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ABSTRACT

Positioning in Wireless Sensor Networks is a key feature in
many applications. Finding efficient algorithms to perform
this task is of practical importance in systems where limita-
tions on the computational power and battery life are a ma-
jor issue. Forming coalitions within the set of visible nodes
to a target can help reduce communication costs. We can
then formulate the problem as a coalitional game where co-
operation does not come for free.

1. INTRODUCTION

Wireless Sensor Networks (WSN) are receiving high inter-
est in many communication problems and applications. The
main features of WSN’s are that of low-cost nodes with lim-
ited resources both in terms of computational power and
battery whose purpose is sensing the environment (i.e. tem-
perature, humidity, motion, etc). Additional requirements
of accuracy or scalability may be also needed for some ap-
plications. These constraints have motivated an intensive
research for efficient algorithms in WSN, offering many chal-
lenging problems in a wide range of applications. One of such
problems is source localisation which has emerged as a key
feature in applications like tracking, monitoring or surveil-
lance among others. In the literature [1, 2] we can find a vast
variety of applications where location plays a key role. As
mentioned earlier, energy efficiency is a major issue in WSN
so it will be interesting to reduce the energy consumption of
the network in order to increase the network’s lifetime. Us-
ing only a small subset of nodes within the set of all available
nodes can suffice for getting a similar performance as con-
sidering the whole set. This is due to the fact that data may
be correlated among closely located nodes. Further, in some
situations it could also be beneficial to remove some of the
sensing nodes due to failures and biases in the measurements
that can lead to an increase in the overal error.

One way of forming small subsets within the whole set
of nodes is to use game-theoretic tools. Game theory is
the branch of mathematics that deals with the interaction
of independent (intelligent, selfish) agents [3]. There are
two different approaches in game-theory depending on
whether the interest is focused on the individual agents
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(non-cooperative) or in a coalition / group of agents (coop-
erative). We are interested in the later one (cooperative)
where agents benefit from the cooperation with other
agents by forming coalitions. Some of the applications
where it has been applied are beamforming for interference
minimization, code and power selection, rate optimization,
spectrum sharing in cognitive radio, cross-layer optimization
or infrastructure management among others, see [5, 4] and
references therein.

In this contribution we propose a cooperative localisa-
tion and tracking scheme using game-theoretic tools. In
particular, sensors are modeled as selfish agents that try
to locate and track the target. For that purpose, nodes
will organise into groups or coalitions that will perform
the localisation task. The formation of coalitions is done
following the general framework presented in [6] having into
account the cost for cooperation. At the end of the coalition
formation process severeal coalitions will result that will be
tracking the target. For further energy saving only the best
coalition is kept while the other coalitions will be allowed to
go to sleep. This process will repeat over time in order to
adaptively follow the motion of the target.

The paper is organised as follows: in Section II we
present the system model. The formation of coalitions is
treated in Section III and some simulations are provided in
Section IV. The paper concludes in Section V.

2. SYSTEM MODEL

Through this section we describe the system model and the
network behaviour. Let us assume a WSN formed by N
nodes and assume the presence of a target node whose posi-
tion is to be tracked. The target node broadcasts messages
and a number of K nodes can hear it. Then, this subset of
nodes tries to position the target. Locating nodes are not
allowed to communicate for free, instead a communication
cost between nodes is present. The cost is a measure of
the power consumed by the communication between nodes
and is proportional to the distance (at some power) between
communicating entities.

2.1 Locating nodes

For getting estimates of the target position, nodes employ
distance estimates. We use the standard lognormal model
[1] that uses Received Signal Strength Indicator (RSSI) mea-
surements to get distance estimates. In a real world scenario
a calibration phase will be needed in order to build up a
lookup table between RSSI and distance. For simplicity, we
assume that the RSSI follows a linear relationship with the
received power PR. Hence, the received power follows a log-
normal distribution [1] with a distance-dependent mean as

PR[dB] = P0 − 10 np log10

„
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where P0 is the received power (in dB) at reference distance
d0, np is the path-loss exponent and X is a Gaussian random
variable of zero mean and variance σdB. Let us denote PR,i as
the measured power at the i-th locating node. The maximum
likelihood estimate of the distance to the target is then given
by

di = d0 10

„

P0−PR,i
10 np

«

. (2)

Once each node has its own estimation of the distance to the
target, the position estimation problem can be formulated as
a linear problem [1] in the form Hx = b, where x = [x0, y0]

T

is the target position vector and H and b are given by
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where [xi, yi]
T are the node coordinates, di are the distance

estimates at node i and K2
i = x2

i + y2
i and M is the number

of nodes that are performing the localization. Without loss
of generality, d1 > d2 > · · · dM and node 1 is assumed to be
at position [0, 0]T . If the number of nodes is greater than
3, matrix H is a tall matrix. The position estimate can be
then calculated as

x̂ =
“

H
T
H

”

−1

H
T
b . (5)

With the distance estimator of (2), the position estimate
(5) is biased. It can be easily shown that in order to get
an unbiased estimate of the position the distance estimate
should be modified to

d′

i = di e−σ2

i = d0 10

„

P0−PRi
10 np

«

e−σ2

i , (6)

where σi =
log(10)σdB,i

10 np
and σdB,i is the variance of the re-

ceived power PR,i[dB]. With distance estimator (6) the esti-
mated position of the target can be expressed as

x̂ = x + e , (7)

where e is a zero-mean random variable that represents the
position estimation error. Further, as the number of locating
nodes increases the distribution of e approaches a Gaussian
distribution by the Central Limit Theorem. For simplicity
reasons it is also assumed that communication channel be-
tween nodes is ideal and no errors occur when exchanging
information among neighboring nodes.

2.2 Target movement

The target node can be placed at any arbitrary position in
the network area. It is assumed that the target moves freely
through the network by following a random force movement
[7] given by

xt+1 = xt + vtT +
1

2
at+1T

2

vt+1 = vt + at+1T ,

where xt is the target position at time instant t, vt is the
target speed, at is the acceleration and T is the elapsed

time between consecutive samples. It is assumed that the
target is initially at some position x0 = [x0, y0]

T with initial

speed of v0 = [vx
0 , vy

0 ]T and that the acceleration follows
a Gaussian distribution, a ∼ N (0, σ2

aI). Using the above
state transition model and assuming that the position
estimate (5) is a noisy measurement of the true distance
as in (7), we can employ the Kalman filter for target tracking.

It is worth to mention that instead of using the Kalman
filter on the joint estimate we could employ other tracking
strategies based, for example, on particle filtering.

3. FORMING COALITIONS

In this section we present an algorithm for forming coalitions
using game theoretical tools and having in mind communi-
cation costs. Let us first review some concepts of coalitional
game theory and then analyze the properties of the game at
hand.

3.1 Coalitional Game-theory

A coalitional game G (K, v) is defined by a set of players K
and an utility function v(·) that assigns a value to a coali-
tion of players in the set K. We will refer only to games
in characteristic form, that is, games in which the value of
a coalition depends solely on the members of that coalition
and not on the members outside the coalition. Within games
in characteristic form we can differentiate between Transfer-
able Utility (TU) games and Non-Transferable Utility games
(NTU). In TU games the utility function v(·) maps to a real
number and this coalition value can be arbitrarily aportioned
between the members of the coalition. In some sense it is like
having a common currency for all players. In NTU games,
however the payoff each player receives within one coalition
depends on the joint actions that players take. In general,
the utility function of NTU games does not map into a single
real value but into a set of payoff vectors [3].

A common assumption made in classical coalitional game
theory problems is that the game is superadditive, that is
v(A ∪ B) ≥ v(A) + v(B), where A and B are two disjoint
coalitions. This means that increasing the size of the coali-
tion is always beneficial and hence, the grand coalition will
form (i.e. the coalition of all players).

In many problems however, superadditivity does not hold
due to the introduction of some costs associated with the for-
mation of coalitions. Under this setting the grand coalition
will not form due to cooperation costs. The problem of how
to form coalitions becomes the main challenge in such situ-
ations. In [6] a general framework for coalition formation is
proposed that has been applied to wireless communication
problems like beamforming and cognitive radio [8]. We follow
the general framework of [6] but applied to our positioning
game.

3.2 Positioning game

From the perspective of coalitional game theory (coalition
formation) we can interpret our problem as a game where
nodes want to locate the target node with the lowest pos-
sible error and with the lowest cost in terms of consumed
power. As all nodes within the locating coalition will end
up with the same position estimate and given the fact that
the consumed power depends on the relative positions of the
nodes, our positioning game is of clear NTU nature. We con-
sider that the elements (players) of the game are those nodes
detecting the signal of the target. Within this subset several
coalitions will form based on the merge and split operations
[6]. Within a coalition we assume the presence of a coalition
head that acts as fusion center and performs the estimation
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and tracking tasks (i.e. the one with the lowest distance to
the target at the coalition formation phase).

For forming coalitions it becomes necessary to define a
suitable utility function that accounts for the trade off be-
tween performance and costs. We define the value of a coali-
tion A ∈ K to be

v(A) =

(

0 |A| ≤ 1
δ |A| = 2

(1− η) Q(A)− η C(A) otherwise

where the function Q(A) represents a quality indicator of
the coalition A and the function C(A) is the associated cost
function. The parameter 0 ≤ η ≤ 1 controls the compromise
between cost and performance. In our case we select the
quality function to be based on the discrepancies that every
node experiences between its measured distance and the fi-
nal joint estimated distance within the coalition. The cost
function is selected to be related to the energy consumption
necessary for communication. The number |A| represents
the cardinality of the coalition A. As localization can only
be done if three nodes are hearing the target, the value of a
singleton coalition is 0. The value of a two-element coalition
will be a small positive number 0 < δ ≪ 1. This will allow
the formation of bigger coalitions.

For |A| ≥ 3 the coalition value (utility) is given by

v(A) = (1− η)

"

|A| −
X

i∈A

(d′

i − d̂i)
2

R2

#

| {z }

Q(A)

−η
X

i∈A

d2
ih

R2

| {z }

C(A)

, (8)

where d′

i is the estimated distance of the i-th node (6), d̂i

is the distance of the i-th node to the joint estimated posi-
tion of the target, R is the coverage range of the target (i.e.
maximum distance covered by the target) and h is the index
of the coalition head (fusion center). Then, the payoff that
each node j ∈ A receives is

φj(A) = (1− η)

"

1−
(dj − d̂j)

2

R2

#

− η
d2

jh

R2
. (9)

It can be clearly observed that the utility will increase as
locating nodes are closer (less cost) and as the discrepancy
between measurement and estimation becomes smaller (less
error). It is worth to mention that nodes that exhibit a high
discrepancy (i.e. due to a bias in the estimation) are less
likely to join a coalition.

3.3 Algorithm

The formation of the locating - tracking coalitions is achieved
in a distributed manner by the application of two basic rules
[6]:

MERGE {C1, . . . , Cl} if {
[

Cj} ⊲ {C1, . . . , Cl} (10)

SPLIT {
[

Cj} if {C1, . . . , Cl} ⊲ {
[

Cj}, (11)

where {C1, . . . , Cn} is a collection of coalitions and ⊲ rep-
resents an ordering criterium. For this particular game the
ordering criterium selected is the Pareto order on the indi-
vidual payoffs. The Pareto order is defined as

(k1, . . . , kn) ≻p (l1, . . . , ln) if

ki ≥ li and ∃ ki > li, i ∈ {1, . . . , n} ,

where ki, li are real numbers. With these considerations,
coalitions will form by successive application of merge and

Algorithm 1 System operation

while Target is in coverage area do
Each locating node measures the distance to the target
if elapsedT ime > sleepInterval then

repeat
Merge coalitions
Split coalitions

until Merge & Split terminates
Select the best coalition and set all remaining coali-
tions to sleeping state
elapsedT ime← 0

else
Tracking (KF) within the best coalition
elapsedT ime← elapsedT ime + 1

end if
end while

split rules using the Pareto order. Iterative application of
merge and split operations is guaranteed to converge [6].
Furthermore, the procedure of forming coalitions can be done
in a fully distributed manner at both coalition and individual
level. However, this distributed implementation comes at the
cost of increasing signalisation overhead. It is worth men-
tioning that nodes can handle variations in the environment
such as mobility of the target by continuously refreshing the
coalition structure. However, this will imply a high amount
of communication overhead that will reduce the efficiency of
the system. Instead, nodes can dynamically adapt to envi-
ronmental changes by reducing the rate at which coalitions
are formed. Obviously, this will imply a reduction in terms
of error performance but it will also imply a reduction in
the communication overhead. A trade-off solution between
cost and performance should be made. Keeping in mind
these considerations the general operation of the system will
be the following: Initially nodes that are visible to the tar-
get (i.e. lie within the coverage area of the target signal)
perform a measure of the received power. Each node trans-
lates its local measured value into distance by (6). If the
elapsed time since last coalition formation is greater than the
sleeping time, then current coalitions begin with the process
of coalition formation by attempting to merge with nearby
coalitions following (10). Afterwards any formed coalition
is subject to a split operation into smaller coalitions if (11)
is satisfied. This process is repeated until convergence, that
is merge and split do not produce any new partition of the
visible set. Once a final partition has been reached only the
coalition with the highest utility will remain while all others
will go to sleeping state in order to save energy. The win-
ner coalition will perform the positioning and tracking task
during the next sleeping interval. For simplicity, we have im-
plemented the target tracking task in a centralized manner
by using a Kalman filter. A coalition head will be selected as
the node with the shortest distance estimate and all the other
nodes within the coalition will communicate their measured
distances to the coalition head. Once all data has been col-
lected the target location is estimated and used to feed the
Kalman filter. It is worth noting that the same approach
can be done in a fully distributed way by using any dis-
tributed version of the Kalman filter (i.e. consensus based).
After the tracking time, the current coalition structure will
be revisited and the described process will be repeated. An
illustration of the network behaviour is depicted in Figure 1
where locating nodes are the blue circles and the target node
is a red square. The red line represents the true trajectory
of the target while the dashed green line is the estimated
position. Yellow faced nodes are the current tracking coali-
tion. The pseudo-code of the system operation is described
in Algorithm 1.
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3.4 Stability remarks

The application of the proposed algorithm will end up with
a sequence of tracking coalitions that evolve as the target
moves through the network. Let us give first some clar-
ifying definitions about nomenclature. The set of players
K = {1, . . . , |K|} is called the grand coalition and any non-
empty subset of K is a coalition. A collection is any family
C = {C1, . . . , Cl} of mutually disjoint coalitions. Further, a

collection C is a partition of K if
Sl

j=1 Cj = K.
The stability of the coalition formation process is anal-

ysed using the concept of a defection function D that assigns
to each partition of the grand coalition K, some partitioned
subset of the grand coalition [6]. Before ongoing with the
analysis let introduce the notation C[P ] (collection C in the
frame of partition P = {P1, . . . , Pm}) as

C[P ] = {P1 ∩
l

[

j=1

Cj , . . . , Pm ∩
l

[

j=1

Cj} \ {∅}.

With the above notation and assuming an ordering criteria
⊲, a partition P is said to be D-stable [6] if:

C[P ] ⊲ C for all C ∈ D(P) .

Two natural defection functions are Dp which allows
formation of all partitions within the grand coalition and
Dc, which allows formation of all collections in the grand
coalition. Thus a partition P is Dp-stable if there is no
partition T of K such that T ⊲ P . Analogously, a partition
P is a Dc-stable if for all collections C ∈ K it is satisfied
that C[P ] ⊲ C. These definitions of stability are related to
the Merge and Split rules by virtue of the following theorem
[6].

Theorem 3.1. Suppose that ⊲ is a comparison relation and
P is a Dc-stable partition. Then

- P is the unique outcome of every iteration of the merge
and split rules

- P is a unique Dp-stable partition

- P is a unique Dc-stable partition

As an immediate consequence of Theorem 3.1 we have
that in the coalition formation phase of the proposed algo-
rithm we converge to the unique Dc-stable partition if such
a partition exists. Two necessary and sufficient conditions
for the existence of a Dc-stable partition are given in [6].
However, in our particular problem such existence can not
be always guaranteed as it depends on the geometry of the
network (positioning nodes). If the case is such that no Dc-
stable partition exists then the algorithm converges to a sta-
ble partition with respect of the merge and split rules (i.e.
the algorithm is guaranteed to have a finite runtime).

4. SIMULATIONS

In this section we present some numerical results in order
to evaluate the performance of the proposed locating algo-
rithm. A total of 100 nodes have been randomly deployed
into an area of 50× 50 m2 as shown in Figure 1. A number
of 100 random trajectories have been simulated. The target
is set to a random position on the boundaries of the locating
area with an initial speed of |v0| = 0.2 m/s and acceleration
standard deviation σa = 0.01. For the propagation model a
reference distance d0 = 1 m have been taken with reference
power P0 = 0 dBm. The path-loss exponent is np = 2
and σdB = 2. It is assumed that all nodes have the same
parameters for the propagation model and that the coverage
range of the target is 10 m. It is also assumed that each
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Figure 1: Illustrative example of the network operation

node performs average a number of ten measurements before
locating / tracking the target. A value of η = 0.65 has been
used for the simulations. For comparison purposes we have
implemented a base solution where all the nodes within the
range of visibility of the target (i.e. the grand coalition)
cooperate and jointly perform positioning and tracking.
For computation of the overhead cost due to the coalition
formation process we have associated with any merging
attempt between two coalitions a cost proportional to the
squared distances between the centers of the coalitions.
If merging is successful also the necessary broadcasting
messages have been taken into account. This will provide
us an approximation to the average costs involved in the
merging operation. The splitting operation is assumed to be
performed by the coalition head (in a centralised way) and
hence, only successful splitting operations will result in a
overhead cost proportional to the squared distance between
splitted coalitions.

In Figure 2 it is displayed the average estimation error
versus the time rate at which coalitions are rebuilt. As it
can be observed the coalition formation approach exhibits
(as expected) a higher mean error as the solution where all
nodes cooperate. This is obviously due to the fact that not
all nodes that hear the target cooperate but only a subset of
them. However, if we have a look at the average cooperation
costs depicted in Figure 3 it can be realised that the proposed
scheme provides a better performance than the base solution
despite the generated overhead even for a small duration of
the sleep interval. In Figure 4 it is depicted an example of
the cost evolution over time for both the grand coalition and
for the tracking coalition. Peaky regions correspond to the
process of coalition formation that are repeated every sleep
interval.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

We have presented a coalition formation algorithm for local-
ization and tracking purposes. Estimates of the target loca-
tion have been made by forming coalitions over time as the
target moved. The tracking part has been implemented by
relying on a fusion center but a fully distributed can also be
implemented. The stability of the algorithm has been anal-
ysed and the benefit in terms of communication cost at the
expense of some performance degradation has been demon-
strated via simulation. A characterisation of the effects of
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Figure 4: Cost evolution for a sample trajectory of the target
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Figure 3: Average cost of communication

the different parameters at hand into the locating algorithm
and a fully distributed implementation are our next steps as
well as the extension to more general scenarios.
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