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ABSTRACT

In this paper, we propose a Primary User (PU) activity de-
tection algorithm for a wideband frequency range which up-
dates spectrum sensing parameters. We assume that the sig-
nal of PUs and noise are independent and jointly zero-mean
Gaussian processes with unknown variances. We employ a
Markov Model (MM) with two states to model the activity
of PU which representing the presence and absence of the
PU at each subband. By using such a MM, the proposed
PU activity detector estimates the probabilities of PU pres-
ence in different subbands, recursively, in three steps. Our
simulation results show that the proposed algorithm always
performs better than the Energy Detector (ED) and despite its
simple implementation has slightly better performance than
the computationally complex Cyclostationarity Feature De-
tector (CFD) for practical values of the Signal-to-Noise Ratio
(SNR).

1. INTRODUCTION

Recent measurements reveal that many portions of the li-
censed spectrum are not used over significant time periods
[1]. Since the number of users and their data rates steadily
increase, inefficient fixed spectrum policy is no longer a fea-
sible approach. One proposal for alleviating the spectrum
scarcity is allowing Secondary Users (SU)s to use the spec-
trum holes whenever is possible. The Cognitive Radio (CR)
is the promising technology which is considered as the prac-
tical solution for implementation of dynamic spectrum shar-
ing techniques.

One of the major challenges in implementing the CR
technology is the spectrum sensing. In the spectrum sensing,
the CRs must accurately monitor the presence or absence of
the PUs with efficient methods over a particular part of the
spectrum to find the available spectrum holes [2-6]. A com-
mon method for detection of an unknown signal in noise is
using the ED (a.k.a. radiometry) [7].

The ED requires the noise variance to differentiate be-
tween the energies of noise and PU signal. In addition, it
is well-known that the performance of the ED is susceptible
to the noise power mismatches [8]. In the case of unknown
noise variance, the cyclostationarity property of communi-
cation signals can be exploited for spectrum sensing [6]. In
contrast to noise which is considered usually as a wide sense
stationary process, the mean and autocorrelation of commu-
nication signals show built-in periodicity which can be used
to differentiate the noise from modulated signal. A CFD per-
forms better than the ED in discriminating PU signal against
noise due to its robustness to the uncertainty in noise vari-
ance [9]. The drawback of CFD is that, it requires signifi-
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cantly long observation time and is computationally complex
for practical implementation.

On the other hand, the concept of the CR implies that
it can learn and then adapt itself to the environment varia-
tions. The decisions in CRs are the results of extrapolations
of the current observation based on reasoning or learning.
The learning and using memory can be done within different
functionaries of the CRs. In the context of the spectrum sens-
ing, the CR must decide about the state of each frequency
band at any given time. The CR in addition to the current ob-
servations can use previous information kept in its memory.
In the most of previously reported works on spectrum sens-
ing the process of learning and using the possible available
information about the PU activity have been ignored.

In general,the available spectrum which is scanned for
finding the spectrum hole is large and can be in order of
GHz [3]. Thus, in this paper, we present a wideband spec-
trum sensing scheme that learn some unknown parameters
from the environment. We study the spectrum sensing prob-
lem across a wide frequency range by dividing the scan-
ning spectrum into multiple subbands. In order to address
the learning process and using the previous observations, we
use a two-state Markov chain with occupied (the channel is
used by a PU) and vacant (the channel is available for the
SU) states to model the usage of each subband. This model
has been proposed and used for spectrum sensing and ac-
cess in the context of CR [10, 11] and we try to use this
model to bring the memory to proposed spectrum sensing
algorithm. In [10] this model has been used for proposing
a decentralized medium access control (MAC) approach for
ah-hoc cognitive networks. In our work, the MM enable us
to consider the previous decisions about the subband occu-
pancy for current time decision making and to consider the
available records for detection. Also, because of the vari-
ations in PU signal and noise variances due to the channel
and the source variations, we assume that the PU signal and
noise are random Gaussian distributed signals with unknown
variances.

The remaining of the paper is organized as follows: In
Section 2, we formulate the problem and present the MM
for PU activity. In Section 3, we propose a three-step algo-
rithm based on MM for the PU activity detector at each of
the subbands. In Section 4, we evaluate the performance of
the proposed detector based on computer simulation. Finally,
Section 5 concludes the paper.

2. SYSTEM MODEL

We assume that the whole spectrum bandwidth is divided
into K subbands, where each subband may be vacant or used
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by a PU. We consider a simple two-state discrete (binary)
MM for PU activity for each subband and at each sensing
time as shown in Figure 1. The two states are vacant (PU
absence) and occupied (PU presence). We assume that the
probability transition matrix of this binary MM for subbands
K is as follows:

@)

M = [ o 1P }

1-ox Bk

where o € (0,1) denotes the probability of vacant subband
when the subband was vacant at the previous sensing time
and Bk € (0,1) denotes the probability of presence of a PU
when the PU was present at the previous sensing time. By
using this notation, the probability of appearing PU when the
subband was vacant is 1 — ay and the probability of vanish-
ing PU conditioned that it was present in the previous sens-
ing time will be 1 — Bx. In the context of dynamic spectrum
sharing, the false alarm probability P, indicates the proba-
bility that a spectrum holes be falsely detected as an occu-
pied band, i.e., Pr, represents the percentage of the spectrum
holes which are not used. Therefore, the SUs must reduce
the false alarm probability Ps, as much as possible. On the
other hand, the missed detection probability Pm =1 — Py de-
termines the probability that an occupied subband be mistak-
enly detected as a spectrum hole. Such a missed detection in-
duces unauthorized interference for PU. Thus, the missed de-
tection probability should be smaller than some small thresh-
old to avoid perceptible performance loss for the PU. The
matrix I can be determined by considering the activity his-
tory of the PUs across the scanning subbands. This matrix
regulates two trade-offs in the response of the algorithm. A
greater value for oy results to higher spectral usage efficiency
and less PU interference protection level. In the other hand,
a greater value for By results to the more conservative sce-
nario for PU protection and lower spectral usage efficiency
for SUs. In this model, the activity factor of PU is defined as
proportion of the average occupied time slots to average of
vacant ones and using the geometric distribution average can
be written as follows:
Px= 1#" - 1%
oty 2o B
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The activity factor can be obtained by using the historical
data of each subband and is about py = 0.375 for voice ap-
plications and pyx = 0.1 or less for multimedia and data ap-
plications [12].

Let L denote the number of samples from each subband.
The problem of spectrum sensing at k" € {1,--- K} £ .7
subband and sensing time m can be written as follows:

sz(m)IL)a if jﬁ.k
Xm0 ) e ©
where Xy (m) = [x1(m), -+, % (mM)]T € C* is the observed
vector at the subband k' € . and I, is L-dimensional iden-
tity matrix. In this model, the additive noise and PU signal
are assumed as complex Gaussian distributed random vari-
ables with variances o2(m) and {o?(m)}£_; at the sensing
time m, respectively. The value of the parameters ¢2(m) and
{o2(m)}X_, depend on the powers of noise and transmitted
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Vacant Occupied by a PU
Figure 1: The PU activity modeling by using MM at k" sub-
band.

PU signal and the channel gains which we consider them as
the unknown parameters. We assume that the variances of the
PU signal and noise are constant during the sensing time and
change smoothly from each sensing time to another one. The
LR function at the sensing time mand for k™ < . subband
can be written as following hypothesis testing problem:

Li(m)

f(Xi(m): 4 (ch(m))L @

o (m)

oE(m) — o2(m)
< e T X

where ||.|| denotes the Euclidean norm. At the each sensing

time, by observing the vectors {X (m) }_,, we can calculate
the LR functions by using the above equation and use this LR
function, as explained in the next section, for PU presence
detection at the each subband.

3. PROPOSED ALGORITHM

We define P&Tr)nil as the a priori probability of PU activity at

K" subband and at the sensing time m, i.e,

pl 2 P[6® (m) = jﬁ<k)|0(k)(m_ 1)] (5)

mim-1

Where 5 (m) = . ™* denote the event that subband k" is
occupied at the time mand O (m— 1) denote the all avail-
able observations about the subband k™ up to time m— 1.
Note that a priori probability of PU activity, in the ab-

sence of any knowledge at time m= 1, can be initialized as

Pl(‘ko) = %,VK =1,--- K. We develop three-step algorithm for

PU activity detection by using these a priori probabilities:

Step |: LR Function Calculation

In this step, we calculate the LR function in (4) using the
observed samples {X(m)}_, and the estimated variances
in the previous sensing time. We assume that the CR knows
an initial approximate estimations about the noise and PUs
variances which are used to calculate the LR functions at m=
1. After receiving some samples from the subbands, these
approximate estimations can be updated as will be explained
in the step 3.
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Step I1: Updating Posterior Probabilities

In this step, we combine the priori probabilities in (5) by LR
functions in current time to obtain the a posteriori probabili-
ties which are defined as follows:

K
Poim = P8 (m) = 740" (m). ©)
Pr;?n , and Pr<n|2n are the estimated probabilities of PU pres-

ence at the subband k™ and sensing time m, with and without

the use of the current information provided by {X (M)},
By using Bayes rule, we can derive the posterior probabil-

ities P m Py using a priori and current data about the PU
presence as follows:

K
K Lk(M)Prjm-1
Prm = 0 0 )
I‘k(m)l:)m|mfl—’_(]' |Dm\m 1)

where Ly (m) is the LR function of k' subband at time m
given in (4). In this step a hard decision rule is made as:

%(k)(m): jﬁk’ Ifpm|m n (8)
A, otherwise

where the threshold 1, regulates the trade-off between the
probability of false alarm P, and detection probability Py.
In this way, the PU is determined to be present or not at the

subbands ki € . and at sensing time m and hence we can
partition the the set of all indexes . as . = .# |J.#, where
# and .7 denote the subsets containing the indexes of vacant
and occupied subbands, respectively.

Step I11: Prediction and Parameter Estimation

A prediction of the priori probabilities for the next sensing
time instant, P< ) m1im is required to obtain the posterior proba-
bilities in (7) as well as the hard decisions in (8). We use the
MM in the Figure 3(a) to predict these probabilities. The pre-

dicted probabilities for the next sensing time m—+ 1 are easily
obtained based on the assumed MM as:

(k) pk)
i R P v T
Pt 1jm L-ac B R

that is

K
P = (1= 1) (1= P + BPR (10)
Also in this step, by considering the subband which their in-
dex belong to the subset .# (vacant subbands), we can update
the noise variance estimation for the sensing time m+1 as
follows:

o2(m+1) = (12)
o2(m+1), it 7 =0
K02 (m) + (1= ko) (2 Zier UL i 7 20
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Figure 2: The block diagram of the proposed algorithm

similarly for the subbands which their indexes belong to .7
(occupied subbands) the variance updating equation is as fol-
lows:

oZ(m-+1) = (12)
o (m+1), Vke .7,if 7 =0¢
KsOR (M) + (1 — k) XM ke 7 if 7 £ ¢

where k, € (0,1) and xs € (0,1) determine the effect of the
previous estimations of noise and the PU signal variances and
the current observations, respectively. The values of the pa-
rameters kp and ks depend on the environment which the CR
is used. Actually, in the proposed algorithm the parameters
ok and By depends on the PU service and model the proba-
bility of the PU transition between active and idle states. For
instance lower values of oy and Sy show a PU with the bursty
transmission. Also to capture the variation of the environ-
ment we use the the paramors k, and xs. These parameters
should be selected near 1 for a quickly varying environment
or 0 otherwise. In the special case, we can chose these pa-
rameters equal, i.e., kK, = ks = K.

By using the above three-step algorithm, we can decide
about the status of the each subband at each sensing time,
recursively. Figure 3(b) shows the block diagram of the pro-
posed algorithm for the PU activity detection.

4. SIMULATION RESULTS

In this section, we present some numerical results for perfor-
mance evaluation of the proposed algorithm and then com-
pare with those of the previously presented algorithms. For a
given average SNR and false alarm probability Ps,, we gener-
ate the decision statistic randomly according to the assumed
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Figure 3: The initial status and decision outputs of the pro-
posed algorithm for L = 8, K = 4, and average SNR y = 5dB

distributions for 108 independent trials (in the absence of PU
signal at the subband) and choose the detection threshold as
100P, percentile of the generated data, i.e., for Pg, = 1073,
100 x 1073 = 0.1% of the generated decision statistic (out
of 10°) are above the determined threshold. By considering
an occupied subband and using obtained threshold, we can
compute the probability of detection, i.e., Pqg.

Figure 3(a) depicts our simulation scenario in order
to evaluate the performance of the proposed algorithm
with four different cases for PU activity over four differ-
ent subbands. We denote the vacant and occupied sta-
tus of subbands with 0 and 1, respectively. It is assumed
that [ou, o, o3, 0] = [0.6,0.7,.8,0.9] and [B1, B2, Bs, Ba] =
[0.4,0.3,0.2,0.1] which lead to the PU activity factor of
[p1,Pp2,p3,pa] =[0.4,0.3,0.2,0.1]. Also we assume that av-
erage SNRy=5dB, L =8and and x, = ks = 0.9, for forget-
ting factors in (11) and (12). We use the proposed algorithm
to detect the presence or absence of PU in this scenario. Fig-
ure 3(b) illustrates the simulation results of hard detection
M (m) in (8) by using the proposed algorithm.  For all
subbands, the threshold has been computed for Ps, = 0.01.
As can be seen the proposed algorithm detect the PU activ-
ity in these scenario with high probability so that respectively
for four subbands in the Figure 3(b), in 99.4%, 98.3%, 97.8%
and 98.8% of times, the proposed detector detects the states
of the subbands, correctly.

In order to evaluate the performance of the proposed al-
gorithm when there are some errors between the actual and
the used transition probabilities, we use the scenario in Fig-
ure 4(a). Itis assumed that [or, o, 03, 04] = [0.6,0.7,.8,0.9]
and [B1, B2, B3, Ba] =[0.8,0.9,0.7,0.6]. We assume that there
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Figure 4: The performance of the proposed algorithm in the
case of uncertainty in transition probabilities for L =8, K =
4, and average SNR 7 = 5dB

is 10% difference between the actual and the used probabili-
ties in the proposed algorithm. The other simulation param-
eters are the same as Figure 3. Figure 4(b) shows the results
of the simulation based on the proposed algorithm. As can
be seen, in this case the performance of the proposed algo-
rithm is degraded slightly so that the detection probabilities
are 0.916, 0.929, 0.90.7 and 0.918. Our further simulation
shows that for a given constant activity factor, i.e., py, the
more the value of transition probabilities, i.e., ax and P, the
less the effect of parameters uncertainty on the performance
of the proposed algorithm. In the other words, for a given
constant false alarm probability, the sensitivity of the pro-
posed algorithm increases with the decrease in the value of
transition probabilities. Thus, in the case of having some un-
certainty in MM parameters, the proposed detects the status
of the subbands correctly at most of times.

Figure 5 illustrates the detection probability Py versus av-
erage SNR 7 for different false alarm probabilities Pr, and the
number of samples L = 32. As can be observed by increas-
ing 7 or Pr,, the performance of the proposed algorithm im-
proves. It is notable that in practice by increasing the num-
ber of samples L, the average SNR increases and therefore
by considering the mentioned behavior, the performance will
improve. Unfortunately, we can not increase L arbitrarily
since L determines the acquisition time (the waiting time-lag
before a decision can be made). Thus in practice, we have to
make a trade-off between Py, (the spectrum usage efficiency),
Py (PU interference protection level) and L (the acquisition
time). In Table 1, the proposed MM based Detector (MMD)
is compared with the ED [2] and CFD [6]. We assume that
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Figure 5: The probability of detection Pyq versus SNR for
different false alarm probabilities Pr, and L = 32

the ED knows the average SNR value 7. We see that both
MMD and CFD always have better performance than ED.
When the SNR is low the CFD performs better than MMD.
But when the SNR value increases the performance of the
MMD will be similar to that of the CFD and both of them
have approximately the same probability of detection. As
noted before, the CFD is very complex for practical imple-
mentation and the CR requires to know some features of PU
signals that may not be possible in practice. Also the sens-
ing time for CFD must be large enough to detect the cyclo-
stationarity property of observed signal. By considering the
mentioned trade-offs between performance and sensing time,
the proposed MMD can be performed when there are some
new samples from each of the subbands.

Table 1: The performance comparison of the ED [2], CFD [6]
and proposed MMD forL =4

P

SNROT g ED [ MMD | CFD
1508 | 0.1212 | 0.00432 | 0.3212 | 0.2984
-10dB | 00973 |0.00921 | 05340 | 05179
'5dB | 00384 | 008582 | 0.8717 | 0.8702
0dB | 00192 | 0.2063 | 0.9219 | 0.9163
5dB | 0.008L | 0.8902 | 0.9972 | 0.9966
10dB | 0.00097 | 0.9843 | 0.9997 | 0.9993

5. CONCLUSION

In this paper, we proposed a simple adaptive MM based al-
gorithm to detect the absence or presence of PU in multi-
ple subbands. The PU activity was modeled by a two-state
Markov chain with the known transition probabilities. Also,
the PU signal and noise are assumed to be complex Gaussian
distributed random process with unknown variances. By ob-
serving new samples from subbands the LR functions are cal-
culated and a three-step algorithm for PU activity detection is
performed which results in a soft and hard detection outputs
for each subbands. Also, the prior probabilities of PU activ-
ity at the subbands based on the MM model and noise and
PU signal variances for the next sensing time is predicted.

The simulation results showed that the performance of both
MMD and CFD is better that the ED and by increasing the
average SNR the performance of MMD improves and be-
comes slightly better than that of the CFD. By considering
the high complexity and also the large sensing time for CFD,
the proposed MM based algorithm can be performed sim-
ply at the each sensing time. Also this algorithm allows us
to predict the status of the PU presence or absence within
subbands which is useful for predicting the time amount of
subband availability and hence CR signal transmission rate.
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