (k, l) = αPY (k−1, l)+(1−α) IY (k, l) , (6)

where α is a forgetting rate parameter.
2) The minimum from the Ω consecutive samples of

PY (k, l) is the estimated NPSD, which is given by

PD (k, l) = βc min(PY (k, l) |l−Ω+1, · · · l ) , (7)

where βc compensates the bias. In the rest of this paper, the
frame index l is discarded without causing confusion.

2.2.2 The NPSD-AAP

The NPSD estimated by the MS approach has a low-variance
characteristic, so we can define

λ̂ (k, i) = PD (k)
/

PD (k + i), (8)

then the decision rule for the binary hypothesis problem de-
fined in (4) can be given by

 H0 (k, i) true,w(k, i) = 1, i f λ̂ (k, i) ∈
[

1
λth

λth

]
H1 (k, i) true,w(k, i) = 0, i f λ̂ (k, i) /∈

[
1

λth
λth

] (9)

where w(k, i) = 1 indicates accepting H0(k, i); otherwise,
w(k, i) is set to zero. λth ≥ 1 is the threshold for accept-
ing or rejecting H0(k, i), which can be obtained by the false
alarm rate (FAR), where the FAR is the probability of choos-
ing H1(k, i) when in fact H0(k, l) is true. Obviously, if
H0 (k, i) is accepted, the hypothesis H0 (i,k) also must be ac-
cepted for symmetry. This is the reason why the interval is[

1
/

λth λth
]

in (9). The FAR is given by

Pf a =
∫ 1/λth

0
f
λ̂ (k,i)|λ (k,i)=1 (x)dx+

∫
∞

λth

f
λ̂ (k,i)|λ (k,i)=1 (x)dx

(10)
where f

λ̂ (k,i)|λ (k,i)=1 (x) is the conditional probability density

function (pdf) of λ̂ (k, i) given λ (k, i) = 1. The threshold
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For all time frame l  

1) Estimate the NPSD by the MS approach at all frequency bins k: ( )kPD . 

2) Calculate the ratio between the NPSD at bin k and the NPSD at bin k+i

( )ik,λ̂  using Eq. (8) 

3) Determine the weighted factor ( )ikw ,  using Eq. (9). 

4) Smooth the raw periodogram ( )kIY  and the estimate NPSD ( )kPD  using 

Eqs. (11) and (12). 

5) Compute the gain function ( )kG  using Eq. (13). 

6) Calculate the estimate of the clean speech ( )nŝ  using Eq. (14). 

 

Figure 1: NPSD-AAP-SS algorithm.

Table 1: Parameter values for the NPSD-AAP-SS, where N
is the frame length, and M is the frame shift parameter.

fs = 16kHz α = 0.8 βc = 1.85 Ω = 120 K f = 6
λth = 3 β = 3 Gmin =−20dB N = 512 M = N/2

λth relies on the window type, the overlapping parameter, the
forgetting rate parameter α , and the parameter Ω used in the
MS approach. In this paper, the threshold λth is obtained by
Monte Carlo method and a typical value is 3.

Based on (8) and (9), the smoothed periodogram and the
smoothed NPSD at bin k can be computed by

ĨY (k) =
K f

∑
i=−K f

w(k, i) IY (k + i)

/
K f

∑
i=−K f

w(k, i), (11)

P̃D (k) =
K f

∑
i=−K f

w(k, i)PD (k + i)

/
K f

∑
i=−K f

w(k, i). (12)

Implementing (8) directly requires K f /2 + 1 divisions for
each bin as considering the symmetry of the raw peri-
odogram. When K f is not too large, the computation load of
the NPSD-AAP does not increase too much compared with
that of the raw periodogram.

3. SPECTRAL SUBTRACTION BASED ON THE
NPSD-AAP

The gain function of the SS algorithm based on the NPSD-
AAP (NPSD-AAP-SS) is given by

G(k) = max
{

max{ĪY (k)−β P̄D (k),0}
max{ĪY (k)−β P̄D (k),0}+ P̄D (k)

,Gmin

}
,

(13)
where β > 1 is the oversubtraction factor, and Gmin is the
minimum gain value. After the gain function is obtained, the
enhanced speech could be computed by

ŝ(n) = IFFT{G(k)Y (k)} , (14)

where Y (k) is the FFT of the noisy speech y(n) and ŝ(n) is
the estimate of the clean speech s(n).
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Figure 2: Comparison of the spectral estimators. (a)(b)(c)
in the first row show the sinusoids in WGN, car noise, and
bandlimited noise, respectively. (d)(e)(f) in the second row
and (g)(h)(i) in the third row show the raw periodogram and
the BAP, respectively. (j)(k)(l) in the last row illustrate the
NPSD-AAP.

Table 2: The RIMSE of the three spectral estimators, includ-
ing the raw periodogram, the BAP, and the NPSD-AAP.

Noise/Algorithms the raw periodogram the BAP the NPSD-AAP
Sinusoids in WGN 0.44 27.33 0.42
Bandlimited WGN 10.12 4.69 3.76

WGN 256.35 93.90 89.09

We summarize the implementation of the NPSD-AAP-
SS algorithm in Figure 1. All of the signals used in this paper
are sampled at fs = 16kHz, and the parameter values for the
proposed algorithm are shown in Table 1.

4. PERFORMANCE EVALUATION

In this section, we first compare the NPSD-AAP with the
raw periodogram and the BAP to show the low-variance
and adaptive-bandwidth characteristics of the proposed spec-
tral estimator by using three types of noise, including si-
nusoids buried in white Gaussian noise (WGN), car noise,
and bandlimited WGN. The frame length for the raw pe-
riodogram and the BAP is 512 and 64, respectively; and
[512/64] subblocks are averaged to obtain the BAP in the
simulation. Second, the NPSD-AAP-SS is compared with
the raw periodgoram-based SS (RP-SS) and the BAP-based
SS (BAP-SS) algorithms.

4.1 Comparison of the spectral estimators
Three types of noise, including sinusoids buried in WGN, car
noise, and bandlimited WGN, are shown in the first row of
Figure 2, respectively. The raw periodogram and the BAP
of these noise signals are shown in the second and the third
rows of Figure 2, respectively. The last row of Figure 2 de-
picts the estimation results of the NPSD-AAP. In the pro-
posed NPSD-AAP algorithm, the variance is better reduced
for the flat spectrum of the NPSD, and the frequency resolu-
tion is high enough for the non-flat spectrum of the NPSD.
Whereas, the raw periodogram has a large variance with
high-frequency resolution; and the BAP has a low variance
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Table 3: Comparison of the log-spectral distance (LSD) for the three SS algorithms, including the RP-SS, the BAP-SS, and
the proposed NPSD-AAP-SS algorithms.

LSD [dB]
Algorithm RP-SS BAP-SS NPSD-AAP-SS

Input Segmental SNR -5 0 5 10 -5 0 5 10 -5 0 5 10
WGN 8.20 4.87 2.94 1.81 5.65 3.51 2.55 1.78 5.61 3.42 2.49 1.76

Bandlimited WGN 4.81 3.15 2.06 1.38 4.28 2.81 1.81 1.27 3.97 2.58 1.70 1.26
Sinusoids in WGN 3.34 2.02 1.27 0.86 5.19 3.01 2.18 1.38 3.44 2.08 1.34 0.95

Car noise 4.28 1.84 1.20 0.89 3.95 2.12 1.38 1.16 2.51 1.76 1.07 0.78
Babble 6.26 3.92 2.47 1.60 5.36 3.31 2.09 1.41 5.47 3.38 2.07 1.36

with low-frequency resolution. The proposed NPSD-AAP
is a low-variance and adaptive-bandwidth spectral estimator,
which could make a good trade-off between the variance and
the frequency resolution based on the flatness of the NPSD.

To give a quantitative result, the root integrated mean
square error (RIMSE) defined in [18] is used to evaluate the
performance of the three spectral estimators, where the re-
sults are shown in Table 2. The best performance of the
NPSD-AAP is further confirmed by the minimum RIMSE
among the three spectral estimators for any type of noise.
The RIMSE of the car noise is not presented in Table 2 for
which the car noise is non-stationary, and it is unable to de-
fine its expected value. Even for the WGN, the variance is
only reduced by a factor of less than 2K f +1. The main rea-
son is that the Hanning window and the overlap used in the
raw periodogram reduce the independence.

4.2 Comparison of the three SS algorithms

The NPSD-AAP-SS is compared with the RP-SS and the
BAP-SS, where the noise signals include two types of arti-
ficial noise as shown in Figure 2(a) and (c), and three noise
signals (WGN, car noise, and babble) taken from the Noi-
sex92 database [19]. More than 400 clean speech samples
are taken from the TIMIT database [20]. These clean speech
samples are summed up to about 20 minutes without inter-
vening pauses and degraded by the various noise types with
segmental SNRs in the range [-5 10]dB. The log-spectral dis-
tance (LSD) [21], the perceptual evaluation of speech quality
(PESQ) [22], and the speech spectrograms are used to give
the objective comparison results. The results of the LSD are
shown in Table 3.

As shown in Table 3, the proposed NPSD-AAP-SS algo-
rithm has a smaller LSD than the other two SS algorithms
for most cases. For the broadband noise with small dy-
namic range, such as the WGN and the bandlimited WGN,
the performance of the BAP-SS is comparable with that of
the NPSD-AAP-SS. The main reason is that the BAP and
the NPSD-AAP nearly have the same frequency resolution,
and the NPSD-AAP is also a low-frequency resolution and
low-variance spectral estimator just like the BAP; while the
performance of the RP-SS is the worst due to the large vari-
ance of the raw periodogram. For the narrowband noise with
large dynamic range, such as the sinusoids buried in WGN,
the BAP-SS is the worst due to the low-frequency resolu-
tion of the BAP; the proposed NPAD-AAP-SS has nearly the
same performance with the RP-SS because the NPSD-AAP
could reduce the variance and achieve high-frequency reso-
lution simultaneously based on the flatness of the NPSD. For
the non-stationary broadband noise with medium dynamic

Table 4: Comparison of the PESQ improvement for the three
SS algorithms at an input segmental SNR = 0dB.

Noise PESQ Improvement
Algorithm RP-SS BAP-SS NPSD-AAP-SS

WGN 0.59 0.62 0.62
Bandlimited WGN 0.60 0.57 0.72
Sinusoids in WGN 0.59 0.09 0.50

Car noise 0.50 0.24 0.50
Babble noise 0.08 0.13 0.13

range, such as the car noise and the babble, the best per-
formance of the proposed algorithm reveals that the NPSD-
AAP-SS is not seriously deteriorated when the MS approach
underestimates the NPSD.

The PESQ has been found to have a good correlation
overall with the mean opinion score (MOS), so it is used
to further confirm the better performance of the proposed
NPSD-AAP-SS, where the PESQ improvement for the three
SS algorithms is shown in Table 4. The NPSD-AAP-SS has
a higher PESQ improvement for most cases, which is consis-
tent with the results of the LSD.

To give indications of the structure of the residual noise
and the speech distortion, an example of spectrograms of the
noisy and the enhanced speech samples is presented in Figure
3, where the clean speech is corrupted by the sinusoids buried
in WGN at -5dB. For the proposed algorithm, the musical
noise is reduced without introducing more speech distortion.
The BAP-SS suppresses the musical noise at the expense of
more speech distortion at the sinusoidal frequencies, while
the RP-SS still has annoying musical noise.

Informal listening tests further show that the RP-SS still
has annoying musical noise for the five types of noise, while
the BAP-SS has audible speech distortion for three types of
noise including the sinusoids buried in WGN, the bandlim-
ited WGN, and the car noise. Both the BAP-SS and the
NPSD-AAP-SS can effectively suppress the musical noise,
while the NPSD-AAP-SS does not introduce audible speech
distortion for the five types of noise.

5. CONCLUSIONS

This paper proposes an adaptive averaging periodogram
based on the structure of noise power spectral density, where
the proposed NPSD-AAP could be applied to any frequency-
domain speech enhancement algorithms that need peri-
odogram estimation. Compared with the raw periodogram
and the BAP, the NPSD-AAP provides a low-variance and
adaptive-bandwidth estimate of the power spectral density,
which could achieve high-frequency resolution of the NPSD
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Figure 3: Speech spectrograms for the clean speech cor-
rupted by sinusoids buried in WGN at -5dB. (a) Noisy
speech. (b) Enhanced speech by the RP-SS. (c) Enhanced
speech by the NPSD-AAP-SS. (d) Enhanced speech by the
BAP-SS.

and reduce the variance of the raw periodogram simultane-
ously based on the flatness of the NPSD. Compared with the
raw periodogram-based and the BAP-based spectral subtrac-
tion algorithms, the NPSD-AAP-based SS algorithm could
suppress the musical noise without causing more speech dis-
tortion for any type of noise.

We wish to emphasize that there are at least two ways to
improve the performance of the NPSD-AAP-SS. One is to
select the oversubtraction parameter β in (13) according to
the speech presence probability (SPP) [23]. When the SPP is
close to one, β should be small to reduce speech distortion;
otherwise, if the SPP is close to zero, β should be large to
suppress the noise. The other way is to further reduce the
nonstationary noise by cepstral smoothing technique [7].
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