18th European Signal Processing Conference (EUSIPCO-2010)

Aalborg, Denmark, August 23-27, 2010

HRTF CUSTOMIZATION USING MULTIWAY ARRAY ANALYSIS

Martin Rothbucher, Marko Durkovic, Hao Shen and Klaus Diepold

Institute for Data Processing, Technische Universitdt Miinchen, 80290 Miinchen, Germany
email: {martin.rothbucher, durkovic, hao.shen, kldi } @tum.de

ABSTRACT

Recently, Head Related Transfer Function (HRTF) based
techniques have been promising approaches for 3D sound
synthesis. To ensure high quality of 3D sound synthesis,
it requires to utilize personal HRTFs of the listener, which
are usually obtained by a complicated and time consuming
procedure. To personalize HRTFs, one possibility is to con-
struct multiple linear regression models between anthropo-
metric data and features of HRTFs.

Due to high dimensionality of HRTF datasets, it is in-
efficient to use the original set for the purpose of person-
alization. To avoid such inefficiency, Principal Component
Analysis (PCA) has been proposed to reduce dimensionality
of HRTF datasets before customization. Based on the fact
that HRTF datasets can be considered as three way data ar-
rays, in this paper we propose three multi-way array analy-
sis methods for HRTF customization. Performance of these
three methods is compared with PCA based approaches by
several experiments.

1. INTRODUCTION

Head Related Transfer Functions (HRTFs) describe spec-
tral changes of sound waves when they enter the ear canal,
caused by diffraction and reflection off the human body, e.g.
the head, shoulders, torso and ears [2]. In the last decades,
HRTF based techniques have become prominent in various
applications of human related audio processing, e.g. binau-
ral sound localization and synthesis [13].

As each individual has in general their unique body geo-
metry, the corresponding personal HRTFs are naturally dif-
ferent from person to person. Usually, HRTFs are obtained
from recorded Head Related Impulse Responses (HRIRs),
which are the time domain representations of the HRTFs.
Unfortunately, HRIRs have to be measured by a cumbersome
procedure with expensive equipment in an anechoic chamber
[1], which is not commonly accessible to many researchers.
As aresult, there are increasing research efforts in customiza-
tion of HRTFs [4, 9], which aims to estimate HRTFs based
only on geometric information of the individual without mea-
suring their HRIRs. Such a process requires usually a collec-
tion of HRTF datasets of various subjects, which result in
huge amount of data.

Since the pioneering work [6], Principal Component
Analysis (PCA) has become a popular tool for HRTF re-
duction [8]. Recently, application of PCA in HRTF cus-
tomization [4, 9], which reduces the dimension of the orig-
inal dataset before customization, has demonstrated promis-
ing performance of being more efficient. Such an approach
enables possibilities of implementing HRTF customization
even on storage restricted systems, e.g. mobile phones or
telepresence systems.
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A collection of HRTFs of individuals can be considered
as a three-way data array, whose three directions represent
subject, location and frequency, respectively. Applying PCA
to HRTF datasets requires in general a vectorization process
of the original dataset. As a consequence, some useful in-
formation within the structure of the HRTF dataset is disre-
garded. To avoid such limits, the so-called Tensor-Singular
Value Decomposition (T-SVD) method, which was origi-
nally introduced in the community of multiway array anal-
ysis [7], has been recently applied into HRTF customization
successfully [3].

The authors are aware of existence of two recently pro-
posed techniques of multiway array analysis in competition
with the standard PCA in the community of image process-
ing. They are two dimensional PCA (2DPCA), originally
a direct generalization of PCA for image analysis, and the
so-called Generalized Low Rank Approximations of Matri-
ces (GLRAM) [15], a further generalized form of 2DPCA.
Recently, the authors have demonstrated that GLRAM and
T-SVD outperform the standard PCA in the task of dimen-
sionality reduction of HRTFs [10]. It is worth noticing that
GLRAM method is essentially a simple form of Tensor-SVD
[12]. In this paper, we study GLRAM, 2DPCA and Tensor-
SVD methods for the purpose of customizing HRTF datasets
and compare their performance with the standard PCA.

The paper is organized as follows. Section 2 gives a de-
scription of the multiple regression customization of HRTFs.
Section 3 provides a brief introduction to three feature extrac-
tion methods, namely, 2DPCA, GLRAM and Tensor-SVD.
In section 4, performance of the three methods is investigated
by several numerical experiments. Finally, a conclusion is
given in section 5.

2. HRTF CUSTOMIZATION

In this section, we briefly describe a customization approach
to estimate individual HRTFs. Given a set of measured
HRTFs of different persons, a multiple linear regression
seeks to match a set of anthropometric parameters to the
characteristics of the individual’s transfer functions [9].

In general, a collection of HRTFs can be represented as
a three-way array .7 € RMNr>Np - where the dimensions
Ny is the spatial resolution of directions, Ny the frequency
sample size and N, is the number of persons in the training
dataset. By a Matlab-like notation, in this work we denote
H(i, j,k) € R the (i, j,k)-th entry of 2, 7 (I,m,:) € Rr
the vector with a fixed pair of (I,m) of ¢ and J#(l,:,:) €
RN *No the [-th slide (matrix) of 5% along the direction-
dimension.

In order to receive only the direction dependent infor-
mation between the different individuals, the mean of the
subject’s average log-HRTFs is subtracted from each log-
HRTF [6]. It results in an interindividual direction transfer
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functions between the subjects, denoted by 2 € RNe*Nr>*Np,

whose (i, j, k)-th entry is computed by

N,
. . 1 & .
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Pi=1
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An idea of customizing unknown HRTFs is to firstly ex-
tract certain direction dependent main features out of the di-
rectional transfer functions &, then to construct a multiple
linear regression model between anthropometric features of
subjects and the extracted directional dependent features. Let
W =[wi,...,wn,] € R"?*Nr be a set of r,, chosen directional

dependent features and A = [ay,...,ay,] € RN*M be a col-
lection of N, anthropometric features of test subjects. For the
k-th subject, a multiple linear regression model between an-
thropometric parameters and directional dependent features
can be constructed as,

wy = Bay + &, 2)

where B € R"7*WNatl) g = [1a]]T € RN+ and e € R'7 is
the estimation error vector. Let us denote 1 € RV» the vec-
tor with all entries equal to one, and construct A = [1 AT] €
RNp*(Nat1) "t is known that Np is usually greater than N,.
We assume that matrix A is full rank. Then, in terms of min-
imization of the error € by least squares method, the regres-
sion coefficient matrix B in model (2) is computed by

B=WAATA)™". 3)

In this paper, we choose the set of anthropometric parameters
for multilinear regression in accordance with [4], where an-
thropometric parameters are selected by applying correlation
analysis.

Finally, given the anthropometric data a,, € RMa of a
person not in the training set, its transfer function features
Wnew can be constructed by

Whew = Byew € Rrp’ 4

where dpe = [1 @, " € RNTL

3. HRTF-FEATURE EXTRACTION METHODS

In this section, we briefly describe three techniques of feature
extraction for the dataset &, namely, 2DPCA, GLRAM and
Tensor-SVD.

3.1 Customization using 2DPCA

Similar to the popular approach of customizing HRTFs by
using PCA, 2DPCA based HRTF customization can be de-
scribed as follows. First of all, the so-called scatter matrix,
instead of the covariance matrix, is computed by

1 Ny
Sp=—Y D(i,:,;:) D(i,:,:), e RN Mo, )
Na =
Then we compute r, eigenvectors W = [wy,...,w;,] €

RN»*"p corresponding to the rp largest eigenvalues. The so-
called principal components of 2DPCA for the i-th slides of
2 is computed as follows:

D)= D(i,:, )W € RN 7, (6)

Note that, the storage space for the reduced dataset depends
on the value of 7.

The direction dependent regression coefficient matrix B
is then calculated as given in (3). A set of customized direc-
tion transfer functions Dy, € RN/ for an unknown person
is obtained with its i-th slide computed by:

Dnew(i; :) = .@(l, 5 :)W}J—evw (7)

where wy,,, is computed in accordance with (4). We refer
to [5] for further information on PCA and to [14] for further
discussions on 2DPCA.

3.2 Customization using Tensor-SVD

Unlike customization using PCA, Tensor-SVD keeps the
structure of the original 3D dataset intact and computes the
customized dataset for every direction at once. Given a
dataset 2 € RNa*Nr>Np Tensor-SVD computes its best mul-
tilinear rank — (r4,7y,7,) approximation 2 € RNa*Np>xNp 7],
where Ny > rq, Ny > ry and N, > rp, by solving the follow-
ing minimization problem

min @—.@‘ , ®)
QAERN‘]XNfXNp F
where || - ||r denotes the Frobenius norm of tensors. The

rank — (rg,rf,7,) tensor 2 can be decomposed as a trilin-
ear multiplication of a rank — (rg,rs,r,) core tensor ¢ €
R/&*"f*"p with three full-rank matrices X = (x;;) € RNex7a,
Y = (y;;) €RN¥7r and W = (wy;) € RNe*"» which is defined
by

~

72=X,Y,W)-¢ )
where the (i, j,k)-th entry of D is computed by

N ra Tf Ip
20i,j,k) =Y, Y Y xiaypwin@(a,B,y).  (10)

a=1p=17=1

Thus without loss of generality, the minimization problem as
defined in (8) is equivalent to the following

XI;I%1<€||@_ (X,Y,W) '(g”Fv
e (11)
st. X'X=1,Y'Y=1 andW'W=1,,.

Finally, with the regression model built in (3) and (4), a new
set of direction transfer functions can be retrieved by

Dpew = (X, Y, w),)-€ € RN*Nr (12)

new

We refer to [11] for Tensor-SVD algorithms and further dis-
cussions.

3.3 Customization using GLRAM

Similar to Tensor-SVD, GLRAM methods do not require de-
struction of 3D tensors. Given a dataset 2 € RNe>*Nr>Np the
task of GLRAM is to approximate slides (matrices) Z(:,1,:),
for i =1,...,Ny of & along the second direction by a set
of low rank matrices {XM,-WT} C RNaxNp forj = L,...,Ny,
where the matrices X € RN¢*7a and W € RM»*"» are of full
rank, and the set of matrices {M;} C R"¢*"» with N; > r,; and
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| [ PCA [ 2DPCA [ GLRAM [ 7SVD |
Subject 153 || L:4.74dB_R:5.19dB | L:4.67dB_R:5.15dB | L:4.65dB_R:5.14dB | L:4.65dB_R:5.14dB
Subject 154 || L:6.11dB_R:6.05dB | L:5.63dB_R:5.67dB | L:5.59dB_R:5.66dB | L:5.59dB R:5.66dB
Subject 155 | L:5.27dB_R:5.06dB | L:5.25dB_R:5.06dB | L:5.24dB_R:5.05dB | L:5.24dB_R:5.05dB
Subject 156 || L:5.34dB_R:5.73dB | L:5.17dB_R:5.64dB | L:5.16dB_R:5.63dB | L:5.16dB_R:5.63dB
Subject 162 | L:6.32dB_R:5.60dB | L:6.15dB_R:5.28dB | L:6.12dB_R:5.24dB | L:6.12dB_R:5.24dB
Subject 163 || L:5.45dB_R:5.20dB | L:5.29dB_R:5.08dB | L:5.27dB_R:5.07dB | L:5.27dB_R:5.07dB
Subject 165 | L:5.03dB_R:6.04dB_| L:4.81dB_R:5.68dB | L:4.80dB_R:5.66dB | L:4#.80dB_R:5.66dB

Table 1: Average spectral distortion values over all angles over the whole frequency spectrum.

N, > rp. This can be formulated as the following optimiza-
tion problem

Np
min
N,
X-,W:{Mi}i:p] i=1

st. X' X=1L,andW'W =1,

(@(:,:,i)—XMiWT)HF’ (13)

P’

Let us construct a 3D array .# € R«*Nr*"» by assigning
A (:,0,:) =M fori=1,...,Ny. The minimization problem
as defined in (13) can be reformulated in a Tensor-SVD style,
ie.

' .@fXI.WJ/Z‘
x“vlvl%H (X,In,, W)

F (14)
st. X'X=5L,andW'W =1,

Instead of reducing the dataset Z along all three directions as
Tensor-SVD, GLRAM methods work with two pre-selected
directions of a 3D data array. The storage space for the
GLRAM-reduced dataset depends on the values of r; and
p.

Finally, a new set of direction transfer functions can be
retrieved by

Dnew(:;ia:) :X=//(:7ia:)wnew~ (15)
We refer to [15] for more details on GLRAM algorithms.

4. EXPERIMENTAL COMPARISON

In this section, we apply PCA, 2DPCA, GLRAM and Tensor-
SVD to reduce dimensionality of direction transfer functions.
Performance of HRTF customization using the correspond-
ing regression model is investigated and discussed.

4.1 Experimental Setting

In the experiment, the CIPIC database [1] is used for the
HRTF customization application. The database contains 37
Head Related Impulse Response (HRIR) tensors with the
corresponding anthropometric data for both left and right
ears. The CIPIC HRIRs are recorded in spatial resolution
of N; = 1250 points (N, = 50 in elevation and N, = 25 in
azimuth), spaced uniformely around the head, with N, =200
time samples. To obtain the HRTFs, the Discrete Fourier
Transformation (DFT) was applied on each HRIR.

The direction transfer functions Z of the left and right ear
HRTF magnitude of the first 30 persons in the CIPIC dataset,
together with their anthropometry were taken as a training
set for multiple linear regression, as explained in section 2.

For the regression model (2), we select the anthropo-
metric parameters in accordance to [4]. It is demonstrated
that eight selected parameters out of 27 from the original
CIPIC database provide good regression performance. These
eight paramters are: head width, head depth, shoulder width,
cavum concha height, cavum concha width, fossa height,
pinna height and pinna width.

4.2 Experimental Results

In each experiment, we construct a new set of HRTFs for
persons not in the training set with one of the introduced fea-
ture extraction methods. To investigate the performance of
the different feature extraction approaches in a HRTF cus-
tomization application, the spectral distortion for every angle
over the whole frequency spectrum is computed. The spec-
tral distortion is defined as follows:

1 M

2
sD=,|—Y (20log,, 2 > , 16
Nf I=Zl ( g]O |Hnewi‘ ( )

where H; is the magnitude of the CIPIC-measured HRTF in
the dataset and H,,,, is the magnitude of the HRTF con-
structed via regression at the i-th frequency. Ny is the number
of frequency samples for each HRTF (200 in this case).

First of all, PCA is applied to the task. We use that as
a reference for comparison with the other three multilinear
methods. We select r; = 10 dominant eigenvectors, which
result in a data reduction of 83%. For seven subjects, who
are not in the CIPIC training dataset, Table 1 summarizes the
average spectral distortion values for estimation of both left
and right ear HRTFs.

It can be seen that, customization procedure leads to dif-
ferent spectral distortion values from subject to subject. For
subject 153 and subject 165, estimation of the HRTF works
quite well in comparison with subject 162. This might be
caused by the possibility, that there exists a subject in the
training set that is physically similar to these two subjects.
Consequently the estimation of these subjects works better
due to a more precise regression model.

Furthermore, the spectral distortion values are shown to
be different for left and right ears. It indicates that precise
determination of anthropometric parameters as well as mea-
surement of HRIRs is sensitive to many other parameters,
e.g. placement of the microphones or head movement dur-
ing the measurement. Such inaccuracy in the training set can
consequently lead to different estimation values for left and
right ear HRTFs of the same person.

Direction dependency of the estimated HRTFs can be
seen in Figure 1 and Figure 2. For different directions, the
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Figure 1: Spectral distortion values of subject 154 in the hori-
zontal plane (elevation=0).

quality of estimation of the individual HRTFs slightly varies
in terms of spectral distortion.

In Figure 3(a), the log-magnitude response of the CIPIC-
measured and regression-estimated HRTF of a certain an-
gle is shown. Especially for low frequencies, the estimated
HRTF approximates the measured one well and could lead to
a good result in sound synthesis applications.

Extractions of the direction dependent features with PCA
disregard similarities between neighbouring angles. To take
also the 3D structure of the dataset into account, 2DPCA is
applied also using r; = 10 eigenvectors, leading also to a data
reduction rate of 83%. Results in terms of spectral distortions
of HRTF customizations at two particular planes, shown in
Figure 1 and Figure 2, indicate that 2DPCA extracted fea-
tures lead to a better estimation of the HRTFs than PCA at
the same data reduction rate. In Figure 3(b) one can see, that
the log-magnitude response of the estimated HRTF is closer
to the CIPIC-measured one than the PCA estimated one.

Finally, GLRAM and Tensor-SVD are applied to esti-
mate the individual HRTFs of the test subjects not in the
training set. The results achieved by GLRAM and Tensor-
SVD are similar to the 2DPCA feature extraction, but the
data reduction by GLRAM and Tensor-SVD is higher than
by PCA and 2DPCA. The regression using GLRAM and
Tensor-SVD with r, = 10, r¢ = 200 and r; = 100 leads to
data reduction of 97%.

As a final remark, it is worth noticing that, for regression
using 2DPCA, GLRAM and Tensor-SVD, we only need to
construct the multiple linear regression model once, while
for PCA based approach, it requires to compute the multiple
linear regression model for each direction.

5. CONCLUSION AND FUTURE WORK

In this paper, we address the problem of customiza-
tion of HRTF dataset using PCA, 2DPCA, Tensor-SVD
and GLRAM. Our experiments demonstrate that 2DPCA,
Tensor-SVD and GLRAM outperform the standard PCA ap-
proach with respect to the spectral distortion values. Mean-
while GLRAM and Tensor-SVD approaches lead to a higher
reduction rate than PCA and 2DPCA.

To evaluate the performance also in HRTF based 3D-
sound applications with respect to the listener, we plan to
investigate performance of multiway array analysis also on
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Figure 2: Spectral distortion values of subject 154 in the ver-
tical plane (azimuth=0).

test subjects in listening experiments.

Acknowledgements

This work was fully supported by the German Research
Foundation (DFG) within the collaborative research center
SFB-453 “High Fidelity Telepresence and Teleaction*.

REFERENCES

[1] V. R. Algazi, R. O. Duda, D. M. Thompson, and
C. Avendano. The CIPIC HRTF database. In /IEEE
ASSP Workshop on Applications of Signal Processing
to Audio and Acoustics, pages 21-24, New Paltz, NY,
2001.

J. Blauert. An introduction to binaural technology.
In Binaural and Spatial Hearing, pages 593-609, R.
Gilkey, T. Anderson, Eds., Lawrence Erlbaum, Hill-
dale, NJ, USA, 1997.

G. Grindlay and M. Vasilescu. A multilinear (tensor)
framework for HRTF analysis and synthesis. In Pro-
ceedings of IEEE International Conference on Acous-
tics, Speech and Signal Processing, volume 1, pages
161-164, Honolulu, Hawaii, USA, 2007.

H. Hu, L. Zhou, H. Ma, and Z. Wu. Head related trans-
fer function personalization based on multiple regres-
sion analysis. In Proceedings of the 2006 International
Conference on Computational Intelligence and Secu-
rity, pages 1829—-1832, Guangzhou, China, 2006.

L. T. Jolliffe. Principal Component Analysis. Springer,
second edition, 2002.

D. J. Kistler and F. L. Wightman. A model of
head-related transfer functions based on principal
components analysis and minimum-phase reconstruc-
tion. Journal of the Acoustical Society of America,
91(3):1637-1647, 1992.

L. Lathauwer, B. Moor, and J. Vandewalle. A multi-
linear singular value decomposition. SIAM Journal on
Matrix Analysis and Applications, 21(4):1253-1278,
2000.

J. Middlebrooks and D. Green. Observations on a
principal components analysis of head-related transfer

(2]

(3]

(4]

(5]
(6]

(7]

(8]

232



o

‘ —Original
---PCA

h o o
29

Log-magnitude
response (dB)

0 5 10 15 20 25
Frequency (kHz)

(a) PCA reconstructed HRTF

—Original

Log-magnitude
response (dB)

5 10 15 20 25
Frequency (kHz)

(c) GLRAM reconstructed HRTF

Log-magnitude
response (dB)

Log-magnitude
response (dB)

o

A ‘ I ‘ —Original
---2DPCA

h o o
29

-25F
30+
% 5 10 15 20 25
Frequency (kHz)
(b) 2DPCA reconstructed HRTF
10 ‘
—Original

5 N ---TSVD

ok

-5
-10
15}
-20¢
-25¢
-30
% 5 10 15 20 25

Frequency (kHz)
(d) T-SVD reconstructed HRTF

Figure 3: Log-magnitude response of the measured CIPIC-HRTF (Original) and the estimated HRTF (subject 153, azimuth =
5°, elevation = 16.875°).

9

—

(10]

(11]

[12]

[13]

(14]

functions. Journal of the Acoustical Society of America,
92(1):597-599, 1992.

T. Nishino, N. Inoue, K. Takeda, and F. Itakura. Estima-
tion on HRTFs on the horizontal plane using physical
features. Applied Acoustics, 68(8):897-908, 2007.

M. Rothbucher, H. Shen, and K. Diepold. Dimension-
ality reduction in HRTF by using multiway array anal-
ysis. In Proceedings of the 3rd International Work-
shop on Human-Centered Robotic Systems (HCRS’09),
pages 102-108, Bielefeld, Germany, November 2009.

B. Savas and L. Lim. Best multilinear rank approxima-
tion of tensors with quasi-Newton methods on Grass-
mannians. Technical Report LITH-MAT-R-2008-01-
SE, Department of Mathematics, Linkpings University,
2008.

B. N. Sheehan and Y. Saad. Higher order orthogo-
nal iteration of tensors (HOOI) and its relation to PCA
and GLRAM. In Proceedings of the 2007 SIAM Inter-
national Conference on Data Mining, pages 355-366,
Minnenpolis, Minnesota, USA, 2007.

D. L. Wang and G. J. Brown. Computational Auditory
Scene Analysis: Principles, Algorithms, and Applica-
tions. Wiley-Interscience, IEEE Press, 2006.

J. Yang, D. Zhang, A. F. Frangi, and J.-Y. Yang. Two-
dimensional PCA: A new approach to appearance-
based face representation and recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,

26(1):131-137, 2004.

[15] J. Ye. Generalized low rank approximations of matri-

233

ces. Machine Learning, 61(1-3):167-191, 2005.



