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ABSTRACT not very crucial. Thisis illustrated on a speech-like siatet!

The cepstrum of a random process is useful in many applRT0Cess in Section 3.2, where.we also compare with the M_SE
cations. The cepstrum is usually estimated from the periof the two most common estimators which are the Fourier
odogram. To reduce the mean square error (MSE) of thransform of_the I(_)g-penodogram _and the Fourlertransform
estimator, the periodogram may be smoothed with a kern&f the Hanning-windowed log-periodogram. These estima-
function. We present an explicit expression for a kerne¢fun {0rs are also used as comparisons in Section 4, where we
tion which is approximatively MSE optimal for cepstrum es- démonstrate how the performance depends on the pole lo-
timation. A penalty term has to be added to the minimiza€&tion in an AR(2) process. Since the optimal smoothing
tion problem, but we demonstrate how the weighting of thedePends on the true covariance function, which is unknown,
penalty term can be chosen. The performance of the estim@P€ €an in practical applications not expect to select thetmo
tor is evaluated on simulated processes. Since the MSE ofPtimal kemnel function. Using the sample covariance func-
timal smoothing kernel depends on the true covariance fundlon computed from observed data, instead of the true covari

tion, we give an example of a simple data driven method. 2nce function, we can still yield a better result compared to
’ no smoothing at all, as shown in Section 5. Section 6 con-

1. INTRODUCTION cludes the paper.
The cepstruman anagram of the word “spectrum”, was in- 2. CEPSTRUM ESTIMATION BY PERIODOGRAM
vented by Bogart, Healy and Tukey, in the early sixties [1,2] SMOOTHING

It is defined as the inverse Fourier transform of the log-
spectrum of a stationary random process. The cepstrum . o .
often used in classification or detection problems where th§0M Process with zero mean and finite moments. The covari-
cepstrum coefficientgliscrete cepstrum) may serve as a fea-2nce functiom : {—n+1,...,n—1} — Ris defined by
ture input to a pattern recognition system. Recently, it has r(1) = EX(t)X(t +1)].

been used for classification of events using neural activity

[3], detection of rot fungi in trees [4], and in fault detesti  The spectral densitg: {—n+1,...,n—1} — R* at frequen-
of a mechanical gear system [5]. The cepstrum is most nQjesp/N, p= —n+1,....n—1,N = 2n—1, is defined by
tably used in audio related applications, such as in speech

t {x(t),t =1, ..., n} denote a real-valued stationary ran-

and speaker recognition, but also in music genre classifica- n-1 Py
tion and in speech synthesis, [6, 7]. Typically, the cepstru S(p) = z r(r)e'~t.
is estimated by the Fourier transform of the log-periodogra T=-n+1

The periodogram suffers from large variance, causing larggsq;ming that the spectrum is strictly positi@p) > 0, for
estimation errors in the cepstrum coefficients. The VaBanCeveryp the cepstrung: {—n-+1 n—1} — R of the ’pro-

of the periodogram can be reduced by convolution with &o.'iq’ defined as the inverse Fourier transform of the log-
smoothing kernel function. In the context of spectrum es-

timation, there has been a lot of research on how to seled ectrum:

the smoothing kernel function. Periodogram smoothing is 1 n-1 -

not usually performed in the context of cepstrum estimation c(g)=— z log(S(p))€?™ .

One reason to this may be that the optimal selection of the N p=—T+1

kernel function appropriate for cepstrum estimation has no , i

been considered before. Therefore, we will in this paper disThe cepstrum is symmetricg(q) = ¢(—q), q = —n+

cuss how the smoothing kernel should be selected in ordés ---»N—1, and we will from now on only consider> 0.

to minimize the mean square error (MSE = squared bias Noté that all the three functions S, andc, are defined
variance) of the cepstrum estimator defined in Section 2. WE N unique points. The above defined spectr8ns thus
believe that the MSE is a useful optimization criterion siitc  UP-Sampled in comparison to the ordinary periodogram of
takes both bias and variance of the cepstrum coefficierds int¢ Which is usually only computed in/2 points. This is
account. In Section 3, for the first time, an approximate-soluNecessary in order to guaranty th&) ~ ccont(d/N), q =

tion to this optimization problem is derived. The approxima ~"N+ 1, ..., n—1, whereceont is the continuous cepstrum,
tion is significantly improved by introducing a penalty term defined as the continuous Fourier transform of the continu-

as described in Section 3.1. The weight of the penalty term i@US Spectral density. This fact is also recognized in [8].
In order to estimate the cepstrum from an observed re-

This work was supported by the Swedish Research Council. alization of the random process, one may first estimate the
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spectrum by the periodogram, and then apply the logarithrfor z~ 1. The MSE is invariant to scaling of the smoothing
and the inverse Fourier transform to achieve a cepstrum estivindow, i.e. the MSE obtyw(q) equals the MSE ofy (q) if

mate. We denote this estimator by W = aW’', a # 0. Therefor, we may solve the minimization
problem subject t§W|| = 1, wherg | - || denotes th&? norm,
. n-1 omP q, without imposing any restrictions to the final set of solatio
Coer(0) = N Z log(Sper(p)) €™ (1) The functionF, defined in (4), which we aim to minimize,
p=—n+1 can be written:
o . 2
whereSyeris the periodogram: ,
Seris the periodog F(W):$E[< 5 g S )ézmgq) ]
1 ol p="h+1 SN(p)

S = =5 x()x(t+ |1])e 2R 4 . . .

SperP) T:Znﬂn t; (Ox(t+|7l) SinceSy(p) is an estimate of(p), it seems reasonable to
2 believe that the ratio between them s close to 1. Therdfer, t

n

le(t)eiizm%

t=

1 approximation Iog(1—>) — S(—EJ is justified and we
, : _ : : by
The periodogram is an inconsistent estimator of the spec-

n Sw(p)

approximate the functioR with the functionFapproxdefined

trum, since the variance does not approach zero as the data 1 [/ no1 3/\/( ) 2
length, n, goes to infinity. This problem is naturally ad-  FapprofW) £ E (1_ _) i2mhq
dressed by smoothing the periodogram with a kernel func- N p="Tn+1 S(p)
tion. We denote and define this estimator by - ’
—1 ~
. n—1 R = izE ( nz Meizm‘jq) 7
Swp)= > W(p)Spel( P~ P'). N p-5hr1 S(P)
p=—n+1 -

sin ceZeiZ"T?fq =0, for g # 0. The requiremeniW|| = 1

whereW : {-n+1,...,n—1} — R is asmoothing kemnel o, c|;des the trivial solutiow = 0. To MinimizeFapprox We
Let us define and denote the cepstrum estimator based Qi) now introduce the following vector notation:

periodogram smoothing by

_ n -

. 1 n1 . ionP 3 X(t)?

(@)= > log(Sw(p))e ™. 2) 1 .

p="n+1 20 { s X(O)x(t+ 1)e'2"N1}
t=1
Choosing an appropriate smoothing kerélis a difficult n—2 _iomPo
matter. Our aim is to find the MSE optimal smoothing kernel Ap= 20 tzlx(t)x(t +2)e
for estimation of they:th cepstrum coefficient:
Wy—opt = argmin  F(W), 3) n—(n—1) _
O Cn L1k 20{ 3 xX(t)x(t+(n—1))e 2 (-1
t=1

where wherel] denotes real-part and

F(W) 2 E |(c(a) — u(a))’]. (@) w=WO) ... wn-1,

Note that the smoothing kernel is allowed to depend orf"d Wherewis defined by
which cepstrum coefficierqy we wish to estimate, but we 1 n1
exclude the zeroth coefficierd,= 0, which is equal to the w(T) = = W(p)e?PT/N,
mean of the log-spectrum, since in most applications this is N p=Shi1
not interesting. The variance and bias of the cepstrum esti-
mated from a tapered periodogram has been derived in [9)ith this notation Sw(p) = Agw, and the functiorFapprox
(see also [8]), but such expressions lead to a difficult optiean be written:
i T.. A2m8q ’
o ApweTN
p—Zn+15( )

mization problem. In the following section, we will demon-
strate that it is possible to compute an approximative goiut 1
to (3) which will turn out to be accurate only after the addi- FapproX W) = WE
tion of a penalty term as in Section 3.1.
3. APPROXIMATIVE OPTIMIZATION With Y = Zp——n+1 S(p Ape' mRa (Y is arandom elementin
We will now solve the optimization problem in (3) using an R"):
approach where the MSE is rewritten on a form where the 1
argument of the logarithm operator is likely to be close to 1, ¢ W wEYYT
which allows us to apply the approximation lay~ 1—z 1, approf( W) = [ Jw
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That is, we need to minimize the following expression withwith M as in (5):

respect tow: 0
wT Mw, Gapprox(W) = w' N2
1 n1 ZAFTJW (A‘TJW)2
where +E|p— 1- +
N, 2, se TSR
-
M=E[YY']. (5) 1 1 "1 E[ApA]]
— T pnM+p_ &
Under the constraintw|| = 1, the solution to this minimiza- N2 N, 4. Sp)?
tion problem is the eigenvector &I corresponding to its n1 g [AT}
smallest eigenvalue. For Gaussian processes, the kenel fu ) 1 Plw+p
tion can be computed exactly as it only requires an eigenvec- N =51 S(p)

tor decomposition oM which can be expressed in terms of

the covariance function as given in Appendix A. Simulation

studies shows thd,pproxis minimized by a smoothing ker- \yith

nel function for which the approximatidf ~ Fapprox unfor- .
tunately does not hold, due to that the ratio betw8gip) ol 1_pnM+p 1 " E[ApA]]

andS(p) is too far from 1. To this end, we will add a penalty N2 N e S(p)2 -’
term, as described next. P=

3.1 Approximative optimization with penalty term and

We will now use the same approach as previously but we add A1 D
a penalty term, which penalizes smoothing kernels for which ¢ = PN S(p)

the ratio betweersy(p) and S(p) is too far from 1. Our p=-n+1

aim is now to find the smoothing kernel functig¥ which  the minimization problem is written on the form:
minimizes:

o EA]

Minimize: w'®¥w—2®'w w.rt. w, (8)
A 2
GW)£E l(l— p)n(c(a) — w(a)) whereW is a symmetric matrix. The solution is
n p—approx 1
Lot ”f <S<p>—sN<p>>2 - Waopt =¥, ©)
N p="n+1 S(p) And the optimal smoothing kernel function is thus

where 0< p < 1 is a constant which controls the influence n-1

of the penalty term. The factarin front of the squared cep- cf o%’?pm)ip z SSP"’YITI -12mT/N - (10)

=—n+1

strum error is justified from the fact thﬁt{(c(q) —ow(q))?

asymptotically decays as/a. Thus, a good choice of the 3.2 Calibration of theweight of the penalty term
weighting factorp will not depend heavily om. Due to the  |n order to investigate the effect of the penalty term, we

penalty term, the approximation l{%) ~1— Sw ) is choose an AR-process & 240) with parameters estimated

from a recorded speech signal (sampling rate = 8 kHz, model
more accurate and we can approximateith Gapprox order given by the Akaike final prediction error). We Monte

) Carlo compute (2000 simulations) the MSEogf(q), where
1-p n-1 éw(p) i2nP g W is computed as in (10) for different values of the constant
GapproW) = E N2 we N P, which regulates the influence of the penalty term. Fig. 1
p="n+1 2P shows the result as a function pffor cepstrum coefficient
g= 3. The MSE oftper, see (1), and the MSE afan defined

1 " s(p)—Swip)\
oy 3 (PP )] @ b

p=—n+1
n-1
A _ - & 2154
The constrainffW/|| = 1 is no longer needed in order to avoid Chan(Q) = N 7;“'09 (Shar(p)) &N, (11)
trivial solutions. With the same vector notation as befoee w P=
have: where
2
1-p &AW o 2
GapproXW) = E n ——e™A i2mt
appro [ N2 (pzr1+1 S(p) Snan TN
2
1 "t (S(p)- A;TJW whereh is a Hanning window, is also shown as a compari-
+pﬁ L, S(p) son. Fig. 1 also shows the MSE summed up over all cep-
p=—f strum coefficientsy = 1,...,15 (these are the coefficients
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Figure 1: Left: MSE of the three estimatorsy (4), €per(q)  Figure 3: MSE as a function of the sample sizelLeft: for
andchan(q), forq= 3 on a speech like simulated process. Thecepstrum coefficien = 3. Right: averaged over cepstrum
smoothing kernel functiodV used in the estimataxy{q) is  coefficientsg=1,...15.
computed as in (10), for different values pn Right: The
same, but summed ovgr=1,...,15.
5. OPTIMAL SMOOTHING KERNEL BASED ON
SAMPLE COVARIANCE

e, = ] [ p— The approximative solution given in (10) of the MSE optimal
0.01 R 004 ’ Cper periodogram smoothing for cepstrum estimation defined in
2% Chan 2o Chan (3) depends on the true covariance function, which in practi
7 a cal applications is unknown. Instead, one has to rely egher
0005 ~0.005 a priori knowledge about the application at hand, or on data

driven methods. A simple example of a data driven approach
is to first get a rough approximation of the covariance struc-
0 5 m) 15 o 5 0 15 ture for the current type of data. The covariance structane ¢
be pluggedinto (10) in order to compute a suitable smoothing
kernel function. In the following example we have chosen

Figure 2: MSE of the estimatocs,{q) (0 = 0.8), Gper(q) and 8N AR(2) process with poles in@Be1270.25, We compute
¢har(q), as a function of cepstrum coefficient,for two dif- the average oK sample covariance functiongsamd1) =
ferent AR(2)-processes with poles irb&+2™25 (left) and %ZiK:l%zttlmm(t)xi (t+|1|), wherex;, i =1,...,K, are
0.98€512710.25 (right). independent realizations of this process. Using this sampl
covariance function, we compute the approximate optimal
smoothing kernel function. On a new realization from the
AR(2) process, we use the smoothing kernel function to es-
most often considered in audio applications). We have Montémate the cepstrum. In Fig. 3 the Monte Carlo computed
Carlo computed the MSE as a function pfon different (100> 100simulations) MSE fog = 3 and the MSE summed
AR-processes with parameters estimated from speech sigver cepstrum coefficiengs=1, ..., 15 of such a procedure
nals. Based on this, we can propose fhahould be chosen are shown as a function &. The MSE ofcper and of Chan

between G and 09, but the exact choice does not seem to?r€ also shown as a comparison. From only two realizations
be very important. a smoothing kernél can be computed which will malag,”

superior.

6. DISCUSSION

4. EVALUATION ON AR(2)-PROCESSES We have for the first time presented an approximative solu-
tion to the MSE optimal periodogram smoothing kernel func-

We will now study how the cepstrum estimatgy, WwhereW  tion for cepstrum estimation. For the solution to be acaurat
is computed as in (10), behaves on a set of AR(2) processagenalty term has to be included. On a speech like simulated
with poles inae*?™ . We choosg = 0.8 as weight for the process we have shown that the weighting of the penalty term
penalty term. Fig. 2 shows Monte Carlo computed (2000s not very crucial. The optimal smoothing kernel depends
simulations) MSE ofow(q) for v = 0.25 and fora = 0.5  on the true covariance, which in practical applicationsis u
anda = 0.98 for different cepstrum coefficients. The MSE known, and hence one has to rely either on a priori knowl-
of €per(Q) and ofchan(q) is also shown. The spectrum with edge about the application at hand, or on data driven meth-
a sharp peaky = 0.98, is more difficult to smooth than the ods. A priori knowledge may be captured in a model. The
slowly varying spectrumg = 0.5. In both cases, however, model can be too restrictive for the application, but stilbg
6w has considerably lower MSE than the other estimatorsenough to provide input to (10), by which a good smoother
Based on experiments where we have changed the paramg-computed. As an example of a data driven method, we
ter v, we can conclude that this parameter does not affedtave shown how the sample covariance function, estimated
the MSE of the cepstrum estimate much. This is expectedrom data, can be used to compute a good smoothing kernel
since the periodogram is convolved with the smoothing kerfunction. The approximative solution that we present also
nel function, and thus, a shift of the spectrum should noehavprovides a possibility in future research to gain general in
a large influence of the quality of the estimator. sights in how the optimal smoothing kernel depends on cer-
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n-1 1 ei2r[pq
Y == —Ap N
32 S

S(p

< nil coS(ZTf;go)ejZnT%q> <§ X(t)z)
p=—n+1 t=1

( El %eﬂ"ﬁq) <2n21x(t)x(t+1)>
= p=—n+1 t=1

_ (12)
- 1) ' —(n-1)
( n21 ‘Cos@g(ﬁpgn 1) e'2"15q> <2n E X(t)x(t+ (n— 1)))
L p=—n+1 t=1 ]
_ ! cos(2mf(a—1)) jonp nl cos(2mf(b—1)) 0
Mg =i AT NAT T d2inq ZTAATTNAY ) d2mgq
e <p—zn+1 S(p) p:ZnH S(p)
n—(a—1)n—(b-1)
x> > EkX{t)x(ti+(a—1)xt)x(tz+ (b—1))] (13)
ti=1 =1
whereigp,=1ifa=1andb=1,ipp=2ifa=1andb# 1orifa# 1andb=1, andiy, = 4 otherwise.
n—(a—1)n—(b-1)
E[x(ty)x(t1 + (a— 1))x(t2)x(t2 + (b— 1))] (14)

=ra-Lr(b—-1)(n—a+1)(n—b+1)+

n—(a—1)n—(b-1)

t1=1 to=1

rfo—tyrto+b—ti—a)+rta+b—-1—-tr(to—t; —a+ 1).

tain properties of the random process.

A. THEMATRIX M

The random vectolY is expressed in terms of the random

procesxin (12) and thga, b):th element of the matriM is

given in terms ok in (13). For a Gaussian process with zero
mean, the formul&[ABCD| = E[AB|E[CD] + E[AC|E[BD] +
E[ADIE[BC] can be applied and the expectation inside the
expression oM can be expressed as in (14).
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