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ABSTRACT
The cepstrum of a random process is useful in many appli-
cations. The cepstrum is usually estimated from the peri-
odogram. To reduce the mean square error (MSE) of the
estimator, the periodogram may be smoothed with a kernel
function. We present an explicit expression for a kernel func-
tion which is approximatively MSE optimal for cepstrum es-
timation. A penalty term has to be added to the minimiza-
tion problem, but we demonstrate how the weighting of the
penalty term can be chosen. The performance of the estima-
tor is evaluated on simulated processes. Since the MSE op-
timal smoothing kernel depends on the true covariance func-
tion, we give an example of a simple data driven method.

1. INTRODUCTION

Thecepstrum, an anagram of the word “spectrum”, was in-
vented by Bogart, Healy and Tukey, in the early sixties [1,2].
It is defined as the inverse Fourier transform of the log-
spectrum of a stationary random process. The cepstrum is
often used in classification or detection problems where the
cepstrum coefficients(discrete cepstrum) may serve as a fea-
ture input to a pattern recognition system. Recently, it has
been used for classification of events using neural activity
[3], detection of rot fungi in trees [4], and in fault detection
of a mechanical gear system [5]. The cepstrum is most no-
tably used in audio related applications, such as in speech
and speaker recognition, but also in music genre classifica-
tion and in speech synthesis, [6, 7]. Typically, the cepstrum
is estimated by the Fourier transform of the log-periodogram.
The periodogram suffers from large variance, causing large
estimation errors in the cepstrum coefficients. The variance
of the periodogram can be reduced by convolution with a
smoothing kernel function. In the context of spectrum es-
timation, there has been a lot of research on how to select
the smoothing kernel function. Periodogram smoothing is
not usually performed in the context of cepstrum estimation.
One reason to this may be that the optimal selection of the
kernel function appropriate for cepstrum estimation has not
been considered before. Therefore, we will in this paper dis-
cuss how the smoothing kernel should be selected in order
to minimize the mean square error (MSE = squared bias +
variance) of the cepstrum estimator defined in Section 2. We
believe that the MSE is a useful optimization criterion since it
takes both bias and variance of the cepstrum coefficients into
account. In Section 3, for the first time, an approximate solu-
tion to this optimization problem is derived. The approxima-
tion is significantly improved by introducing a penalty term
as described in Section 3.1. The weight of the penalty term is
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not very crucial. This is illustrated on a speech-like simulated
process in Section 3.2, where we also compare with the MSE
of the two most common estimators which are the Fourier
transform of the log-periodogram and the Fourier transform
of the Hanning-windowed log-periodogram. These estima-
tors are also used as comparisons in Section 4, where we
demonstrate how the performance depends on the pole lo-
cation in an AR(2) process. Since the optimal smoothing
depends on the true covariance function, which is unknown,
one can in practical applications not expect to select the most
optimal kernel function. Using the sample covariance func-
tion computed from observed data, instead of the true covari-
ance function, we can still yield a better result compared to
no smoothing at all, as shown in Section 5. Section 6 con-
cludes the paper.

2. CEPSTRUM ESTIMATION BY PERIODOGRAM
SMOOTHING

Let {x(t), t = 1, . . . , n} denote a real-valued stationary ran-
dom process with zero mean and finite moments. The covari-
ance functionr : {−n+1, . . . , n−1} 7→ R is defined by

r(τ) = E [x(t)x(t + τ)] .

The spectral densityS: {−n+1, . . . ,n−1} 7→R
+ at frequen-

ciesp/N, p = −n+1, . . . ,n−1, N = 2n−1, is defined by

S(p) =
n−1

∑
τ=−n+1

r(τ)e−i2π p
N τ .

Assuming that the spectrum is strictly positive,S(p) > 0, for
everyp, the cepstrumc : {−n+1, . . . ,n−1} 7→ R of the pro-
cess is defined as the inverse Fourier transform of the log-
spectrum:

c(q) =
1
N

n−1

∑
p=−n+1

log(S(p))ei2π p
N q.

The cepstrum is symmetric,c(q) = c(−q), q = −n +
1, . . . , n−1, and we will from now on only considerq≥ 0.
Note that all the three functionsr, S, and c, are defined
in n unique points. The above defined spectrumS is thus
up-sampled in comparison to the ordinary periodogram of
x which is usually only computed inn/2 points. This is
necessary in order to guaranty thatc(q) ≈ ccont(q/N), q =
−n+ 1, . . . , n− 1, whereccont is the continuous cepstrum,
defined as the continuous Fourier transform of the continu-
ous spectral density. This fact is also recognized in [8].

In order to estimate the cepstrum from an observed re-
alization of the random process, one may first estimate the
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spectrum by the periodogram, and then apply the logarithm
and the inverse Fourier transform to achieve a cepstrum esti-
mate. We denote this estimator by

ĉper(q) =
1
N

n−1

∑
p=−n+1

log(Ŝper(p))ei2π p
N q, (1)

whereŜper is the periodogram:

Ŝper(p) =
n−1

∑
τ=−n+1

1
n

n−|τ|

∑
t=1

x(t)x(t + |τ|)e−i2πτ p
N

=
1
n

∣

∣

∣

∣

∣

n

∑
t=1

x(t)e−i2πt p
N

∣

∣

∣

∣

∣

2

.

The periodogram is an inconsistent estimator of the spec-
trum, since the variance does not approach zero as the data
length, n, goes to infinity. This problem is naturally ad-
dressed by smoothing the periodogram with a kernel func-
tion. We denote and define this estimator by

ŜW(p) =
n−1

∑
p′=−n+1

W(p′)Ŝper(p− p′),

whereW : {−n+ 1, . . . ,n− 1} 7→ R is a smoothing kernel.
Let us define and denote the cepstrum estimator based on
periodogram smoothing by

ĉW(q) =
1
N

n−1

∑
p=−n+1

log
(

ŜW(p)
)

ei2π p
N q. (2)

Choosing an appropriate smoothing kernelW is a difficult
matter. Our aim is to find the MSE optimal smoothing kernel
for estimation of theq:th cepstrum coefficient:

Wq−opt = arg min
W:{−n+1,...,n−1}7→R

F(W), (3)

where

F(W) , E

[

(c(q)− ĉW(q))2
]

. (4)

Note that the smoothing kernel is allowed to depend on
which cepstrum coefficientq we wish to estimate, but we
exclude the zeroth coefficient,q = 0, which is equal to the
mean of the log-spectrum, since in most applications this is
not interesting. The variance and bias of the cepstrum esti-
mated from a tapered periodogram has been derived in [9]
(see also [8]), but such expressions lead to a difficult opti-
mization problem. In the following section, we will demon-
strate that it is possible to compute an approximative solution
to (3) which will turn out to be accurate only after the addi-
tion of a penalty term as in Section 3.1.

3. APPROXIMATIVE OPTIMIZATION

We will now solve the optimization problem in (3) using an
approach where the MSE is rewritten on a form where the
argument of the logarithm operator is likely to be close to 1,
which allows us to apply the approximation log(z)≈ 1−z−1,

for z≈ 1. The MSE is invariant to scaling of the smoothing
window, i.e. the MSE of ˆcW(q) equals the MSE of ˆcW′(q) if
W = αW′, α 6= 0. Therefor, we may solve the minimization
problem subject to||W||= 1, where|| · || denotes theL2 norm,
without imposing any restrictions to the final set of solutions.
The functionF , defined in (4), which we aim to minimize,
can be written:

F(W) =
1

N2E





(

n−1

∑
p=−n+1

log

(

S(p)

ŜW(p)

)

ei2π p
N q

)2


 .

SinceŜW(p) is an estimate ofS(p), it seems reasonable to
believe that the ratio between them is close to 1. Therefor, the

approximation log
(

S(p)

ŜW(p)

)

≈ 1− ŜW(p)
S(p) is justified and we

approximate the functionF with the functionFapproxdefined
by

Fapprox(W) ,
1

N2E





(

n−1

∑
p=−n+1

(

1−
ŜW(p)

S(p)

)

ei2π p
N q

)2




=
1

N2E





(

n−1

∑
p=−n+1

ŜW(p)

S(p)
ei2π p

N q

)2


 ,

since∑ei2π p
N q = 0, for q 6= 0. The requirement||W|| = 1

excludes the trivial solutionW ≡ 0. To minimizeFapprox, we
will now introduce the following vector notation:

Ap =

































n
∑

t=1
x(t)2

2ℜ
{

n−1
∑

t=1
x(t)x(t +1)e−i2π p

N 1

}

2ℜ
{

n−2
∑

t=1
x(t)x(t +2)e−i2π p

N 2

}

...

2ℜ

{

n−(n−1)

∑
t=1

x(t)x(t +(n−1))e−i2π p
N (n−1)

}

































whereℜ denotes real-part and

w = [w(0) . . . w(n−1)]T ,

and wherew is defined by

w(τ) =
1
N

n−1

∑
p=−n+1

W(p)ei2π pτ/N.

With this notation,ŜW(p) = A
T
pw, and the functionFapprox

can be written:

Fapprox(W) =
1

N2E





(

n−1

∑
p=−n+1

1
S(p)

A
T
pwei2π p

N q

)2


 .

With Y = ∑n−1
p=−n+1

1
S(p)Apei2π p

N q (Y is a random element in
R

n):

Fapprox(W) =
1

N2wE
[

YY
T]

w.
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That is, we need to minimize the following expression with
respect tow:

w
T
Mw,

where

M = E
[

YY
T] . (5)

Under the constraint||w|| = 1, the solution to this minimiza-
tion problem is the eigenvector ofM corresponding to its
smallest eigenvalue. For Gaussian processes, the kernel func-
tion can be computed exactly as it only requires an eigenvec-
tor decomposition ofM which can be expressed in terms of
the covariance function as given in Appendix A. Simulation
studies shows thatFapprox is minimized by a smoothing ker-
nel function for which the approximationF ≈ Fapproxunfor-
tunately does not hold, due to that the ratio betweenŜW(p)
andS(p) is too far from 1. To this end, we will add a penalty
term, as described next.

3.1 Approximative optimization with penalty term

We will now use the same approach as previously but we add
a penalty term, which penalizes smoothing kernels for which
the ratio between̂SW(p) and S(p) is too far from 1. Our
aim is now to find the smoothing kernel functionW which
minimizes:

G(W) , E

[

(1−ρ)n(c(q)− ĉW(q))2

+ρ
1
N

n−1

∑
p=−n+1

(

S(p)− ŜW(p)

S(p)

)2
]

(6)

where 0< ρ < 1 is a constant which controls the influence
of the penalty term. The factorn in front of the squared cep-

strum error is justified from the fact thatE

[

(c(q)− ĉW(q))2
]

asymptotically decays as 1/n. Thus, a good choice of the
weighting factorρ will not depend heavily onn. Due to the

penalty term, the approximation log
(

S(p)

ŜW(p)

)

≈ 1− ŜW(p)
S(P) is

more accurate and we can approximateG with Gapprox:

Gapprox(W) = E





1−ρ
N2 n

(

n−1

∑
p=−n+1

ŜW(p)

S(p)
ei2π p

N q

)2

+ρ
1
N

n−1

∑
p=−n+1

(

S(p)− ŜW(p)

S(p)

)2
]

(7)

The constraint||W||= 1 is no longer needed in order to avoid
trivial solutions. With the same vector notation as before we
have:

Gapprox(W) = E





1−ρ
N2 n

(

n−1

∑
p=−n+1

A
T
pw

S(p)
ei2π p

N q

)2

+ρ
1
N

n−1

∑
p=−n+1

(

S(p)−A
T
pw

S(p)

)2




with M as in (5):

Gapprox(W) = w
T 1−ρ

N2 nMw

+E

[

ρ
1
N

n−1

∑
p=−n+1

1−
2AT

pw

S(p)
+

(AT
pw)2

S(p)2

]

= w
T

(

1−ρ
N2 nM+ ρ

1
N

n−1

∑
p=−n+1

E
[

ApA
T
p

]

S(p)2

)

w

−2ρ
1
N

n−1

∑
p=−n+1

E
[

A
T
p

]

S(p)
w+ ρ

With

Ψ ,
1−ρ
N2 nM+ ρ

1
N

n−1

∑
p=−n+1

E
[

ApA
T
p

]

S(p)2 ,

and

Φ , ρ
1
N

n−1

∑
p=−n+1

E
[

A
T
p

]

S(p)
,

the minimization problem is written on the form:

Minimize: w
T
Ψw−2ΦT

w w.r.t. w, (8)

whereΨ is a symmetric matrix. The solution is

w
ρ−approx
q−opt = Ψ

−1
Φ. (9)

And the optimal smoothing kernel function is thus

Wρ−approx
q−opt (p) =

n−1

∑
τ=−n+1

wρ−approx
q−opt (|τ|)e−i2π pτ/N. (10)

3.2 Calibration of the weight of the penalty term

In order to investigate the effect of the penalty term, we
choose an AR-process (n = 240) with parameters estimated
from a recorded speech signal (sampling rate = 8 kHz, model
order given by the Akaike final prediction error). We Monte
Carlo compute (2000 simulations) the MSE of ˆcW(q), where
W is computed as in (10) for different values of the constant
ρ , which regulates the influence of the penalty term. Fig. 1
shows the result as a function ofρ for cepstrum coefficient
q = 3. The MSE of ˆcper, see (1), and the MSE of ˆchandefined
by

ĉhan(q) =
1
N

n−1

∑
p=−n+1

log
(

Ŝhan(p)
)

ei2π p
N q, (11)

where

Ŝhan(p) =
1
n

∣

∣

∣

∣

∣

n

∑
t=1

h(t)x(t)e−i2πt p
N

∣

∣

∣

∣

∣

2

,

whereh is a Hanning window, is also shown as a compari-
son. Fig. 1 also shows the MSE summed up over all cep-
strum coefficientsq = 1, . . . ,15 (these are the coefficients
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ĉW
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Figure 1: Left: MSE of the three estimators: ˆcW(q), ĉper(q)
andĉhan(q), for q= 3 on a speech like simulated process. The
smoothing kernel functionW used in the estimator ˆcW(q) is
computed as in (10), for different values onρ . Right: The
same, but summed overq = 1, . . . ,15.
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Figure 2: MSE of the estimators ˆcW(q) (ρ = 0.8), ĉper(q) and
ĉhan(q), as a function of cepstrum coefficient,q, for two dif-
ferent AR(2)-processes with poles in 0.5e±i2π0.25 (left) and
0.98e±i2π0.25 (right).

most often considered in audio applications). We have Monte
Carlo computed the MSE as a function ofρ on different
AR-processes with parameters estimated from speech sig-
nals. Based on this, we can propose thatρ should be chosen
between 0.5 and 0.9, but the exact choice does not seem to
be very important.

4. EVALUATION ON AR(2)-PROCESSES

We will now study how the cepstrum estimator ˆcW, whereW
is computed as in (10), behaves on a set of AR(2) processes
with poles inαe±i2πν . We chooseρ = 0.8 as weight for the
penalty term. Fig. 2 shows Monte Carlo computed (2000
simulations) MSE of ˆcW(q) for ν = 0.25 and forα = 0.5
andα = 0.98 for different cepstrum coefficients. The MSE
of ĉper(q) and of ĉhan(q) is also shown. The spectrum with
a sharp peak,α = 0.98, is more difficult to smooth than the
slowly varying spectrum,α = 0.5. In both cases, however,
ĉW has considerably lower MSE than the other estimators.
Based on experiments where we have changed the parame-
ter ν, we can conclude that this parameter does not affect
the MSE of the cepstrum estimate much. This is expected,
since the periodogram is convolved with the smoothing ker-
nel function, and thus, a shift of the spectrum should not have
a large influence of the quality of the estimator.
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Figure 3: MSE as a function of the sample sizeK. Left: for
cepstrum coefficientq = 3. Right: averaged over cepstrum
coefficientsq = 1, . . .15.

5. OPTIMAL SMOOTHING KERNEL BASED ON
SAMPLE COVARIANCE

The approximative solution given in (10) of the MSE optimal
periodogram smoothing for cepstrum estimation defined in
(3) depends on the true covariance function, which in practi-
cal applications is unknown. Instead, one has to rely eitheron
a priori knowledge about the application at hand, or on data
driven methods. A simple example of a data driven approach
is to first get a rough approximation of the covariance struc-
ture for the current type of data. The covariance structure can
be plugged into (10) in order to compute a suitable smoothing
kernel function. In the following example we have chosen
an AR(2) process with poles in 0.98e±i2π0.25. We compute
the average ofK sample covariance functions,rsamp(τ) =
1
K ∑K

i=1
1
n ∑n−|τ|

t=1 xi(t)xi(t + |τ|), wherexi , i = 1, . . . , K, are
independent realizations of this process. Using this sample
covariance function, we compute the approximate optimal
smoothing kernel function. On a new realization from the
AR(2) process, we use the smoothing kernel function to es-
timate the cepstrum. In Fig. 3 the Monte Carlo computed
(100×100 simulations) MSE forq= 3 and the MSE summed
over cepstrum coefficientsq = 1, . . . , 15 of such a procedure
are shown as a function ofK. The MSE of ˆcper and of ĉhan
are also shown as a comparison. From only two realizations
a smoothing kernelW can be computed which will make ˆcW
superior.

6. DISCUSSION

We have for the first time presented an approximative solu-
tion to the MSE optimal periodogram smoothing kernel func-
tion for cepstrum estimation. For the solution to be accurate
a penalty term has to be included. On a speech like simulated
process we have shown that the weighting of the penalty term
is not very crucial. The optimal smoothing kernel depends
on the true covariance, which in practical applications is un-
known, and hence one has to rely either on a priori knowl-
edge about the application at hand, or on data driven meth-
ods. A priori knowledge may be captured in a model. The
model can be too restrictive for the application, but still good
enough to provide input to (10), by which a good smoother
is computed. As an example of a data driven method, we
have shown how the sample covariance function, estimated
from data, can be used to compute a good smoothing kernel
function. The approximative solution that we present also
provides a possibility in future research to gain general in-
sights in how the optimal smoothing kernel depends on cer-
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Y =
n−1

∑
p=−n+1

1
S(p)

Apei2π p
N q

=





























(

n−1
∑

p=−n+1

cos(2π p
N 0)

S(p) ei2π p
N q

)

(

n
∑

t=1
x(t)2

)

(

n−1
∑

p=−n+1

cos(2π p
N 1)

S(p) ei2π p
N q

)

(

2
n−1
∑

t=1
x(t)x(t +1)

)

...
(

n−1
∑

p=−n+1

cos(2π p
N (n−1))

S(p) ei2π p
N q

)(

2
n−(n−1)

∑
t=1

x(t)x(t +(n−1))

)





























(12)

Mab = ia,b

(

n−1

∑
p=−n+1

cos
(

2π p
N (a−1)

)

S(p)
ei2π p

N q

)(

n−1

∑
p=−n+1

cos
(

2π p
N(b−1)

)

S(p)
ei2π p

N q

)

×
n−(a−1)

∑
t1=1

n−(b−1)

∑
t2=1

E [x(t1)x(t1 +(a−1))x(t2)x(t2 +(b−1))] (13)

whereia,b = 1 if a = 1 andb = 1, ia,b = 2 if a = 1 andb 6= 1 or if a 6= 1 andb = 1, andia,b = 4 otherwise.

n−(a−1)

∑
t1=1

n−(b−1)

∑
t2=1

E [x(t1)x(t1 +(a−1))x(t2)x(t2 +(b−1))] (14)

= r(a−1)r(b−1)(n−a+1)(n−b+1)+
n−(a−1)

∑
t1=1

n−(b−1)

∑
t2=1

r(t2− t1)r(t2 +b− t1−a)+ r(t2+b−1− t1)r(t2− t1−a+1).

tain properties of the random process.

A. THE MATRIX M

The random vectorY is expressed in terms of the random
processx in (12) and the(a,b):th element of the matrixM is
given in terms ofx in (13). For a Gaussian process with zero
mean, the formulaE[ABCD] = E[AB]E[CD]+E[AC]E[BD]+
E[AD]E[BC] can be applied and the expectation inside the
expression ofM can be expressed as in (14).
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