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ABSTRACT

In this paper, we propose a deterministic tensor-based approach for
joint channel and symbol estimation in the context of multiuser
multiantenna (MIMO) CDMA communication systems. We use a
new nonlinear (NL) coding allowing to obtain a third-order block-
Tucker2 model for the signals received by multiple receive anten-
nas, with a constrained structure for the core tensors that ensures
the uniqueness of the tensor model. Two types of receiver are de-
veloped. First, assuming that the users’ code matrices are mutually
orthogonal and known at the receiver, we derive a blind algorithm
composed of two steps: a separation of users’ contributions in the
received signals, with decoding, followed by a blind channel and
symbol estimation for each user separately. Then, when the code
matrices are unknown, a semi-blind receiver is proposed for jointly
estimating the channels, codes and symbols of all the users. Some
simulation results are provided to illustrate the performance of the
proposed receivers.

1. INTRODUCTION

Since the pioneering work of Sidiropoulos, Giannakis and Bro in
the context of direct sequence code-division multiple access (DS-
CDMA) communication systems [11] and sensor array process-
ing [10], tensor models have found numerous applications in im-
age and signal processing (SP). The parallel factor (PARAFAC)
model, also called canonical decomposition (CANDECOMP), in-
dependently introduced by Harshman [8] and Carroll and Chang
[1] for data analysis in phonetics and psychometrics, respectively,
and the Tucker model [12] are the most used tensor models for ap-
plications.

In this paper, we consider a Tucker model as a mode-n product-
based transformation of an input tensor corresponding to the core
tensor. Such a transformation is applied for modeling a multiuser
multiantenna (MIMO) CDMA communication system, with a non-
linear (NL) coding that allows us to build a constrained structure
third-order input tensor associated with each user. These input ten-
sors are characterized by two types of matrix slices having a Van-
dermonde form whereas the third one has an Hankel structure. Due
to this constrained structure of the core tensors, the block-Tucker2
model of the tensor of signals received by multiple receive anten-
nas, is unique. Considering the uplink of a cooperative multiuser
CDMA communication system, with users’ code matrices assumed
to be mutually orthogonal and known at the base station, we derive a
blind tensor-based solution for channel and symbol estimation. This
solution is composed of two steps: a separation of users’ contribu-
tions in the received signals, with decoding, followed by a blind
channel and symbol estimation for each user separately. Then, in
the case of unknown codes, we propose a semi-blind receiver for
jointly estimating the channels, codes and symbols of all the users.

The rest of this paper is organized as follows. Section 2
provides some tensor prerequisites. In section 3, we introduce
the constrained block-Tucker2 model of the signals received by
a MIMO NL-CDMA system. In section 4, assuming that the
NL spreading codes are known at the receiver, we derive a blind
algorithm for channel and symbol estimation. The case of unknown
codes is considered in section 5 where a semi-blind receiver is
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proposed for jointly estimating the channels, codes and symbols of
all the users. Some simulation results are presented in section 6, to
illustrate the performance of the proposed tensor-based receivers,
before concluding the paper in section 7.

Notations: % denotes the field of complex numbers.Vectors are
written as bold-face lower-case letters (u,v,...), matrices as
bold-face capital letters (U,V,...), and higher-order tensors as
blackboard letters (U, V---). UT, U*, U¥ and UT stand for trans-
pose, conjugate, transconjugate and Moore-Penrose pseudoinverse
of U, respectively. We denote by U; and U ; the i row and
the j** column of the (I x J) matrix U, respectively. The scalars
uj, uij and u;,..;, denote the i element of u, the (i,j)’h element

of U and the (i1,---,iy)"" element of U, respectively. I, is the
identity matrix of order n and ||.||F is the Frobenius norm. The
outer product and the Kronecker product are denoted by o and ®,
respectively. The operator vec(.) forms a vector by stacking the
columns of its matrix argument.

For A € €%, B € €/*2 and C € ¢"*2, we have:
vec (ACBT> =(B®A)vec(C) (1)

2. TENSOR PREREQUISITES

For an N''-order tensor U € @/1>*12%*Ivalso called N-way ar-
ray, of dimensions [} X I x --- x Iy, with entries u;,..;, € € (in =
1,2,--- I, for n=1,2,---,N), each index i, is associated with a
way, also called a mode, and /,, is the mode-n dimension.

In the case of a third-order tensor U € /*/*K we have three types
of matrix slices, respectively called horizontal, lateral and frontal
slices, and denoted by U; , U ; and U 4, of respective dimensions
KxJ,IxKandJxI.

By column-wise stacking the matrix slices of a same type, we get
the three following horizontal matrix unfoldings:

U;=[U, - U,legh’k )
Upy=[U_ - Uyglee M 3)
Us=[U, ---U; e gkl 4)

The mode-n product of a tensor U € /1> *I¥ of order N with a
matrix A € ¢’/»*I, denoted by V =U x, A, gives a tensor of order
N and dimensions I X - -+ X I,_1 X Jp X I,41 X --- X Iy such as [2]:

],

A
Vit ninirin = 3y Wirin g iy @i &)
in=1

This mode-n product can be expressed in terms of horizontal mode-
n matrix unfoldings of tensors U and V as:

Vn = AUn (6)
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For a third-order tensor U € ¢7*/*K

Ujjk = Z Z ngqrazp jqChkr @)

p=1lg=1r=1

, the Tucker model is given by:

where g, is an element of the core tensor G € GP*OxR and ajp,
bjq and ¢y, are entries of the matrix factors A € ¢I*P B e ¢/*Q
and C € €K*R  respectively.

It can also be written in terms of mode-n products as:

U=Gx1Ax;Bx3C (8)

The tensor model (7)-(8) is also called a Tucker3 model. When one
(two) of the matrix factors (A, B, C) is (are) an identity matrix, it
is called a Tucker2 (Tuckerl) model.

The Tucker model (8) can be interpreted as mode-n product-based
transformations (n = 1,2,3) of the core tensor, i.e. linear trans-
formations defined by the matrices A, B and C, applied to each
mode-n vector space of the core tensor. In this case, the core tensor
and the transformed tensor will be called input tensor and output
tensor, respectively.

3. SIGNAL TENSOR MODELS

We now illustrate the mode-n product-based transformation intro-
duced in the previous section, for modeling the signals received
by a MIMO NL-CDMA communication system, composed of a
linear and uniformly spaced array of M antennas (m = 1,--- ,M)
receiving signals from Q users (g = -, 0).

Let us define the third-order NL input signal tensor U@ (n) €
&<7*K for each user g, with the following entry:

ul(]q,z (n) = [u(q) (nK —i—k+2) ! )
where 4@ (nK) is the symbol transmitted by the ¢’ user, at the
symbol period nK, withi=1,--- I, j=1,--- J,k=1,--- /K, and
n represents the output data block number The dimensions /, J and
K represent, respectively, the channel memory expressed in symbol
periods, the code nonlinearity degree and the output data block
length. The three corresponding modes will be called recurrence
mode (i), nonlinearity mode (j) and time mode (k). The different
user sequences are assumed to be synchronized at the symbol level.

From definition (9), we can deduce that the horizontal and frontal
slices have a Vandermonde structure, whereas the lateral slices
have a Hankel form.

Let us assume that, at the p™ chip period of the 1" symbol period,
user ¢ transmits the following nonlinearly coded signal:

J .
vﬁ,q)(n) _ Z l(p‘lj) [u(q) (n)}] (10)

(g )

where b is an entry of the code matrix B@ ¢ ¢PxJ

The transformed input tensor V(@) (n) € €/*P*K  called coded input
tensor, can therefore be written as:

V@ (n) = U@ (n) x, B@ an
or equivalently
J
vl(Z;((n) ( >(nK—l—k—l—Z ]:Z:lul(;lk) (n)b(q)

In our work, we make the following assumptions :

Al In section 4, the code matrices B@ e 4P/ are column-
orthonormal and mutually orthogonal, which implies P > JQ.

A2 The channel between user g and antenna m is modeled as a
FIR filter, time invariant over NK symbol periods, with impulse

(q> and memory I'¢ (@) at the symbol rate.

response a,,
A3 The number Q of users, the spreading gain P (identical for all
users), and an upper bound / = HllaXQ {I (‘7)} on the memory
g=1l,,

of all the channels are known by the receiver.
A4 The baseband signals received by each antenna are sampled at
the chip rate.

The p'* signal received by antenna m from user g, associated with
the (nK — k + 1) symbol period, is given, in the noiseless case,
by:

Sy
2

(nK—k+1+4+(p—1)/P)

e
2
>
—
)
=
Il
<

)V (nK —i— k+2)
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The transformed tensor Y@ (n) € €M*P*K contains the signals re-

ceived by the M antennas, during K symbol periods of the n” block,
with P oversamples/symbol, corresponding to the contribution of
the ¢ user. It can be written as:

y(@ (n) = V@ (n) x; AW (12)
Replacing V(@) (n) by its expression (11) into (12) gives:
Y@ (n) =UD (n) x; AW x, B@ (13)

or equivalently, in scalar form:

I J @)
mpk ZZ mt pli (14)

By comparing (13) with (8), we deduce that the received signal
tensor Y@ (n) satisfies a Tucker2 model with matrix factors

(A<q> ,B@), 1K> and core tensor U@ (n).

The overall received signal tensor is the sum of the received signal
tensors Y@ (n), i.e.:

0
Z ) x1 A x, B £ N(n) (15)

where N(n) € €M*P*K represents the additive noise tensor,
including both measurement noise and modeling error.

We have to notice that the input signal tensors U@ (n) and
the received signal tensor Y(n) are both characterized by three
diversities corresponding to the modes of each tensor : recurrence
(i), input nonlinearity (), and time (k) for U4 (n), and space (m),
code (p), time (k) for Y(n).

Remarks:
1. Due to the constrained structure of the core tensor U4 (n) and

of two matrix factors (B(q) and IK>, it is easy to deduce the

uniqueness of the Tucker2 model (13) and consequently of the
block-Tucker2 model (15). This model can also be viewed as a
constrained version of the decomposition in rank-(I, J, *) terms,
introduced in [7].
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2. For I =J = K = 1,which corresponds to the case of a memory-
less channel and a linear coding, (14) simplifies as

(q)
Ymnp = AmqUng bpq

MNP in the noiseless

and the received signal tensor Y €
case, becomes:
0
Ymnp = Z amqunqbpq
q=1

This is the PARAFAC model for DS-CDMA sytems, proposed
in [11]. With this model, each user’s contribution to the received
signal is a rank-one tensor component.

4. BLIND CHANNEL AND SYMBOL ESTIMATION
In this section, we assume that the code matrices are mutually or-
thogonal and known at the receiver which gives, in the noiseless
case, forg € {1,---,0}:
(16)
amn

H
59 (n) = Y(n) x> [BY]
= U (n) x; AW ¢ gM*I>K

This transformation (16) allows to simultaneously separate and

decode the information transmitted by the ¢ user. The resulting
decoded received signal tensor satisfies a Tuckerl model, two of its
factor matrices being equal to the identity matrices of order J and K.

The horizontal mode-1 unfolded matrix form of the tensor S(9) (n)
can be deduced from (6) :

S\9(n) = AU (n) € EMIK (18)

In the sequel, we assume that U(lq) (n) € &K is right-invertible,
i.e. full row-rank, which implies / < JK.

Due to the column-block structure (2) of the horizontal matrix un-
foldings U<IQ) (n) and S<1q) (n), (18) can be rewritten as:

o 19)

To improve the symbol estimation, we take the redundancy and con-
strained structure of input tensors into account, i.e. the Hankel and
Vandermonde structures of their matrix slices. Instead of estimat-

ing the Hankel matrix UF?) (n) € €K, we estimate its generator
vector u(?/) (n) € €/TK~1 defined as:

u@d) (n) = {(u(q)(nK))j (u(q)(nK_1)>j
(u(‘l>((n—1)K—I+2))j:|T @1

Applying the vec operator to (19) and using the identity (1) with
B = Ik, we get:

vec (SF? (n)) = (IK ®A<q>> vec (UF;) (n)) j=1,---,J (22)
with

vec (U(‘?) (n)) = Mu(®) (n) 23)

-

1. Randomly initialize Aéq>(1), q=
fined in (24).
2. Forn=1,--- ,N,g=1,---,0,it=0:
(a) Compute the decoded signal tensor S(@) (n) using (16).
(b) Iterate until convergence (it = it + 1)
i. Symbol estimation:

1,---,0Q and form M as de-

NCS! A t
a ) = (ke A, 0) M)
vec (S_(f? (n))
Improvement of the symbol estimation using the Van-
dermonde structure.
ii. Channel estimation:

A9 () =819 (n) [U(Q) <">T

it 1,it

(20)

iii. Return to step 2b until convergence.
(c) Projection of the estimated symbols onto the alphabet used
by user g.
3. Return to step 2 until n = N.

Table 1: Blind channel and symbol estimation algorithm.

and
I, : Orx(k-1)
07x1 ; I : 07 (x-2)
M= :
07x(k-2) ; L 0;7x1
L Orx(x-1) : I

€ ZKAUHK=1) 04y

where O; g denotes the null matrix of dimensions / x K.
Substituting (23) into (22) for j = 1 gives the following LS solution
for the generator vector:

a1 (n) = ((IK ® AW) M)T vec (sf;{) (n)) .5
It is also possible to take the Vandermonde structure into account
for improving the symbol estimation. Due to a lack of space, this
step is not detailed in the paper. An alternating least squares (ALS)
based solution for blind channel and symbol estimation is presented
in Table 1. This algorithm includes a projection of the estimated
symbols onto the alphabet used by each user.

5. SEMI-BLIND CHANNEL/CODE/SYMBOL
ESTIMATION

In this section, we present a semi-blind channel/code/symbol
estimation algorithm that can be applied when the code matrices
are unknown at the receiver. This algorithm is inspired from the
results in [9].

Let us define the tensors:
T (n) = U (n) x, B@ € ¢/*P*K (26)

Noting that Y@ (n) = T(@(n) x; AW = S@(n) x, B, with
sla) (n) defined in (17), and using (6), the horizontal mode-1 and
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-2 matrix unfoldings of Y(n), in the noiseless case, can be written
as:

Y

Yin) = Y YPn)=AT@n) ™K @)
q=1
Y

Yon) = Y Y (n)=BSm) ec™EM  (28)
g=1

A= [A(l) A(Q)} B= [B(l) . B(Q)] (29)
T T

T = [T ) T ()] (30)
T T T

s = [s () - 8 (w)] 3D

We also consider the vertical mode-3 matrix unfolding of Y(n)
given by:
Y.i.(n)
Y;3(n) = : =(BoA)U®n) ce™K (32
Y'p' (n)

where ©® denotes the block column-wise Kronecker product:

BoA=|BOgAW ... BQgAQ| c gPM<QII (33

and |
Ul ()
Un) = : e gk (34)
UgQ) (n)
with
U m)
vl =| e ¢/K (35)
U )

In order to take the Hankel structure of each matrix slice U_(;") (n)

into account, we define the matrix G (n) € ¥2UTK=1>/ that con-
tains all the generator vectors u(4-/) (n) defined in (21):

G(l)(n)
G(n)=[G.i(n) - Gy(n)]= : (36)
G (n)
with
ul-) (n)
Gj(n) = .| egoukn
u(@J)(n)
G(‘l)(n) — [u(q,l)(n) u(q‘J)(n):| c (6(1+K71)X.]

Decomposing M defined in (24) into K blocks as:
M= [Mmf M<K>T] T o ik (r+k-1) 37)

we have:
vec(Y3(n)) = Du(n) (38)

vec (G(')(n)>

where u(n) = : € ¢U+K=1) contains all the
vec <G(Q) (n))
generator vectors u(®/) (n), forg=1,---,0, j=1,--- ,J, and
D= [D1) ... D) | e ghHr=es-) 39
with:
oMb
D@ — (IK ® (BtD ®A(61)>> (40)
I, o M&K)

The proposed semi-blind joint channel/code/symbol estimation al-
gorithm, summarized in Table 2, is derived by applying the ALS
technique to Eq (27), (28) and (38). We have the following nec-
essary conditions for identifiability: PK > QI, KM > QJ, and
PMK > QJ(I+K—1).

1. Initialization (it = 0, n = 1): Randomly initialize AgD(I) and
Bf)q>(_1), form @E)q)(l) =U@(1), forg=1,---,0 and M de-
fined in (24).

2. Supervised phase (n = 1): joint channel and code estimation
using the first data tensor Y(1), associated with the known input

tensors U@ (1),g=1,---,0, and a 2 step-ALS algorithm.

(a) Compute: ']Al‘gtq) (n) = I[Ajftq) (n) %2 ]31(;’) (n), Sftq) (n) =
@l(:’)(n) X1 Al(tq)(n) for g=1,---,0 and form Ty (n) and
S, (n) using (30) and (31).

Ay(n) =Y ()Tl (n), Bu(n)=Yan)S)(n). @1

(b) Return to step 2a until convergence, with it = it + 1.
3. Blind phase (n =n+1):

(a) Initialization (it = 0): Ag{) (n)= AY (n—1) and B(()q) (n)=
Bl (n—1) where AY (n—1) and Bl (n—1) are the esti-
mated matrices obtained at convergence, for the data block
n—1.

(b) Symbol estimation: Compute D; (n) using (39)-(40) with
A9) and B(@) replaced by Al(tq) (n) and ]35[4) (n).

0 (n) =Dy (n)Tvec (Ys(n)) 42)

Improvement of the symbol estimation using the Vander-
monde structure.

(c) Channel and code estimation using Eq.(41)

(d) Return to step 3b until convergence, with it =it + 1.

(e) Projection of the estimated symbols onto the alphabet used
by each user.

(f) Return to step 3a with n =n+1 if n < N, otherwise stop.

Table 2: Semi-blind channel/code/symbol/estimation algorithm.

6. SIMULATION RESULTS

We now present some Monte Carlo simulation results to illustrate
the performance of the proposed receivers. The transmitted sym-
bols are 4-PSK modulated. The number of users and the channel
memory are Q = 2 and I = 3, respectively. The spreading codes
are first assumed to be known at the receiver, the code matrices
BW@ ¢ ¢P*J, g=1,---,0, being Fourier matrices, with P = JQ,
in the blind case. In the semi-blind case, the components of the
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M SNR (dB) 0 10 20 30 40 M SNR (dB) 0 10 20 | 30 | 40
2 1623 | 11.20 | 11.92 | 11.49 | 15.58 2 4091 [ 134 1003 | 0 | O
3 4.38 1.68 3.17 0 0 3 16.14 | 0.20 0 0] 0
4 1.25 0 0 0 0 4 9.20 | 0.09 0 0] 0
5 0.82 0 0 0 0 5 4.36 0 0 0] 0

Table 3: Blind receiver with known codes. SER versus SNR for
Me{2,3,4,5} and J =2.

] SNR (dB) 0 10 20 30 40
1 64.25 | 65.10 | 65.82 | 67.21 | 69.23
2 4.38 1.68 3.17 0 0
3 3.46 5.50 5.19 5.77 5.77
4 4.59 0.05 870 | 10.65 | 11.88

Table 4: Blind receiver with known codes. SER versus SNR for
Je{l1,2,3,4} and M = 3.

code matrices are randomly generated from a 16-QAM alphabet
{142n+j-(142k)|n,k=-2,-1,0,1}, with P = 4. The Monte
Carlo simulations were carried out with 10 different randomly
generated channel models, and 10 additive complex white Gaussian
noises for each model. The performance is evaluated in terms
of symbol error rate (SER). From these simulation results, we
can conclude that the nonlinear coding provides a very important
performance improvement.

Tables 3 and 4 show the SER obtained with the blind receiver for
{J=2;M=2,3,4,5} and {M =3;J =1,2,3,4}, after processing
of N = 20 blocks, each one corresponding to K = 10 transmitted
symbols per user. As expected, the SER decreases when the
antenna number increases, and it is quasi constant for a SNR
greater than 10 dB. The best compromise is obtained for J = 2 and
M = 3. Tables 5 and 6 show the SER obtained with the semi-blind
receiver for {J=2;M =2,3,4,5} and {M=3;J=1,2,3,4},
respectively. From these simulation results, we can conclude that
the proposed semi-blind receiver provides very good performance
with J =2 and M = 3 for any SNR equal to or greater than 10 dB.

It is to be noticed that the SER was averaged over 65 % of the ex-
periments corresponding to the best SERs in the case of the blind
receiver, while it was averaged on all the Monte Carlo simulations
in the semi-blind case.

7. CONCLUSION

In this paper, a nonlinear coding has been proposed for MIMO
CDMA communication systems. Such a coding allows to define,
for each user, a third-order input tensor with a constrained struc-
ture such as two types of matrix slices have a Vandermonde form
whereas the third one has an Hankel structure. The received signals
tensor satisfies a constrained block-Tucker2 model that is unique.
Assuming that the users’ code matrices are mutually orthogonal and
known at the receiver, an ALS-based blind channel and symbol es-
timation method has been derived. Then, in the case of unknown
codes, a semi-blind receiver has been proposed for jointly estimat-
ing the channels, codes and symbols of all the users. Both the blind
and semi-blind solutions take the constrained structure of the core
tensors into account, which allows to get very good performances
in terms of symbol recovery, as illustrated by simulations.

Several perspectives of this work can be drawn, as for instance
the development of adaptive methods that take all the constrained
structure of the input tensors into account, i.e. both the Hankel and
Vandermonde structures. An optimization of the code matrices is
also a topic for future work. More general multiantenna/multicode
transmission and multipath propagation scenarii, recently intro-
duced for MIMO CDMA systems ([3], [4], [5], [6]) will be also

Table 5: Semi-blind Receiver with code estimation. SER versus
SNR for M € {2,3,4,5} and J = 2.

I R (dB) 0 10 20 30 40
1 18.67 | 0.34 0 0 0
2 16.14 | 0.20 0 0 0
3 70.78 | 27.53 | 0.67 0.03 0
4 73.772 | 73.55 | 51.28 | 21.78 | 29.40

Table 6: Semi-blind receiver with code estimation. SER versus

SNR for J € {1,2,3,4} and M = 3.

considered for MIMO NL-CDMA systems.
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