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ABSTRACT 

Time Varying Autoregressive (TVAR) models play a key 

role in various applications such as radar processing, 

aeronautics and speech processing. Nevertheless, 

tracking TVAR parameters may be difficult, especially 

when the process is disturbed by an additive white 

noise. In this paper, we suggest the use of a recursive 

Errors-In-Variables method to estimate the variances 

of the driving process and the additive noise and to 

track TVAR parameters. This method is based on a 

Newton-Raphson algorithm. A comparative study with 

EKF, UKF and CDKF is also proposed. 

1. INTRODUCTION 

Autoregressive (AR) models and Multivariate 

Autoregressive (M-AR) models are used in a wide 

range of applications from speech processing to 

biomedical signal analysis, from radar processing to 

mobile communication systems, etc. 

However, when the observations are disturbed by an 

additive noise, the Least-Squares (LS) estimates of the 

AR parameters, the estimates based on standard Yule-

Walker equations and LS on-line methods, are biased. 

To compensate the influence of the additive noise, 

various solutions have been proposed in the literature. 

When the additive noise is white
1
, on-line noise-

compensated methods such as the -LMS can be 

considered. Mutually interactive approaches 

combining Kalman or H filtering have been also 

proposed. Some of them can be seen as recursive 

instrumental variable techniques and hence provide 

consistent estimates of the parameters. Their relevance 

has been studied for AR and M-AR parameters for 

speech enhancement, channel estimation for CDMA 

or OFDM systems, etc. 

If off-line noise-compensated approaches are 

considered, it is possible to use modified Yule-Walker 

                                                 
1
 For more details, the reader is referred to [4]. 

(MYW) equations that can be seen as an instrumental 

variable technique. Alternative solutions have been 

proposed by Davila [5] who maps this estimation issue 

into a quadratic eigenvalue problem. Iterative 

approaches based on the Noise-Compensated Yule 

Walker equations have been suggested by Zheng in 

[16]. This latter approach has been extended to the  

M-AR process case in [9] and to the case of additive 

colored noise in [15] and [10]. For TVAR tracking 

from noisy observations, one idea would be to derive 

an Expectation-Maximization (EM) algorithm to 

estimate the TVAR process itself (i.e. the complete 

data) from the noisy observations and the coefficients 

of the expansion of the TVAR parameters into the 

basis sequences. Nevertheless, the selection of the 

basis and of its size has to be done ; in addition, the 

number of parameters to be estimated increases much. 

As an alternative, we have suggested using Errors-in-

Variables (EIV) approaches that have the advantage of 

estimating the AR parameters, the variance of the 

driving noise and that of the additive noise directly 

from the noisy observations. This approach is based 

on the search of the kernel of a specific sample 

covariance matrix obtained from noisy data. It has 

been first studied with reference to a noisy scalar AR 

process and applied in the field of speech 

enhancement using a single microphone [4], channel 

estimation in mobile communication systems, and for 

radar sea clutter rejection [11]. EIV techniques have 

then been extended to M-AR processes [12]. These 

approaches provide significant results for signal-to-

noise ratios (SNR) higher than 5 dB also when a 

limited number of samples (few hundreds) is 

available. 

In various applications such as aeronautics [8], radar 

processing [1] and EEG analysis [3], time varying AR 

(TVAR) models are often used to design parametric 

approaches for non-stationary signals. For more 

details about TVAR processes the reader may refer to 
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various pioneering works by Grenier in the field of 

speech analysis, transmission and recognition, like [7]. 

Usually, the TVAR parameters are approximated by a 

weighted combination of a small number of known 

functions such as Legendre polynomials, etc. 

To our knowledge, only few papers deal with the 

direct estimation of the TVAR parameters from noisy 

observations. Possible approaches concern extended 

Kalman filtering, sigma point Kalman filters (SPKF) 

[14], that include the unscented Kalman filter, and the 

central difference Kalman filter. Nevertheless, they 

require the a priori knowledge of the variances of the 

noises. In [13] and [6], particle filtering is considered 

but the computational cost may be particularly high. 

In this paper, we derive a recursive EIV scheme to 

track TVAR parameters from noisy observations of a 

TVAR process. It does not require any a priori 

information about noise variances. 

Given a generic algebraic process described by the 

variables  
Kkkv

,...,1
, the EIV estimation problem 

consists in determining, on the only basis of noisy 

observations  
Kkkkk evt

,...,1
 , the set of K-tuples 

 
Kkk ,...,1

  that satisfy the relation: 

 0...2211  KK . (1) 

By introducing xR , tR  and bR  the autocorrelation 

matrices of  Kvv 1 ,  Ktt 1  and 

 Kee 1  respectively, the above equation is 

equivalent to: 

 
    

0

11




T

Kv

T

Ket RRR  
 (2) 

where 0  is a zero row vector. 

At that stage, the Frisch scheme [2] makes it possible 

to define the set of noise-compensating matrices such 

that  et RR   is positive semidefinite. The kernel of 

 et RR   hence corresponds to the set  
Kkk ,...,1

 . 

In our case,  
Kkk ,...,1

  represent the TVAR 

parameters. 

The remainder of the paper is organized as follows: 

section 2 describes the problem statement. The Frisch 

scheme is then introduced to estimate the variances of 

the driving process and of the additive noise as well as 

the TVAR parameters. Section 3 describes a recursive 

EIV algorithm for parameter tracking while Section 4 

reports a comparison of the proposed approach with 

EKF, UKF and SPKF which require the a priori 

knowledge of the noise variances. 

2. PROBLEM STATEMENT 

Let the TVAR process be defined as follows: 

  




p

l

l nulnxnanx
1

)()()(  (3) 

where   
pll na

,..,1
 denote the TVAR parameters

2
 and 

u(n) is a zero-mean white noise with variance 2
u . 

This process is considered as disturbed by an additive 

zero-mean white noise b(n) with variance 2
b , 

uncorrelated with the driving process: 

 )()()( nbnxny  . (4) 

Let now introduce the following vectors: 

   TT
x

T

x nnxpnxnxnxn )()()()1()()(     

   TT
y

T

y nnypnynynyn )()()()1()()(     

   TT
b

T

b nnbpnbnbnbn )()()()1()()(      

T

p

u nun
















 00)()(  

and the TVAR parameter vector: 

   TTT

p nnanan )(1)()(1)( 1    . 

Then, equations (3) and (4) can be expressed in a 

matrix form as follows: 

   0)()()(  nnn T
u

T
x   (5) 

and )()()( nnn bxy    (6) 

By pre-multiplying equation (5) by  *)()( nn ux    

and by introducing  




 )()( * nnEnR T

xxx  , we 

obtain: 

                                                 

2
 At time n: 












p

l

l

p

l

l
l znpzna
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))(1(

1
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1
)(  

where  lp  are the poles. 
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The TVAR parameters could thus be obtained, should 

 nR ux
*
,  be available. 

However, in all real cases, only the observation 

sample covariance matrix  nRy
*  can be computed. 

Let us now focus our attention on a recursive approach 

to estimate the correlation of the noisy observations 

and the variances of the additive noise and of the 

driving process. It should be noted that for every 

estimation of the additive-noise variance 2
b , one can 

easily deduce )(n  and 2
u . Given (6) and (7), the 

extended vector )(n  satisfies the condition: 
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T
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. (8) 

Given )(n , equation (8) can be split into the 

following equalities: 

 0)()(*222  nnrT
buy   (9) 

 0)())(()( 2*  nInRnr pby   (10) 

Thus, given an estimation of 2
b , the TVAR 

parameters )(n  can be estimated by using (10); the 

variance 2
u  can then be deduced from equation (9).  

In the following the TVAR parameter vector is 

denoted as a function of 2
b , i.e. 

TT
bb nn ]),(1[),( 22   and a recursive algorithm, 

based on the solution of higher-order Yule-Walker 

equations, is proposed to estimate the additive-noise 

variance 2
b . 

For this purpose, let us consider two column vectors of 

size q with pq   : 

T
h
x qpnxpnxpnxn





  )()2()1()(   
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T
h
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
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*
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h
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
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),( 2
bn   satisfies the Yule-Walker equation : 

 0),())(( 2* b
h
y nnR  . (11) 

We thus suggest estimating 2
b  by minimizing the 

following cost function: 
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)()(

)()(
),(

),()(),(

),())(())((),(

),())(()(

2
*

*2

2*2

2**2

2

2

2*2

b

T
T

b

b
hT

b

b
h
y

Th
y

T
b

b
h
yb

n
nn

nn
n

nnn

nnRnRn

nnRJ




































 (12) 

where 2
max,

20 bb    and 
2

max,b  is the lowest 

eigenvalue of )(nR y . 

In [2] and [4], off-line methods have been proposed to 

estimate the noise variances. In [11], a recursive 

approach has been derived for time-invariant AR 

processes. 

Here, our purpose is to use a Newton-Raphson 

algorithm to track the TVAR parameters. 

3. A NEWTON-RAPHSON ALGORITHM FOR 

PARAMETER TRACKING 

The criterion defined in (12) can be expressed as: 

))(()(

)()(),(),()(

),(),()(

2

2*2*

22*2

b

b
T

b
T

bb
T

b

gff

nnnnn

nnJ
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









 

where )())((),( 12*2 nrInRng pbyb
  . 

By denoting 
22

22

)(

)(

b

bJ








 as ))(('' 2 nJ b , the Newton-

Raphson algorithm makes it possible to estimate the 

variance 2
b  iteratively. At time n, let the initial guess 

)(ˆ 2
0, nb  of the variance be equal to the value estimated 

at time n 1. Since the function (.)'J  is well-

p 1 
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behaved, a better approximation of the variance can be 

iteratively obtained as follows: 
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 (13) 

where )(ˆ 2

, nib  is the i+1th estimate of the variance and 

)(ˆ ni  the corresponding TVAR parameters. Moreover: 
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By substituting (14) in (13) we obtain: 
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. (15) 

The process is repeated until convergence that leads to 

the estimate of the additive-noise variance at time n, 

)(ˆ 2 nb . 

 

For TVAR tracking, after an initialization step 

requiring Ntrame samples, the autocorrelation matrix 

is updated as follows: 

 

Ntrame

NtramenNtramen

Ntrame

nn
nRnR

T
yy

T
yy

yy

)1()1(

)1()1(
)(ˆ)1(ˆ
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. (16) 

It should be noted that )1(ˆ nr  and )1(ˆ nRh
y  are 

updated in a similar way. In addition, it holds: 

Ntrame

Ntrameny
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ny

nn yy

22

22

)1()1(

)(ˆ)1(ˆ





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TVAR tracking can thus be summarized as follows: 

 

1. Update of )(ˆ 2 nb by means of (15). It should be 

noted that several iterations of the Newton-

Raphson algorithm may be required. 

2. Update of )(ˆ nRy , )(ˆ nr  and )(ˆ 2 ny  using (16). 

3. Computation of 
12*1* ))1(ˆ)1(ˆ())1(ˆ(   pbyx InnRnR   and of 

the AR parameters at time n by means of the 

relation )1(ˆ))1(ˆ()1(ˆ 1*   nrnRn x . 

4. Update of )(ˆ 2 nu  by means of (9). 

5. Update of )(ˆ nRh
y  and computation of )1(ˆ  n  and 

)1(ˆ n . 

4. SIMULATION RESULTS 

In this section, the performance of the approach 

proposed in this paper is compared with that of other 

on-line approaches such as standard Kalman filtering, 

EKF and SPKF (including UKF and CDKF). It should 

be noted that noise compensated approaches like the  

-LMS cannot be used in TVAR parameter tracking. 

For a simpler exposition, the order of the simulated 

TVAR process has been taken equal to 2; 2048 

samples have been used. The AR parameters evolve in 

time according to the variation of the associated poles 

reported in fig. 3 and 4. The signal-to-Noise Ratio 

(SNR) is equal to 10 dB. The way the poles evolve in 

time is given in fig. 1 whereas the resulting 

spectrogram points out the non stationarity of the 

signal in fig. 2. 
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Figure 1: Evolution of the poles associated to the AR 

signal. 

The simulations that have been carried out show that 

UKF and CDKF approaches provide similar results. 

The number of iterations required by the Newton-

Raphson algorithm used by the approach described in 

the paper has been low (typically equal to 2). 
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Figure 2: Signal spectrogram (dB). 

5. CONCLUSION 

It is thus possible to conclude that the approach 

described in the paper provides results quite similar to 

those of other methods like EKF and SPKF but with the 

advantage that it does not require any a priori 

information on the noise variances. 
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Figure 3: Estimation of the pole modulus 
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Figure 4: Estimation of the pole argument. 
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